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Rate equations for the phonon peak in resonant-tunneling structures
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The ratio of the phonon peak current to the main peak current in double-barrier resonant-tunneling
structures is significantly enhanced by barrier asymmetry. Previously, using the Keldysh formalism, we
derived analytical expressions, valid in the zero-temperature, high-bias regime, which explained this
effect. We now provide analytical expressions valid for finite temperature and bias obtained from (i) an
intuitive derivation using a rate equation approach and (ii) a more general derivation using the Keldysh
formalism. The results of the two different approaches are shown to be essentially identical for the ex-
perimental device parameters. The finite temperature expressions shed light on the effect of the Pauli ex-
clusion factors in the contacts on the current. In particular, we show that in a transmission formulation,
the transmission coefficients, T (g, €’), are themselves functions of the Fermi factors in the contacts.

The ratio of the phonon peak current to the main reso-
nant peak current in double barrier resonant tunneling
-structures (DBRTS’s) is enhanced by barrier asymmetry.!
Recently, an asymmetric DBRTS displayed a phonon
peak as large as the main peak.'® The fact that an off-
resonant, inelastic channel carries as much current as the
main resonant channel is surprising. In a recent paper,’
using the Keldysh formalism, we derived simple analyti-
cal expressions for the phonon-peak current valid in the
high-bias, zero-temperature limit which explained this
effect. We now provide analytical expressions obtained
from (i) an intuitive derivation using a rate equation ap-
proach valid for finite temperature and bias and (ii} a
more general derivation using the Keldysh formalism val-
id for finite temperature and bias. The results of the two
very different approaches are essentially identical for de-
vice parameters found in Ref. 1. By showing how and in
what limits the Keldysh equations reduce to rate equa-
tions, we clarify both the limits in which the rate equa-
tion approach is valid and the physics contained in the
Keldysh approach. The high-temperature limit of the
current expression is shown to be the same as that ob-
tained by replacing the electron-phonon interaction in
the well with a weak coherent ac potential. The results
are compared with those calculated from the scattering
approach of Wingreen, Jacobsen, and Wilkins.>™® The
finite temperature expressions shed light on the form of
the transmission coefficient, T'(g,e’), for a nonequilibri-
um, interacting system and the relationship between the
transmission coefficient and the current.* In particular,
Pauli-exclusion factors in the contacts arise naturally in
the two derivations, and the transmission coefficients
themselves are shown to be functions of the Fermi factors
of the contacts.

We derive general analytical expressions for the
current and occupation of the well using a tight-binding
model of a weakly coupled central site with the electron-
phonon interaction at the j=0 site. The Hamiltonian
consists of six parts:
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Hy='S, (~dlefey-+ef e Vescle)

j<0
H.-=7Y {—-t[c}c,—.,.l+c}+lcj]+acc}cj} ,
j>0
Hyp=¢c}ycw, Hp=ﬁa)0bfb , 1)

HT=—tE[CT—ICW+C;;’C—-1]+ "tc[C];CW"'C;TVCl] »
H,=VelepbT+b) .

Hpg (¢ is the Hamiltonian of the semi-infinite emitter (col-
lector) regions on either side of the central site with site
energies which are constant and differ between the two
regions by the applied voltage. Hy and H, are the Ham-
iltonians of the uncoupled central site and the phonon
bath, respectively. Hyp connects the central site to the
emitter and collector leads. H,, is the electron-phonon
interaction at the central site. ¢; is the electron annihila-

tion operator at site j, and b isjthe phonon annihilation
operator at the central site. The phonons are dispersion-
less with energy fiw,. The dimensionless phonon cou-
pling constant is g = V2 /(#iwg)%

First, we derive the general expressions for the
phonon-peak current and the occupation of the reso-
nance using perturbation theory and rate equations.
Then we show how the Keldysh approach leads to identi-
cal results. Transition rates between the leads and the
resonant site are derived using elementary, time-
independent perturbation theory, treating as the pertur-
bation H'=Hr+H,,. For weak electron-phonon cou-
pling, the important inelastic channel occurs between the
resonant energy E, and the incident energy E; =E, +fiw,
[see Fig. 1 and also Fig. 1(a) of Ref. 2]. Therefore, in the
following derivation, we consider only the coupling be-
tween the resonant and incident energies and ignore
higher energies such as E, +2#w, and lower energies such
as E, —#iw,. We treat the coupling of the central site to
the leads to first order, so that the resulting expressions
are valid for weakly coupled (large barrier) structures.
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We treat the coupling to the phonon bath to first order,
so that the resulting general-temperature expressions are
valid for g <<1. This is the case for the experimental
structures in Ref. 1. In the nonequilibrium Green-
function derivation, the corresponding assumptions are
that E,>>T" and (#ie)*>>(I')?/4 which is the case for
all of the experimental structures in Ref. 1. Superscripts
r and i indicate that the quantity is to be evaluated at the
resonant energy or the incident energy, respectively.
E, is the Fermi energy in the emitter and rr
=TF+T¢?+T}" where T is twice the imaginary part
of the retarded self-energy due to the electron-phonon in-
teraction and I'p(/7 is the tunneling rate through the
emitter (collector) barrier.

Consider our model system, Fig. 1. The state |k ) is
an eigenfunction of Hy and the states |k.) and |k} ) are
eigenfunctions of H.; for example, the collector

eigenstates satisfy H lko)=Elke) where
E=gc—2t cos(kca) and
lkeYy=V2/N 2 sin(jkca)lj) ,
i=
where ko=nw/Na with n€{1,2,...,N—1}. The

quantity a is the lattice spacing and |j ) is the state local-

i

15 133

Position

FIG. 1. Eigenstates of Hg, H c; and Hyy used in the perturba-
tion calculations.

ized at site j. The length of the contact regions is semi-
infinite so that N— o and k is continuous. The disper-
sion relation for the emitter (collector) eigenstates is
E=¢ggj —2t coslkgca). The state in the well, |7}, is
the unconnected localized state at j =0 with site energy
g We define direct-product electron-phonon states
|kg3N, )= lkE )®IN,) where |N,) satisfies H,|N,)

=N ﬁwolN

To calculate the total rate of transitions from |kz ) to
| ) we consider the matrix elements between the initial
states |kz; N, ) and the final state |W;N,+1).

o7 [{W;N,+1|H'|W;N, )(WN IH IkE,N >!
RWk E_
E [E( kE _50]

Q(‘E'(kE )”—Eo_ﬁﬂ)o)

=3 uf—-%sinz(kEa )tg-g(NB+1)8(E(kE)—so——ﬁcoo)=%F%g(NB-i—l) , )
kg

where we have replaced N, by its average value (N )=N B('ﬁa)o) where N, 8] is the Bose-Einstein factor, and used the re-
lations 'y =2sin(kza)t3 /t and g = V2 /(#w, ) Note that I'p is simply t} times the spectral function at the j=—1
site. The rate from |k%) to | W) is obtained by replacing I'; with I'L in (2). 7

To calculate the reverse rate from |W) to |kz) we consider the matrix elements between the initial state |W;N 1,)
and the final states |kz; N, —1).

llHIWN —1){W;N,
[80 E(kE)]z

2 l(kE;
RkE,W"':E";;l
kE

1|H’[WN )?
: R S(E (kg ) —eo—Fiwg)= ﬁgNBFE’ 3)

where we have replaced N, by its average value. Agaln, the rate from | W) to |k%) is obtained by replacing 'y with
c in (3).
To calculate the total rate from states |k ) to | W), we need only first-order perturbation theory.

Ry =Rery 2

2w, Bk Np)IZS(E(k{;)—aO)=—;—I"C . @)

The above rates will now be used in rate equations to obtain the inelastic component of the current and the occupation
of the resonance at the phonon-peak bias.
To obtain the occupation of the resonance, we equate the in- scattermg rate (multiplied by #)

Ry, =[fiTLg(Ng+ D)+ fETLg(Ng + 1)+ fETLI1—FT) o : B (5a)
and the outscattering rate
Row=f"TTEgNp(1— fE)+TLgNs(1— fE)+TR(1—fE)] ‘ o | " (5b)

to and from the resonant state. Note that each rate calculated from perturbation theory is sandwiched between a factor
of f for the initial state and (1— f) for the final state. Setting R,, =R, and solving for /" we obtain
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fr=

E+8NB[Fic(1 fc +FE(1 fE ]+g(NB+1)[I‘ fc+F fE]

S

The inelastic current is given by the transition rate from the emitter to the resonant state minus the reverse process,

Iin=%[férﬁzg(1\’p+1)(1—f’)—f’gNBF§;(1—f};-)] ,

@

where we have multiplied by 2 for spin. Substituting (6) into (7) gives the general expression for the inelastic phonon-

peak current

_2e JETEg(Np+ DIC(1—fE)—f

cgNpTE(1—fk)

5 TL+gNg[TL(1—fE)+T5(1—fL)]+g (N +D[TL L4 TE fE]

2_e FEg(NB+1)1" gNB(fE fc

i Te+gNp[Tc(1—fE)+TE(1—fE)]+g(Ny+ DT fc+FEfE]

The numerator of (8) has an intuitive form. The first
term represents the current flowing from the emitter at
the incident energy out to the collector at the resonant
energy minus the reverse process. The second term
which is second order in g represents electrons flowing in
from the emitter at the incident energy, emitting a pho-
non and scattering down to the resonance, absorbing a
(different) phonon and exiting through the collector back
at the incident energy, minus the reverse process.

The derivation using the nonequilibrium Green-
function formalism treats Hy exactly and H,, in the self-
consistent first Born approximation. The only difference
in the results is that the central site energy is renormal-
ized. The derivation of (6)—(8) begins with the general
expressions for-the emitter current per unit energy and
the occupation of the central site derived in Ref. 2,

2e A
Iy=<-5{TsTclfr—fc)

tlelfefi/m, = —fp)li/7, 1}, (9a)
f=[Tgfs+Tcfe+h/m,1/T . (9b)

All quantities in (9) are evaluated at the energy of in-
terest. In (9), A=T/[(E—¢,)*+T?2/4] is the spectral
function of the central site where

2 2
t2 , £2
€, =Ey— —t—cos(kEa )— Tcos(kca )+ok

is the renormalized resonant energy, I'=I¢ +T' g +#i/7,
and ﬁ/T¢=ﬁ/fr,, +ﬁ/7'p. The quantities ﬁ/’r¢, #/7,, and
#/74 are related to the self-energies by
2,0, E)=i#i/7,(0;E)8,, ,
27(i,0;E)=—i#/7,(0;E),, ,
and

SR(i,0; E)=[o®(0; E)—i#i/2740;E) 18, .

The first term of (9a) is the coherent component of the
current, and the second term is the inelastic component.
Only energies E, and E; are considered when calculating

the scattering rates 1/7, and 1/7,:

8)

[
/T, =VX Np+1)A(1—f"), (10a)
fi/T,=V>Ng A'f", (10b)
#/7,=V2Np A(1—f)=~gNyT1—f"), (11a)
#/7,=VANp+1)A'fi=g(Np+1)T'f" . (11b)

The approximate relations in (11) are obtained from the
following:

AT 1 /(E; —¢, ) =1/(fiwy) , (12)

which is justified in the limits discussed after Eq. (1). Us-
ing the above expressions for the scattering rates (10a)
and (10b) to evaluate the inelastic current per unit energy
at the incident energy from (9a) gives

Iglelastic=276_[f§ %g(NB F1)A7(1—f")

—fTAgNgTL(1—fE)], (13)

where (12) is used to evaluate 4°/T". Since the spectral
function is sharply peaked about the resonant energy,
E,=E;—#wn, integrating over incident energies in-
tegrates out the spectral function of the resonance, 47,
resulting in a factor of 27 and Eq. (7).

A self-consistent calculation of f7 begins with (9b)
written for the resonant and incident energies.

cf&+g(Ny+1)If!
pretefersWpt LS (14)
I'\r
. TefEATLfe+VINg ATF"
fim 5k f;, f (15)

Substituting (15) into (14) and solving for £ gives

e fc+g(NB+1)(F fe+TEfE+TLfE) ~  (16)
T'—g(Ny+ VN, 47 '

The numerator is the same as in (6). We now evaluate the
denominator by first evaluating I'/,

['=C%+#/7, +#/7,
=T +gNpT(1~f)+g(Np+ DLf! . (an



Substituting the expression for f/, Eq. (15), into (17), we
find that the denominator of (16) is identical to the
denominator of (6). Thus a self-consistent calculation of
S from the Keldysh approach resuits in Eq. (6). The cal-
culation of the current from the Keldysh approach result-
ed in (7) and substitution of (6) into (7) gives (8).

In both the rate equation and Keldysh approaches, we
have, so far, ignored the coherent component of the off-
resonant current. In the first approach, the rate of
coherent transitions is obtained by considering the matrix
element {kc|H'|W){W|H’|kg). Except for the renor-
malization of the central site energy, the current found is
identical to that obtained from the Keldysh approach,
Eq. (9a), after approximating 4°/T as 1/(E;—¢, )%

The high-temperature limit [Ng(#wy)=Ng(fiwy)+1]
of (8) is

. 2e FEg e fE=rE) ,2e
PRy L+g[TL+T%]  # Ip+g'[TL

c8'fE—fE)
+Tk]

?

(18)

where g’ =gNg(#iw,) =g [ Ny (#iwg)+1]. If we substitute a

weak coherent ac potential 2U cos(wyt )8, o for H,, in the

Hamiltonian (1) and, considering only the coupling be-

tween the incident and resonant energies, calculate the dc

current as described in Ref. 6, we obtain Eq. (18) with
=U?/(#iw,).

Consxder our expressions for the current, (7) and (8), in
terms of transmission T'(g,&’). First, we compare our re-
sults in the zero-temperature, high-bias limit to those ob-
tained from the single particle transmission approach of
Wingreen, Jacobsen, and Wilkins.> Then, the general
current expression (8) is used to obtain transmission
coefficients for the nonequilibrium, interacting system.

In the zero-temperature, hlgh—blas limit, Eq. (7) for the
current becomes

= —zﬁigrE(l 7 (19)
The single particle transmission coefficient calculated
from scattering theory to first order in g consists of four
- contributions (see Fig. 9 of Ref. 3). At the phonon-peak
bias for the typical thick barrier experimental structures,
only the contribution from the emission of one real pho-
non is important. We refer to this as the real inelastic
channel as opposed to the channels representing virtual
processes. The transmission coefficient for this channel is
(in the zero-temperature limit)

T(es,e)=T g(e)lcles)V28(e—e; —Hiwg)| GR(e)I
X|GRe|? . (20)

Note that the Green functions appearing in (20) are
different from the Green functions appearing in the Kel-
dysh expressions. The Green functions in (20) are true
single particle electron Green functions since they are
defined as an ensemble average over the phonon states
but as a matrix element of the electron vacuum [see Eq.
(A10) of Ref. 3 and ensuing discussion]. In contrast, the

Keldysh Green functions are ensemble averaged over
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both the electron and phonon states.””® Integrating (20)
over final energies gives

T(e)=T p(e)T (e —7iwg) V2| GR(e)|2| GR(e —Hing) |
21)

Writing |GR(e—1iwg)|*= A(e—#wy) /T(e—#w,) and as-
suming that A is sharply peaked about &,, we integrate
(21) over incident energies to obtain the current

ge Tple;)lc(e,)
I'(e,)

where €; =¢, +#iw, Using the relation |G®(g;)|2= 4°/I"
and Eq. (12), (22) becomes

I——fd T(e 2eRe)?, @2

l-\i T -
~ 2285 c C e e - - (23)
# T ) o
“Replacing T” "with the " elastic ~ resonance  width *
(Tiastic=T"¢ since I'; =0) gives
2 .
I=,7eg i . 24)

Not surprisingly, the single particle result (24) matches
our result (19) except for the Pauli-exclusion factor
(1—f"). Itis, therefore, independent of the collector bar-
rier.

-It is disconcerting to obtain an expression for the in-
elastic current which is independent of the collector bar-
rier. Clearly, as the collector barrier becomes very large,
the current must go to zero. ‘To understand why this un-
physical result is obtained, it is necessary to understand
how the scattering problem is posed. Initially, at
t— — oo, the device is prepared in the empty state and an
electron is injected with energy g; towards the device
from the left. Once the incident electron tunnels through
the emitter barrier, it can always emit a phonon and
scatter down to the resonant state since the resonant state
is empty. At low temperature, phonon absorption can be
neglected. Thus, for any finite size collector barrier, the
electron that has scattered down to the resonant state will
have leaked out into the collector as t~»>o0. Thus the
transmission coefficient calculated from scattering theory
for the low-temperature, real inelastic channel is indeed
independent of the collector barrier. The error occurs
not in calculating the transmission coefficient but in using
the transmission coefficient to obtain a current. During
the time that the electron dwells in the resonance, the
next electron is prevented from entering. The attempt
rate, g% /%, must be multiplied by the probability of
finding an empty state, (1—f7), to obtain the current.
This is not taken into account in the single particle ap-
proach.

We note three things. First, a self-consistent first Born
treatment of the electron-phonon interaction to calculate
G*®(e,) and thus a renormalized I'" leaves I'” essentially
unchanged due to the single particle definition of the
Green function. By contrast, in the Keldysh approach,
the current expression can also be written as (23) with I'"
=L¢+#/7, +#/7,=T;+gT'f" using (11) in the zero-
temperature, high-bias limit (Nz =0). In this limit, from
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(15), f'=T%L /T so that T"=T"1+gI'L. Substituting this
expression for I'” into (23) gives )

H r
_2 80l = (25)
#i gL +T%

Equation (25) is equivalent to (19) as can be seen by sub-
stituting the zero-temperature, high-bias limit of (6) into
(19). The renormalization factor gI'L; is due to the hole
outscattering rate at the resonant energy fi/7, which is
proportional to the electron density at the incident ener-
gy, n(s,—)=(c$cw(s,~)) [see Eq. (11b)]. Since, in the
scattering approach, brackets indicate a matrix element
of the electron vacuum, this term is zero. Second, the ex-
act expression derived by Wingreen, Jacobsen, and Wil-
kins [Eq. (32) of Ref. 4] is derived in the wideband limit
for which I'"=T" +T'¢; where the tunneling rates I'y and
T’ are independent of energy. Making this substitution
into (23) matches their first-order result for the real in-
elastic channel,

_2e 8Tslc

1=% Cg+Ce

S (26)

In the limit of I' >>T'f, which is the limit considered in
Ref. 3, all three expressions (24), (25), and (26) coincide.
Finally, both the wideband limit and the scattering ap-
proach are only valid for the problem of the phonon peak
in the limit ' >>T"5. The scattering approach does not
account for the Pauli-exclusion factor which becomes im-
portant for I'cSIT;. The wideband limit allows
reflection from the resonance to the emitter at the reso-
nant energy. This is unphysical since at the phonon-peak
bias, the resonance lies below the conduction band of the
emitter. However, the reflection is insignificant for
I'c >>T'g because any electron at the resonance escapes
through the small collector barrier. o

Now we attempt to write the first-order term of (8) in
the form of either*

I=’2h_efd£fd8f{TC,E(Sf,E)fE(S)[lﬁfc(Sf)]

—TE’C(_Ef,E)fc(S)[l_fE(Sf)]}
Q7

or
=£he“fdsfdef{Tc,E(sf’s)fE(8)~TE,c(sf,s)fc(e)} :

(28)

To obtain (8) we integrated over incident energies to in-
tegrate out the spectral function of the resonance which
resulted in a factor of 27. Let us undo that integral and
also multiply by an energy-conserving delta function
d(e;—e,—#iwy). Then the first-order term of (8) can be
written as - . .
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, | |
1=%% [ de; [ de,{Teple,e)fplen[1—fcle,)]

—Tgclene ) fele 1= fgle)l}

(29)
where
Tcele,,e,)=Tg(e;)g(Np+1)Tc(g,)
X A(e,)8(g;~€,—#wy)/Dle; 58, ) , (30)
Tg (g8, )=Fc(g,)gNpTg(g;)
X A(e,)8(g; —¢e, —Fiwg)/D(g;,e,) , (31)

and D(g;,¢,) is the denominator in (8) where the super-
scripts indicate the energy, ¢; or ¢,.

The Keldysh formalism appears to support Eq. (27) as
the proper expression for the current. However, the
transmission coefficients (30) and (31) are rather odd.
The transmission coefficients themselves, in the denomi-
nator, D(g;,¢,), contain Fermi factors in the contacts.

To understand why this occurs, consider the difference

between the current expressions obtained from the Kel-
dysh approach and the single particle scattering ap-
proach, Egs. (19) and (24). In the Keldysh approach, the
current is a function of the occupation of the states in the
device (in this problem the device consists of a single
state). The occupation of the device state is in turn a
function of how electrons are injected at it from all of the
different contacts at all energies, so that the occupation of
the device state is a function of the Fermi factors in the
contacts. Thus we should expect to find Fermi factors of
the contacts appearing in the transmission coefficients
(30) and (31). However, once we admit contact Fermi
factors into the expressions for the transmission
coefficients, it is no longer clear whether the factors of
(1—f) appearing in the current expression (29) should
actually be considered as part of the transmission
coefficients, Tz and T¢z. Depending on how the
transmission coefficients are defined, the current can be
cast in the form of either (27) or (28). To our knowledge,
this is the first calculation of nonequilibrium, inelastic
transmission coefficients T'(e,€’) which goes beyond a sin- -
gle particle approach.®!® The view that emerges from
the Keldysh formalism is not that of a scattering ap-
proach'’ but that of a complex set of quantum rate equa-
tions which balance and correlate the inscattering and
outscattering of quasiparticles to and from each state in
the device. Once balance is achieved, i.e., once the occu-
pation’ of states is known, or, more generally, once
G <(m,n ;E) is known, where m and n represent states of
the device, the current can be calculated.

In conclusion, analytical expressions valid for finite
temperature and bias are derived from the phonon-peak
current and occupation of the resonance using both the
Keldysh approach and rate equations. The results are
essentially identical for the device parameters found in
Ref. 1. The high-temperature limit is equivalent to that
obtained by replacing the electron-phonon interaction
with a weak coherent ac potential. Transmission
coefficients T, c(e,e’) and T g(g,€’) for the interacting



system are shown to contain within themselves Fermi
factors of the contacts. Pauli-exclusion factors in the

contacts arise naturally in the Keldysh and rate equation

approaches.
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