JavaGenes + Cycle-Scavenging = Progress in Nanotechnolgy

Al Globus,a Madhu Menon,b and Deepak Srivastavaa
(a) NASA Ames Research Center, CSC/NAS, Moffett Field, CA 94035

(b) Center for Computational Sciences and Department of Physics, University of Kentucky, Lexington, KY XXXX

Abstract:

A genetic algorithm procedure has been developed for fitting parameters for many-body interatomic force field functions. Given a physics or chemistry based analytic form for the force field function, parameters are typically chosen to fit a range of structural and physical properties given either by experiments and/or by higher accuracy tight-binding or ab-initio simulations. The method involves using both near equilibrium and far from equilibrium configurations in the fitting procedure, and unlikely to get trapped in local minima in the many-dimensional complex parameter space. As a proof of concept, we demonstrate the procedure for Stillinger-Weber (S-W) potential by (a) reproducing the published parameters for Si by using S-W energetics in the fitness function, and (b) evolving a “new” set of parameters, with a fitness function based on a non-orthogonal tight-binding method, which are better suited for Si cluster energetics as compared to the published S-W potential. The evolution is driven by a fitness function based the energies and forces calculated for Sin clusters (n < 7), and is able to predict accurate energies for minimum energy and deformed configurations of Sin (n = 7, 8, 33) clusters, which were not used in the fitness function. 

1. Introduction:

Accurate molecular dynamics (MD) or atomistic simulation of reactive systems containing many atomic species is important for the conceptualization, design and testing of novel nanoscale materials, devices, systems and applications, and a broad range of physical and chemical phenomenon in other areas as well. Some of the well studied processes, thorough MD simulations, include crack propagation in bulk materials, [Vashista/Kalia] thin-film deposition and etching, [Srivastava] ion and cluster bombardment of solid-surfaces, [Garrison] surface diffusion and reactions, [Garrison] and heterolayer epitaxy, superlattices and quantum dots. [Vashista/Kalia] In the nanotechnology arena: physical and chemical characterization of carbon nanotubes and fullerenes, design and operations of molecular gears, hinges, three-way junctions, and bearings have also utilized MD simulations using reactive dynamics of 2- or 3-atomic species containing systems [Srivastava]. However, as the system and device sizes continue to shrink and composition becomes more multi-species, there is a need for developing good quality reactive atomic force field functions that are not currently available. 

For example, in last twenty years, more than 30 reactive atomic force field functions for Silicon (Si) have been developed by various groups. Only few have survived the rigors of being used in MD simulations and comparison with the available experimental data. [Stillinger-Weber, Tersoff, Anderson, Kaxiras and the review article of Srivastava] Stillinger-Weber (S-W) and Tersoff (T) potentials were expanded also to include multicomponent systems such Silicon-Germanium-Carbon by Tersoff , Si-H and Si-F extensions of S-W and T potentials, and very extensively used Tersoff-Brenner (T-B) potential for hydro-carbon systems. [Brenner] The development of such functions has not extended towards other multi-component systems such as Carbon-Boron-Nitrogen systems for nanotechnology applications, Carbon-Halogen systems for etching processes, and biological systems containing nitrogen, phophorus, sulpher, oxygen and hydrogen atoms. The realization has been that developing reactive multi-atomic force field functions is tedious and, thus, is rarely attempted. 

There are two parts to developing atomic force field functions. First, finding a analytic functional form that reflects the physical and chemical nature of the atomic species under consideration, and second, fitting parameters in a multi-dimensional space based on the data available from the experiments or more accurate quantum mechanical calculations. Choice of a functional form is complex and has been investigated in detail [Kaxira’s work]. Much of the tedium, however, lies in the process of parameterization and comparison with the observables available from other sources. In an ideal case, the cycle of choosing a functional form and parameterization of the force field function should be iterated until a reasonable convergence is achieved with the widest variety of experimental data available for the atomic species under consideration. Doing this for multi-component systems would be extremely tedious because the parameter space that needs to be investigated is large and could be correlated in a complex way. For biological systems, a variety of  atomic force field functions with parameters have been developed and are available in commercial packages as well. All of these are non-reactive in nature and not suitable for studying the nanotechnology based materials, systems and applications described above. It turns out that, while automatic development of a physics based functional form for atomic systems is beyond the current capabilities of computer science, fitting parameters in a complex multi-dimensional space to a given data set is not.

As typical computing resources continue to increase many-fold every year, we hypothesize that parameterization of complex interatomic potential functions can be automated by large genetic algorithm computations on cycle-harvested (nearly free CPU cycles) desktop computers. This should allow atomic force-field developers to concentrate mainly on the functional form and gathering experimental and higher accuracy simulation data to drive the evolution and validate the results. The resulting process may enable the routine exploration of the individual functional forms for multi-atomic species systems as well as the iteration of the procedure until a good convergence with a widest set of available data is achieved.

Using Genetic Algorithm (GA) in the proposed scheme has two advantages. First, GA is geared towards sampling both the near-equilibrium (minimum energy) and far-from-equilibrium (energetically excited) configurations in the data-set, and second, thousands of independent JavaGenes GA trajectories can be run in embarrassingly parallel manner in a non-homogeneous distributed computing resource based environment. JavaGenes is a general purpose GA code written in Java and thus trivially ports to a variety of computing platforms [Globus, et. al. 1999]. In this work, we use JavaGenes and cycle-scavenging to develop of new fitting parameters for the well established Stillinger-Weber (S-W) Si potential. Thousands of JavaGenes runs were executed by cycle scavenging approximately 350 workstations a NASA’s NAS supercomputing facility. The new parameters accurately predict the energetics of Si clusters not used in the fitness function. 

2. Method:

In this section we describe implementation of JavaGenes GA for massively parallel search of multi-parameter space for fitting reactive many-body atomic force field functions. The scheme exploits the CPU cycle scavenging technology useful for these kinds of simulations, and may lead to automation of the entire procedure for the parameterization of complex functional forms. The basics and details of the  JavaGenes GA and the Condor [Litzkow, et al. 1988] cycle-scavenging system are described first, and S-W force field function that is used as an example for testing and validation of the approach is discussed later.

2.a Genetic Algorithm Approach for Fitting Molecular Potentials

There have been a few recent examples of using GA to find atomic interaction potential parameters for “non-reactive” force fields for metal-organic systems [Mohamadi, et. al. 1990], tripod metal compounds [Hunger, et. al. 1998, Hunger, et. al. 1996, Hunger and Huttner 1999] and Technetium (Tc) complexes [Cundari and Fu 2000].  Wang and Kollman have optimized Amber force field parameters for several organic molecules using GA and compared the results to a systematic search. [Wang and Kollman 2001]  To date there has been no attempt to use GA for finding atomic force field parameters for reactive systems interacting with many-body force field functions where the parameter space is complex and multiply connected.

The GAs seek to mimic natural evolution's ability to produce highly functional objects. Natural evolution produces organisms, whereas the GAs can produce sets of parameters, programs, molecular designs, and many other structures.  Our GA, JavaGenes, employs the following algorithm (words in quotes are in the typical GA terminology): 

1. Represent potential parameters with a set of floating point numbers; each set is called an "individual"
2. Generate a "population" of individuals with random parameters
3. Calculate the "fitness" of each individual
4. Repeat
· Randomly select "parents" with a bias towards better fitness
· Produce "children" from the parents with either a
· "crossover" that combines parts of two parents into a child
· or "mutation" that modifies a single parent
· Calculate the fitness of child
· Randomly replace individuals of less fitness in the population with the thus produced children
5. Until satisfied according to some minimal convergence criteria
The vast majority of the CPU time is usually spent in calculating the fitness function and each fitness function evaluation is entirely independent of the others. In general GAs are not guaranteed to find a unique or even a satisfactory solution, but often work well in practice. There are a wide variety of GA techniques, and the implementations use many “GA parameters” that can affect performance of the search procedure. Examples of GA parameters include population size and the mix of mutation vs. crossover operator. Thus, choosing a proper GA technique and parameters is a non-trivial problem. We solved this by randomizing the choice of GA parameters in appropriate ranges in many parallel GA runs.

JavaGenes is a steady state tournament selection genetic algorithm. The tournament size is usually two. In tournament selection each parent is chosen by randomly selecting two individuals from the population and choosing the fittest to be the parent. After crossover or mutation produces a child, individuals to replace are chosen by an anti-tournament of size two. In an anti-tournament choses the least fit individual. During GA-parameter randomization the tournament size is probabilistically two or one.  A tournament size of one means that a random individual is chosen as the parent. Size one 'tournaments' help avoid premature convergence. 

Mapping the problem of finding parameters for molecular force field functions on to a GA scaffolding is done by representing the force field parameters as a ragged two-dimensional array of double precision floating point numbers. The first dimension represents the two- or three-body terms of the potential function, and the ragged second dimension means arrays of differing length in the second dimension. For example, one second dimension array may hold the two-body parameters for Si, this would be of length five for S-W case, and another second dimension array of length three might hold the Si three-body parameters. Each parameter is assigned a set of limits within which it is allowed to evolve. The limiting values of the parameters are chosen from the physical interpretation of the contribution of the parameter to the force field function. 

During evolution, JavaGenes uses two transmission operators to generate children from parents: mutation and interval-crossover. JavaGenes Mutation operators take two GA-parameters: the probability when a mutation will occur on any one parameter, and the width of the Gaussian distribution, around the mean parental value, from which the required change is chosen. Interval crossover requires two parents. The parental-value of a parameter determines the extremes of the range with in which the child-value of the parameter is randomly selected. This range can be increased or decreased by a factor (based on a GA-parameter). 
The evolution of a GA population is guided by a fitness function. The GA fitness function must provide a fitness for any possible individual, no matter how bad, and distinguish between any two individuals, no matter how close they are. The fitness function for determining parameters for molecular force field functions compares energies and forces computed for a given set of atomic conformations using the evolving parameters with externally supplied energies and forces. The forms are: (i) root-mean-square (RMS) deviation from externally supplied energies, (ii) RMS of |a-b|/(|a|+|b|) where a and b are the calculated and externally supplied energies, respectively, and (iii) RMS of |c-d|/(|c|+|d|) where c and d are the calculated and externally supplied forces, respectively. The first is an accepted measure of deviation, but has problems when the absolute value of the supplied energy varies wildly. For example, energies at very small separation can have very large values and can have excessive influence on determining the full force field function. In reality, much of the room temperature and reactive state behavior is determined by the energies near equilibrium or large separations. The form used in (ii) and (iii)  always returns a value between 0 and 1, eliminating the scaling problem of the form used in (i). The form in (ii) and (iii), however, may exhibit poor behavior if the calculated and standard values are of opposite signs. All the three forms are combined by applying each to different conformations and taking a weighted sum as the fitness function. Lastly, a fitness function is as good as the values of the externally supplied energies and forces. We either use the values known from the S-W potential itself to demonstrate the efficacy of the GA technique, or the values obtained from a non-orthogonal quantum tight-binding description for a range of Si cluster configurations to predict the values of the clusters not included in the fitness procedure.

In the beginning, 30-100 single-workstation GA trajectories with identical GA-parameters (except the random number seed) for each force-field-parameter search were run with populations varying between 1000-3000. The GA-parameters that worked for one search (say, Si dimers in the fitness function) would fail in a similar search for a different system. The alternate technique of using approximately a thousand trajectories with randomized GA-parameters and smaller populations (100) worked very well for all the systems attempted. As stated above, we first reproduced the Stillinger-Weber (S-W) results using S-W small cluster energies derived from the published parameters in the fitness function. This shows that the method can find the global, not just the local, minimum. Then, using the same small Sin clusters (n <7), we have found a “new” set of parameters using the energies and forces supplied by a quantum non-orthogonal tight-binding method of Menon and Subbaswami [Menon and Subbaswamy 1993] that showed good results for small Sin clusters (n > 6) and Si33 clusters that had both tetrahedral and under- over-coordinated Si atoms in the system.

2b. An Example Molecular Force-Field Function: Stillinger-Weber (S-W) Potential

The above developed approach is for fitting parameters of molecular force field functions for complex multi-atomic species systems not available so far. Choosing a functional form to describe such a complex system with reasonable accuracy is an involved process and will be attempted in future. We have chosen the S-W functional form as an example and fitted the parameters using the GA approach in the two cases as described above. In this section we briefly discus the S-W functional form and the parameters that need to be evaluated using the GA approach. 

The S-W molecular potential expresses the total energy of a given configuration in terms of the sum of two- and three-body contributions to the energy as a function of the atomic positions in the configuration: 
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where E is total interaction energy, i,j,k indicate individual atoms, and v is the interaction energy of n atoms. 

To reduce computation, reactive potentials often have a cutoff function which forces each term to zero at large atomic separations. This converts the problem from O(n3) to O(n) since only near neighbors need be considered. The S-W potential used in this paper only considers two and three body terms and has an exponential cutoff on both the terms. The terms are: 
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where r is the i,j interatomic distance and all other values are adjustable parameters. 
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where rij and rjk are the two interatomic distances, theta is the angle and all other values are adjustable parameters. The parameters a, a1, and a2 defining the cut-off distance on the two- and three-body terms are not evolved because their choice is determined by the physical and chemical considerations in the system. Lastly, the preferred bond angle theta0 is also not evolved since it is readily available from experiment and theoretical considerations (theta0 is the tetrahedral angle in solid-state Si ).

The functional form should reflect the physics of the system of interest, and parameters should allow the form to fit the available data, although sometimes specific parameters have specific physical meaning. Most of the tedium in multi-species reactive potential function development is in parameter fitting. Thus, if multi-dimensional fit to the complex parameter space can be automated, then rapid development of broadly applicable potentials may be enabled by iterating the coarser grain procedure on the choice of functional forms as well.  

2.c CPU Cycle Scavenging System: Condor

For the current work, we used the Condor [Litzkow, et al. 1988] cycle scavenger running on about 350 SGI and Sun machines at the NASA Advanced Supercomputing (NAS) Division [www.nas.nasa.gov]. Each workstation runs a daemon that watches user I/O and CPU load. When a workstation has been idle for 2 hours, a job from the batch queue is assigned to the workstation and will run until the daemon detects a keystroke, mouse motion, or high non-Condor CPU usage. At that point, the job is removed from the workstation and placed back on the batch queue. The job eventually runs again, although probably on a different machine. Typically, between 100-250 NAS machines are available for batch processing through the NAS Condor pool at any particular time. Although the NAS Condor pool supplies substantial processing power, it is by no means the largest cycle-scavenging compute facility. The best-known cycle scavenging computation is on seti@home [setiathome.ssl.berkeley.edu], which typically uses more than 3 million computers to provide about 23 teraflops/sec. 

While cycle-scavenging systems can supply huge amounts of CPU, they are restricted to embarrassingly parallel problems with minimal I/O requirements. Many important problems fit within these restrictions, including parameter studies, Monte Carlo simulations, and GAs. For example, much of the data for this paper was generated by running 2500 ~30 minute genetic algorithm (GA) jobs or 1000 several hour GA jobs. In both cases the GA-parameters are randomized so every job uses a different mutation rate, mutation range, and so on. This procedure can use thousands of processors with no inter process communication and minimal disk I/O. As a results, typically 1000+ CPU hours of computation is routinely accomplished overnight without purchasing any new hardware. The results described below are reproducible only in a statistical sense - although repeated tries of the same runs give similar results. The runs are not exactly repeatable because of permitted variations in IEEE floating point arithmetic combined with cycle-scavenging in a heterogeneous environment. The variation, however, is well within the range of error associated with the accuracy of atomic force field functions.

3. Results:

As example of fitting parameters of known and well established molecular force function with the above described methodology we chose Stillinger-Weber (S-W) potential described above. First, as validation, we use the published S-W potential calculated energies and forces of small Sin (n < 7) clusters in the fitness function, and compare the results in the case of Sin (n > 6) clusters that were not used in the fitness function. Second, as test of the approach, we find “new” GA evolved S-W potential parameters where only the functional form was assumed to be known, and the fitness function was described by energies and forces of small Si clusters computed from non-orthogonal tight-binding scheme of Menon and Subbaswami. The fitness function based on small Sin clusters give GA evolved potential parameters that describes energetics of both small and large Sin clusters rather well. 
3a. Validation: evolution and comparison with published S-W values

The parameters for 2- and 3-body terms together using 1000 GA jobs with a fitness function based on the energies of 2-6 atom Si clusters were evolved. The minimum energy configurations for 3 to 6 atom Si clusters were first generated using the generalized tight-binding molecular dynamics (GTBMD) method of Menon and Subbaswami. Using the minimum energy configurations as seed, the rest of the 100s of members in the population were generated by random displacements of atomic coordinates around the minimum energy configurations. The fitness function was based on the energies and forces computed for the members of the population using the published S-W potential. The Table 3 shows the most fit GA evolved parameters as compared with their published value in the original S-W potential. At the first glance, the evolved parameters seem to be incorrect. However, it turns out that C is nearly correct and that p and q are (approximately) reversed. This is because p and q are related through dependence on A and the GA evolution has essentially performed an algebraic operation during the fitting procedure. The equivalence between the published and evolved expressions is shown in Table 2b.

Figure 1a,b compare the energies of Si clusters as calculated by S-W potential with GA evolved parameters with those computed by using the published parameters in two cases. First, in Fig 1a, we show the comparison for Sin cluster with n <= 6, i.e., the clusters used in the fitting procedure. Second, in Fig. 1b, the comparison is shown for Sin clusters for n = 7, 8, i.e., the clusters not used in the fitting procedure. The figure shows the comparison of the energies in the full range of the configurations. The comparison shows a good fit in both cases and on all the members of the population. The maximum deviation is found to be with in few 10s of kcal/mol for cluster configurations far from equilibrium. 

3b. Test: evolution of new S-W Potential parameters for small and large Si clusters 

Having validated JavaGenes by reproducing the 2- and 3-body parameters published by Stillinger-Weber, and comparing the energetics of Si clusters not used in the fitting procedure, in this section, we describe evolving the “new” SW parameters suitable for describing the dynamics of small and large Si clusters. This is done by constructing the fitness function by energies and forces calculated by a non-orthogonal tight-binding quantum description of Si interactions by Menon and Subbaswamy [Menon and Subbaswamy 1993], which has been previously shown to describe the energetics and dynamics of small and large Si clusters rather well. 

The parameters for the full potential were evolved with the fitness function based on the tight-binding derived energies and forces of 2-6 atom Si clusters. Total of 1000 GA jobs were run with randomized GA-parameters, and the role of one of these parameters was to import the previously evolved two-body potential parameters as a starting point for part or all of the population. The fitted 3-body parameters are listed in Table 4b. 

The best of these sets not only matched the energies of the 2-6 atom Si clusters, but also of  the 7 and 8 atom Si clusters near minimum energy, and the configurations generated by random displacements of atomic coordinates around their minimum energy configurations. These are shown in Fig. 5 a and b, and the straight lines curves in the figure mean exact match between the energies computed by the potentials fitted with S-W evolved and tight-binding evolved GA trajectories. The match is very good for 2-6 atom Si clusters, as might be expected, because the energies and forces for these clusters were used in the constructing the fitness function. The comparison of the energies of 7 and 8 atom Si clusters, which were not used in the fitting procedure, also show good results suggesting that the approach is transferable. Fig. 5 c and d shows the comparison of tight-binding energies with energies calculated from the original S-W parameters. The fit is much worse than for the evolved parameters.

Finally, a  more rigorous test of the fitted tight-binding evolved parameters is to check the energies of even larger Si clusters such as Si33 with the newly fitted silicon S-W potential parameters.  Figure 8a compares the evolved S-W energies with those from the tight-binding energies of the near equilibrium and/or deformed Si33 clusters randomized around the equilibrium configurations. As with other results, the fit is closest at lower energies (within 200 kcal/mol) and within 500 kcal/mol for heavily deformed configurations, although most configurations are much closer (mean 88, std 98, max 469). As with other results, the fit is closest at lower energies and poorer for heavily deformed configurations.  However, Fig. 8b shows that S-W with the original parameters fits the tight-binding energies much less well (mean 500, std 327, max 1073). 

4. Comments:

Given a functional form, for molecular force field functions, we have shown that genetic algorithms (GA) shows a promise for automating the task of fitting parameters over a complex range of configurations using large amount of otherwise unused compute cycles in a distributed non-homogeneous computing environment. However, very substantial CPU resources are needed in part, because we randomize the GA-parameters and therefore need 100s to 1000s of GA runs to get a good result. Fortunately, the task is embarrassingly parallel with low IO requirements and is thus suited to cycle-scavenging computation. Since most computers in this world spend most of their time doing nothing more valuable than updating the clock, the CPU resource problem is fairly easily overcome. More important, this work suggests that these otherwise wasted resources can be used to solve an important problem in nanotechnology, a field of enormous promise for the future.

The GA fitness function is based on energies and forces of atoms and clusters near as well as far from equilibrium configurations. Therefore, it is possible to include a rather complete sampling of the configuration space as compared to the methods that are based mainly on the energies of the near equilibrium configurations. Specific choosing of GA-parameters during the fitting procedure was found to be very time consuming and involved. The chosen GA parameters would work in some cases and would not work in other cases. However, taking advantage of CPU cycle scavenging through Condor pooling resources, we found that the randomization of  the GA-parameters within suitable ranges over many runs is an effective strategy. 
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Table 1: GA Parameters

	Conformations
	Describes the atomic conformations used in the fitness function

	Conformation sets
	Several sets of conformations were used. The fitness value for each set was calculated and a linear combination of the fitness for each set was the final fitness.  

39 "far wall" dimers evenly spaced from 0.5 - 1.728 angstroms 

7 "near wall" dimers evenly spaced from 1.599-1.793 angstroms 

44 "minimum" dimers evenly spaced from 1.793 - 3.183 angstroms 

41 "tail" dimers evenly spaced from 2.407 - 3.7 angstroms 

All other clusters are randomized around the minimum energy as calculated by the semi-empirical) 

  67 3-atom clusters 

  51 4-atom clusters 

  41 5-atom clusters

· 34 6-atom clusters

	Target energies (and forces) generated by
	Describes the source of the energies and forces used in the fitness function. This was always either the Stillinger-Weber potential with published parameters or the Menon semi-empirical code.

	Energy (and force) comparison
	Describes the function used to compare energies and/or forces with the target energies and/or forces

RMS of |a - b| / (|a| + |b|) on wall and tail 

RMS elsewhere 

Each set of conformations generated a separate value and these were summed to get the fitness. The near wall value was multiplied by 0.5 before the summation

	Number of jobs
	Number of separate, single-workstation jobs in the run = 1001

	Population size
	Size of the population = 100

	Children per generation
	Number of children generated for each generation = 2000

	Number of generations
	Number of generations = 200

	Transmission operators
	Mix of crossover and mutation transmission operators = [0-5] interval crossover, [1-30] mutation chosen at random

	Interval crossover parameter
	For the interval crossover transmission operator, the amount the interval between parental values of a parameter grew or shrank before choosing a random value within the interval = [0.3 to 3]

	Mutation frequency
	The probability that any one GA-parameter was mutated by the mutation transmission operator = [0.1 to 0.9]

	Mutation standard deviation
	The mutation operator modified GA-parameters by choosing randomly from a Gaussian distribution centered on the parental value. This vale is expressed as a fraction of the allowed interval for a GA-parameter = [0.1 to 0.9]

	Stillinger-Weber parameter varies from
	The range within which a Stillinger-Weber parameter could vary. Note that the interval crossover operator could be set to ignore this interval.

A,B,alpha, gamma = [-100 to -50] to [75 to 150]

p,q = 0 to [12 to 24]

C,gamma = 0 to [3 to 8]

	Immigrants
	When searching for both the two- and three-body parameters, JavaGenes sometimes initialized the population with two-body values taken from a run that focused on the two-body parameters.

25% jobs initial population started with best two-body evolved parameters. 

25% jobs half of initial population started with best two-body evolved parameters


 GA-parameter values placed between brackets, "[" and "]", indicate that the value was chosen randomly within limits.  For example, [0.1-0.9] indicates that a GA-parameter was randomly chosen for each job between 0.1 and 0.9 inclusive.

Table 2: 2-Body parameters of Table 3 rewritten for comparison

	Energy(r) = A(Br-p – r-q)
	Published  
	Evolved

	Initial form
	7(0.6r-4   – r-0)
	–4.2(1.67r-0.05     – r-4.01) 

	with A distributed
	4.2r-4 – 7r-0
	–7.014r-0.05    + 4.2r-4.01


Table 3: Si parameters for S-W fit

	Parameters
	S-W Published value
	Evolved with S-W Fitness Function

	A
	7.0495
	-4.51

	B
	0.602
	1.68

	C
	1
	1.06

	p
	4
	0.015

	q
	0
	4.066

	Alpha
	0
	-1.68

	Lambda
	21
	30.5

	Gamma
	1.2
	1.289


Table 4: Parameters for S-W published, S-W evolved, 
Tight-binding evolved cases

	 Parameters
	S-W Published Values 
	Evolved with 

S-W fitness function
	Evolved with tight-binding fitness function

	A
	7.0495
	-4.21
	-0.66

	B
	0.602
	1.67
	14.23

	C
	1
	1.01
	1.48

	p
	4
	-0.05
	-2.50

	q
	0
	4.01
	18.67

	Alpha
	0
	-1.68
	11.7

	Gamma
	21
	30.5
	10.9

	Lambda
	1.2
	1.289
	1.38
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