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We study the effect of metastable states on the relaxation process (and hence information propaga-

tion) in locally coupled and boundary-driven structures. We first give a general argument to show
that metastable states are inevitable even in the simplest of structures, a wire. At finite tempera-
tures, the relaxation mechanism is a thermally assisted random walk. The time required to reach
the ground state and its life time are determined by the coupling parameters. These time scales are
studied in a model based on an array of quantum dots.

A number of novel proposals have recently been ad-
vanced, articulating primarily, visions of future comput-
ing systems [1-7] using nanoelectronic structures [8-10],
in which computation is fundamentally related to the un-
derlying physics of the devices. In this paper, we consider
one such class of models comprising of an array of locally-
coupled and edge-driven cells, where computation is re-
alized by relaxation of the physical system to its ground
state [1-3]. These models are semiclassical and global
phase coherence is not maintained as the system relaxes
to its ground state by dissipative processes.

The computing architecture comprises of locally-
coupled arrays of a basic unit that exhibits bistability
and the bistable states are used to represent the binary
values 0 and 1 (Fig. 1(a)). The basic units interact with
their nearest neighbors to form larger devices such as
wires, logic gates and cellular automata (Fig. 1(b)) [2,3].
The units on the edges form the input and output ports
(Fig. 1(b)), and the interior units of the device are not ex-
ternally accessed [2,3]. Both information and energy are
provided to these boundary ports as input data. Central
to the operation of the computing system is the assump-
tion that the system then relaxes by dissipation to the
ground state that depends only on the configuration of
the input cells, which are held fixed. The ground state
configuration represents the result of the computation
and the output is read from the cells marked ‘output’
(Fig. 1). For example, consider a wire which consists
of a linear array of basic units as shown in Fig. 2(a).
The ground state is two fold degenerate; all cells have a
bit value of either 0 or 1 (Fig. 2(b)). Computation is
based on the thesis that the system always relaxes to the
ground state determined by the bit value of the input
cell, thus transmitting information from the input to the
output of the wire.

The proposed models, which involve a Hubbard-type
Hamiltonian clearly demonstrate that the ground state of
suitably designed structures correspond to computation-
ally useful operations [2,3]. While this is an important
first step, it is essential to study the dynamical evolution

of the computational trajectory because it is a priori not
clear that the system will in fact relax to the ground state
ever, or, in a time efficient manner. Our specific concern
is metastable states, which may hinder relaxation to the
ground state as hypothesized in Refs. [11] and [12].
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FIG. 1. (a) A single bistable cell: the lines along the left
and right diagonals represent the binary values 0 and 1. (b)
schematic of a corresponding computing system.
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FIG. 2. (a) The initial state and (b) the two degenerate
ground states of the wire.

In the first part of the paper, we will give a simple
insightful argument as to why metastable states are in-
evitable in a wire. As a consequence of the metastable
states, information propagation is not feasible at ex-
tremely low temperatures. The computing system can
however escape from the metastable states and reach the
ground state at non zero temperatures via a thermally as-
sisted random walk; thus propagating information from
the input to the output end of the wire. A discussion of
this in the context of a model comprises the second part
of the paper.

Consider the initial state of a wire with bit value 0 in
the input cell and bit value 1 in the remaining cells (Fig. 2
(a)). The intersection of the left and right aligned cells is
referred to as a kink. If the system relaxes to the ground
state as time evolves, it is expected that the kink will
propagate towards the right, into the bulk of the wire.
The state where the kink is m units from the input end



is denoted by ¢,,, and its energy is denoted by E(m) (Fig.
3(a)). The computational trajectory from ¢, to @mi1
may in principle involve many intermediate states but
for simplicity we will assume that there is only a single
intermediate state which is denoted by ¢!, and its energy
is denoted by E'(m). In along wire, states ¢, and ¢, y1
have almost the same energy because their left and right
environments are nearly the same. As a result, the total
energy versus state of the system should vary periodically
in the bulk as shown in Fig. 3(b). ¢,, is a metastable
state because the ¢, = ¢}, and ¢, = ¢, transitions
require surmounting of energy barriers in the bulk (AE).
Note that in principle the energies of the primed and
unprimed states could be interchanged, in which case the
primed states will be the metastable states.
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FIG. 3. (a) State ¢, where the signal has transmitted m
cells deep into the wire. (b) A qualitative plot of the energy
versus the states accessed as the signal propagates away from
the edges of the wire.

Varying the inter and intra cell interactions yields dif-
ferent values of the AE. However, even for parameters
where AF is close to zero, we argue that metastable
states should exist at least either near the left or right
edges. The cells close to the edges have a non symmetric
environment to its left and right. As a result, AE will
be non zero near the edges. If E'(1) > E(1), then triv-
ially the initial state is a metastable state. If not, then by
symmetry of the structure E(N —1) > E'(N —2) and this
results in a metastable state (N is the total number of
cells in the wire). It should also be noted that in a struc-
ture where AFE is designed to be zero, small undesired
fluctuations in the inter and intra cell interactions cause
E(m) # E(m + 1), leading to metastable states [12].

We have shown that metastable states exist at zero
temperature. At finite temperatures, the kink prop-
agates to the right via a thermally assisted random
walk, where the various states, accessed (Fig. 3)
from the input end to the output form the lattice
points. Note that the thermally assisted random walk
is the only mechanism to overcome any AFE since
there are no fields driving the computation. The
probability to hop from the lattice point representing
state ¢, to the lattice points representing ¢! and
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I'y_p is the transition rate to go from state a to state
b. A similar expression applies for the transition proba-
bilities from ¢!, to ¢, and @y, 1. For a uniform and long
wire, these transition probabilities are equal to one half,
when ¢, represents a state where the signal (kink) has
traveled into the interior of the wire. This is because the
energy differences E'(m) — E(m) and E'(m — 1) — E(m)
are nearly the same. The random walk is a finite one with
an absorbing boundary on the right end (the walk stops
when the output is reached) and a reflecting boundary
on the left end (signifies that the input cell has a fixed
state). The average time taken for the signal to propa-
gate from the initial state to the ground state (Tyo¢) is
the quantity of interest. We are not aware of analytical
techniques to calculate T;,;. However, to understand the
underlying physics, it is useful to consider the time re-
quired for the kink to travel n cells in the bulk of a wire
(i.e. edge effects are not included). This time follows
directly from the discussion of random walk [13] and is,
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where, 7 and 75 are the life times of the metastable states
and the states in between two consecutive metastable
states (Fig. 3). The factor 2n represents the fact that
there are two states involved in the propagation of the
signal across each of the n cells. At low temperatures
(kT < AE), the time in Eq. (1) is primarily deter-
mined by 71 ~ moexp(AE/kT), where 10 and AE, the
energy barrier of the metastable states encountered in
the bulk (Fig. 3), depend on the particular model. From
the exponential dependence of 77, it is clear that T}
increases exponentially with decrease in kT. Ty, can
be made smaller by raising the temperature. The tem-
perature, however, cannot be increased indefinitely be-
cause for the computation to be useful, the system must
remain in the ground state for a long enough time so
that we know for certain that the ground state has been
reached and that the system has not escaped from it. The
life time in the ground state varies with temperature as
Teexp(AE, /kT), where 7, and AE, (the energy barrier
separating the ground state and the next excited state
that can be reached) are constants. To realize a computa-
tion, it is important that the temperature is large enough
to shake the system out of a metastable state but not so
large as to excite the system out of the ground state in
a short time period. Hence, it is necessary that the en-
ergy difference between the ground state and the excited
states (which are reached by a single electron tunneling
event from the ground state) is many times the ther-
mal energy kT and the energy barrier due to metastable
states is comparable to or smaller than £T. The relative
magnitudes of AE, AE, and other energy barriers close
to the edges are determined by the device parameters. It
is essential to determine if there exists a region in the pa-

Time required to travel n cells ~ (2n)



rameter space of the device dimensions and temperature,
where the system relaxes to the ground state quickly and
also remains there for a sufficiently long time period to
be computationally useful. We study this by considering
the time evolution of a specific model.
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FIG. 4. (a) Electrons occupying diagonally opposite dots
represent binary values of 0 and 1. (b) A wire constructed
from the basic units in (a).

The model considered is one similar to that discussed
in the literature before [14]. The basic unit consists of
four identical metallic type quantum dots containing a
net charge of two electrons. A wire is comprised of a
linear array of these units (Fig. 4). The tunnel resis-
tance between the dots is much larger than h/e?. In
this limit, each dot contains an integer number of elec-
trons. The intra and inter cell interactions are modeled
by capacitances C and C' respectively. Cy is the capaci-
tance between a dot and the ground. The values of these
capacitances do not vary from cell to cell. The tunnel re-
sistances between the dots along the sides of a single cell
are represented by R and the tunnel resistances between
dots along the diagonals of a cell and between dots of
different cells are infinite. Though imaging of charge to
the outside world is unavoidable, models for ground state
computing have neglected this feature all together. The
total energy of a charged system without imaging to the
outside world (i.e., Cy = 0) is infinite and so we have to
assume at least a small value for Cy in the calculations.
We have chosen Cy = 0.001C' throughout this paper.

In the lowest energy state, the two excess electrons
in an isolated cell are aligned either along the left or
right diagonals and these two states represent the binary
values 0 and 1. The ground state of the wire is two fold
degenerate as shown in Fig. 2(b).

The time evolution is modeled by the orthodox theory
of single electron tunneling [15], where the transition rate
for a single electron tunneling event from dot ¢ to dot j
is,
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where R is the tunnel resistance between dots i and j.
AE;; = E, — Ey, where E, and Ej are total energies
of the system after and before the tunneling event. Us-
ing the standard monte carlo method as applied to sin-
gle electron tunneling [16], we compute the time taken
to reach the ground state (Ti,:) as a function of the
temperature for wires of various lengths, with the ini-

tial states as shown in Fig. 2(a). The main results of
this simulation are summarized in Fig. 5(a). As the
temperature tends to zero, T;.; tends to infinity and the
ground state is never reached (this is not strictly true if
higher order quantum mechanical co-tunneling processes
are included). At small temperatures, where kT is much
smaller than all barrier heights encountered in the com-
putational trajectory, T;,; decreases exponentially with
increase in temperature. This can be understood by not-
ing that the various tunneling probabilities depend ex-
ponentially on AE/kT, where AE is the barrier that an
electron should surmount to overcome a metastable state
(Eq. (2)). At temperatures comparable to or larger than
AE, T;ot decreases inversely with temperature. This can
again be understood from Eq. (2) because for kT > AE,
I';; o« T~'. The temperature however cannot be made
very large because the life time of the system in the
ground state decreases with increase in temperature and
this is undesirable for computing. The largest temper-
atures chosen in Fig. 5(a) is 0.075e¢?/C, which is larger
than AE, (Fig. 3). Even at this temperature, which is
not suited for ground state computing, the time taken
to reach to ground state is too large; it takes 10°RC for
the system to reach the ground state of a wire with only
sixty cells. A value of C'/C = 1.3 was chosen for these
simulation. We have performed simulations for other pa-
rameters and find that the results are not significantly
different. Though Eq. (1) was not intended to calculate
Ti0t, we remark that substituting n = 60 and the ap-
propriate values for k7" and AE in Eq. (1) gives a time
which agrees with Tj,; to about an order of magnitude.
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FIG. 5. (a) Time taken to reach the ground state versus
temperature for wires of different lengths (C'/C = 1.3) (b)
Sequence of steps by which the polarization of a cell flips.

To see that there is only a narrow region of capacitance
parameters and temperature where the system relaxes to
the ground state and remains there for long times, we plot
AE and AE, versus C'/C in Fig. 6. Here, for C'/C >
2.1, |AE| > |AE,|. This leads to a shorter life time in
the ground state than in the metastable states and is
therefore undesirable for computing. For C'/C < 1, the



magnitude of |[AE,| — |AE| decreases as C'/C becomes
smaller. As a result, the temperature of operation has to
be made correspondingly smaller to ensure that the life
time in the ground state is significantly larger than the
life time in the metastable states. However, T},; increases
exponentially with decrease in temperature and so very
small values of C'/C are also undesirable. Fig. 6 is a
plot of only two types of metastable states, the ones in
the bulk of the wire and AE,. Other metastable states
close to the edges of wire play an important role too,
especially for small values of |AE|.
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FIG. 6. A plot of |AE] (solid line) and |AE,| (dashed line)
discussed in the context of Fig. 4 versus C'/C.

Finally, we address the issue of how the system evolves
to the ground state: A wire with N cells has 8(IV — 1)
possible transitions which compete to determine the state
of the wire in the next time step. In the discussion sur-
rounding Fig. 3, we assumed that the cells flip from the
left (input) to the right end in a specific manner such
that a single kink performs a thermally assisted random
walk. We find from our monte carlo simulations that this
picture is valid: having more than one kink is energeti-
cally expensive and each cell flips from a left to a right
aligned one (or vice versa) via the path shown in Fig.

6(b).
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FIG. 7. Fanout gate

We have also performed simulations on a fanout
gate [2,3], which comprises of a single input, which
is transmitted to two output ports (Fig. 7). The
metastable states that have to be overcome here are far
worse and an intuitive reason is as follows. The polar-
ization of Cell 2 can flip as in the case of a wire. For
the signal to propagate further, it is essential for Cell
3 to flip its polarization. Cell 3 has two neighbors (4
and 7) which have the same polarization and one neigh-
bor (Cell 2) with the opposite polarization. It is how-
ever energetically unfavorable for Cell 3 to flip because
the new state would have two kinks, thus resulting in a
far worse metastable state than in the case of the wire.
In summary, we have shown that metastable states al-
ways exist in locally-coupled edge-driven computing sys-

tems, thus preventing information propagation at very
low temperatures. At finite temperatures, relaxation to
the ground state and hence propagation of information
along the wire takes place by the inefficient process of a
thermally assisted random walk.
Note: We would also like to bring to notice a recent pro-
posal [17] for computing which uses bistable cells evolving
under the presence of a spatially and adiabatically time
varying field. The physics of such systems are different
from that discussed here.
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