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Projects*

• Wigner function and transfer-matrix modeling of macroscopic
quantum devices in 3-D

• Quantum corrections to classical drift-diffusion and hydrodynamic
models in 3-D (with Lucent Technologies, Stanford University)

• Collaborative TCAD tool development (with Stanford University)

(*for details, see http://www .nas.nasa.go v/~bieg el/resear ch.html)

Quantum De vice Sim ulation:
the Wigner Function Model

Wigner Function transport equation in 1-D:

Typical simulation: Resonant tunneling diode in 1-D:

t∂
∂ f w

h
_

k
m
------

x∂
∂ f w

diffusion

–
1
h
_---

dk ′
2π
-------V x k k ′–,( ) f w x k ′,( )∫

drift

t∂
∂ f w

coll

scatering

+–=

  î           î     î

Energy Band Pr ofile

Ec(x)

0
10

20
30

40
50

60
70

Position (nm)

2

1

0

-1

-2

Wavevector (nm
�

-1)

-0.5

0.0

0.5

1.0

1.5

E
le

ct
ro

n 
D

en
si

ty
 (

1012
 c

m
-2

)



RTD Intrinsic Oscillations, Hysteresis,
Bistability: Wigner Function Model Results
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Plans f or Wigner Function Model

• Accurate discretization of transport equation

• consistent with other quantum models, experiment

• Computationally feasible 2-D (3-D?) simulations

• Application to quantum effects in conventional devices (MOSFET)
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Quantum Corrections to Drift-
Diffusion: the Density-Gradient Model

Density-Gradient Model [Ancona, PRB 39(13), 9536]:

Quantum potentials:

Investigative approach:

• Rapid implementation using general PDE solver (PROPHET)
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Density Gradient Model Initial Results

Expected Results Electron Density Profile

(Conor Rafferty, Lucent)

MOSFET with 3.3 nm Gate-Oxide:
C(x) and C-V With Quantum Correction
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Plans f or Quantum Correction Models
Density-Gradient Model:

• Proof-of-concept for 1-D MOS Capacitor

• First 2-D and 3-D quantum-corrected MOSFET simulations

• Radiation effects, single-event upset phenomena

• Comparison with experimental results for ultra-small devices

• Comparison with other classical and quantum models

Quantum-Hydrodynamic Model:

• (see above)

Answer industry’s questions about quantum effects in electronic devices:

• How severe will these effects become with each device generation?

• How can these effects be suppressed?

• How can these effects be used to improve device operation?

New TCAD Development Appr oach:
National TCAD Frame work (NTF)

Modular TCAD development platform

• Enables and encourages collaboration

• Well-defined functional interfaces

• Basic “glue” services

Multiply usefulness of high-level functionality
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Analyze results
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Analyze results

National TCAD Framework
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Model De veloper En vir onment
Model specified as set of PDEs, constraints

Ideally, model independent of other code

Practically, collaborate with numerical experts
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Ideal Device Simulator
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Information P ower Grid (IPG)
Observations:

• Many computations of interest (e.g., TCAD) beyond feasibility

• High percent of CPU cycles are wasted “bit-flips”

IPG goal: To link massive numbers of heterogeneous, distributed
compute resources as virtual supercomputer; provide simple access

Principal benefits:

• transparent resource access

• load sharing/balancing

• fault tolerance, minimum loss-of-service

• economies of scale


