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Abstract

An accurataunderstanding@f quantumwave effectsin electronicdevicesis important
for several reasonsin the shortterm, this understandingvill enablethe suppressiorof
theseincreasinglysignificantparasiticeffectsin ever-smallercorventionaldevices.In the
mediumterm, this understandingvill enablethe control of theseeffects,possiblyextend-
ing down-scalingcloserto the quantumrealm with hybrid corventional-quantunelec-
tronic devices. In the longer term, an understandingdf quantumelectronic effects is
necessaryor the possibledevelopmentof a true quantumdevice technology with the
potentialfor muchgreaterfunctionality perunit cost,size,andpower. To build thisunder-
standing,a numericalquantumdevice simulator called SQUADS (Stanford QUAntum
Device Simulator)was developed.This dissertationdescribeghe implementationcapa-
bilities, and some illustrate simulation results of SGADS.

Thedesignof SQUADS wasdirectedby two goals:the studyof quantumdevice oper-
ation,andthe studyof quantumdevice simulation.In pursuingthesegoals,a comprehen-
sive 1-dimensionakimulationtool wasdevelopedfor modelingquantum-efect electronic
systemf arbitrarystructure Two independentormulationsof quantummechanicsvere
implementedin SQUADS. The first is the widely-emplged transfermatrix methodof
guantumsystemsimulation,which provides a sourceof quick initial simulationresults,
andis especiallyusefulin detailingthe enegy spectrunof carriersin thedevice. Thesec-
ond methodusesthe Wigner function formulationof quantummechanicswhich is more
computationallyintensve, but which allows a moreintuitive and completedescriptionof
realguantumelectronicsystemsespeciallyincludingtransientresponsandenegy dissi-
pation.

In additionto describingthe basicimplementatiorandsimulationresultsof thesesim-



ulation methodsin SQUADS, this thesisalso describeghree detailedinvestications of

guantumdevice simulationand operation,using SQUADS asthe simulatorandthe reso-
nanttunnelingdiode asthe testdevice. An investigation of self-consistengcin quantum
device simulationfoundthatboththe efficient steady-statandthe moreaccuratdransient
self-consisteng iteration methodshave importantrolesto play, and thata Gummel(as
opposedo full-Newton) iteration methodis almostalways quite adequateAn investiga-

tion of the effect of slew ratevariationin transientRTD simulationshavedthatthe useof

anappropriateappliedbiasslew rateis necessaryor accuratesimulationsandto prevent
themisinterpretatiorof simulationresults.Finally, the detailedsimulationinvestigation of

the physicsof an RTD produceda betterunderstandingf this device, correctedseveral
errorsin previous interpretationof simulationand experimentalresults,and resultedin

improved agreement between simulation argegiment for this déce.

In generalthis work foundthatquantumdevice simulationis still in aformatve stage,
although significant advanceshave beenmadein this work and elsavhere. Quantum
device simulationis not yet at a point whereit canreliably reproduceor predictquantita-
tive experimentakesults whetherbecaus®f non-idealitiesn experimentor inaccurag of
the simulator Neverthelessguantumdevice simulationin this work and elsevhere has
alreadycontributedto the debatessurroundingsignificantunresohed issuesof quantum
device ptysics and operation.
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Chapter 1

Intr oduction

This chapterprovides an introductionand overview of the researchdescribedn this
dissertation Section1.1 describeghe motivation for studyingquantumeffectsin semi-
conductordevices,Sectionl.2 presentghe rationalefor the specificapproachandobjec-
tivesof the researchand Sectionl.3 describeghe organizationof the remainderof this
dissertation.

1.1 Motivation

1.1.1 The Quantum Challenge

Tremendousadwvanceshave beenseenin digital electronicstechnologyin the past
threedecadeslueto a strongmarket demandfor greatersystemspeedandfunctionality
Theamazingandapparentiytirelessadvanceof digital electronicgechnologyprovidesus
with empavering technologicainnovations,enablesusto addressien challengesn our
world, andallows usto tackleever morecomplex questionsaboutour universe With con-
tinuing efforts to improve the speedandfunctionality of integratedcircuits, higherintegra-
tion densitiesare forcing device dimensionsto decreasdo the scale of the quantum
wavelengthof thechagecarrier% usedin device operation.Thetransitionbetweerclassi-
cal (particle-like) and quantum (wave-particle) behaior of carriers begins at device
dimensionsof around0.1 um (100 nm) [1]. With continueddevice scaling,the reliable

1. Hereafterchagecarriersmeaningelectronor holeswill oftenbereferredto simply ascarriers.



2 Chapter 1.Introduction

operatiorof ultra-laige-scalentegrated(ULSI) electronicdevices,which depend®n clas-
sical (particle-basedXxarrier transport,will be increasinglyantagonizedby “parasitic”
guantum(wave-based}ransportphenomenakigure 1.1 shavs threeexamplesof carrier
guantum “mis-behaor” that already occur in ceentional electronic deces.

a) DRAM Capacitor b) MOSFET c) Bipolar T ransistor

+

+
T+
Oxide Si

Oxide Tunneling Energy Quantization Depletion Layer Tunneling

Figure 1.1: Parasitic quantum effects in conentional devices

Effectsindicatedinclude (a) chage carrierstunnelingthrougha DRAM capacitor
oxide at sharpcorners(b) enegy quantizatiorof carriersin the inversionlayer of
a MOSFET, and(c) electronstunnelingthoughthe bandgap at the base-emitter
junction of a dgenerately doped bipolar transistor

The effort to maintainreliable operationof electronicdevices as their dimensions
inevitably shrink towardsthe quantumrealmis hereincalled the “quantumchallenge”.
Theusualresponséo thequantumchallengas to constrainor modify corventionaldevice
designssuchthat quantumeffectsare avoidedentirely if possible,ignoredif they canat
leastbe madengyligible, suppessedsmuchaspossiblesvenif they arenotnegligible, or
overwhelmedf all of the above approachesail. Whathappensvhenthesecompromises
andconstraintdeave noroomto advanceULSI electronics?f thecorventional,evolution-
ary solutionto the quantumchallengeno longer works, and of coursethe demandfor
greatedigital systemfunctionality via device scalingwill notdiminish,anew, revolution-

ary response to the quantum challenge must be found.

1.1.2 The Quantum Solution

A revolutionaryapproacho addressinghe quantumchallengewhich hasmorelong-
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term possibility thoughat the sametime lesscertainty is to find somemeansby which
guantumphenomenaan be usedas enabling ratherthandisabling mechanismsn the
operationof electronicdevices.Deviceswhoseoperations fundamentallybasedn quan-
tum wave phenomenare calledquantumdevices. The conceptof producingusefulcom-
puting (analogor digital signalprocessingyvith quantumdevicesis hereincalledquantum
electronicy2, 3].2 The pathto quantumelectronicamay in factbe evolutionary with the
developmentof hybrid corventional-quantunalevices.Suchdeviceswould operateessen-
tially ascorventionaldevices,but would usequantumeffectsin a controlledbut subordi-
nate mannerto achieze down-scalingor functionality beyond that attainableby a pure
cornventionalelectronicdevice. Threewell-known examplesof suchhybrid devices,the
guantumwell laserdiode, hot electrontransistor and EPROM, areshavn in Figure 1.2.
The quantum ééct used to enhance the operation of each is also described.
Theideaof using,ratherthanavoiding, quantumeffectsin electronicdevice operation
hassereral significantbenefits.First, it would finally allow (in factrequire) at leastone
device dimensionto be scaledinto the quantumrealm,whereasconventionalelectronics
requiresall device dimensiondo be greaterthanquantumscale.Scalingdevicesto quan-
tum dimensionssay 50 nm or less,would allow integration densitieswell beyond even
ULSI, into aregime thatcanbestbe calledquantumscaleintegration.Higherintegration
levelsleaddirectly to greatersystemfunctionality. The additionalbenefitsof device scal-
ing arewell known: fasterdevice operationandlower device power. The useof quantum
devicesandquantumscaleintegrationallow all of thesemprovementdo continueinto the
guantumrealm, solving the quantumchallenge.Secondly using quantumeffectsin the
operationof electronicdeviceswould allow the control electronicdevice operationwith
ary of thephenomené#hatareparasiticin corventionaldevices,andthuspresentshepos-
sibility of attainingmuch higherfunctionalefficiengy. Finally, quantumeffectsincludea

2. Theterm*“quantumelectronics’is usedwith someresenrations,sincethis termhasbeenapplied

in the literature to semiconductodaser optoelectronicsHowever, “quantum electronics” aptly
describeghe electronicsystemsdiscussedn this dissertationwhich usequantumphenomenan

their operation,but which act externally much like corventional electronicsystems Alternative
termswerealsoconsidered:Quantumcomputing”hasbeenappliednarronly to quantumsystems
whoseoperationis basedn the physicsof discretequantawhich systemsaredescribedn Section
1.1.4.This dissertatiomainly considergjuantumsystemsvhoseoperationis basedon the physics

of acontinuoudistribution of quantaSomeresearcherase“nanoelectronicsto describahistype

of quantumdevice, but this moniker is not adequatelydescriptve, and is more appropriately
applied to deep submicron a@mtional electronics, as the natural successor to “microelectronics”.
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a) Quantum W ell Laser Diode b) Hot Electr on Transistor

electrons electrons

(Emitter)

EC
holes holes (Collector)
Quantum well confines carriers Tunneling produces
for more controlled recombination ballistic electrons for E
(precise energy; higher efficiency) fast base transport
c) EPROM

Gate

Gate Insulator
Floating Gate
Tunnel Insulator

Electron tunneling into floating gate

at Vg >> 0 shifts threshold voltage,
changing normally-off MOS device to
N-Si normally-on. State persists (non-volitile
storage) until discharge with Vg << 0.

Figure 1.2: Hybrid conventional-quantum electronic devices

Threehybrid devicesareshavn: a) the quantumwell laserdiode,b) a hot electron
transistorandc) anEPROM (erasableprogrammabl&kOM) device. Thequantum
effect used to enhance the operation of eagitdes also described.

diverseset of both analog(wave-like) and discrete(particle-like) phenomenaand may
therebyallow thedesignof quantumeffect-basedomputingsystemswvhich naturallypro-
duce both analog and digital functions.

1.1.3 Mor e Challenges

While quantumelectronicstheoreticallyallows electronicsystemcapabilities(effi-
cieng/ andfunctionality) to advanceperhapsordersof magnitudebeyondthat of corven-
tional ULSI, several new challengesmust be faced in the development quantum
electronics,andthesewill requireingenuityto surmount.Thesenew challengesnclude
notonly the needto developnew devicesbasedn differentphysics,but alsonew fabrica-

tion technologiegndcircuit architecturesvill be neededor thesequantum-scaléevices,
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andnewv computationparadigmswill probablybe required.Theseissuesarediscussedn
more detail in Chapter 2.

Becauseof thesechallengesijt is not clear whetherquantumelectronicswill ever
becomea viable substitutefor, muchlessa successoto, corventionalelectronicsin fact,
someof the strongestdwcatesof pursuingguantumelectronicgesearctarealsoits best
delunkers[2, 4]. In spiteof the toutedpotentialof quantumelectronicsasthe future and
savior of electronicsresearchn this field may seemanacademiexercise consideringall
of the challengesn theway of its realization.Further corventionalelectronicscontinues
to improve almostfasterthanconsumergantolerate with no endin sight. Thewisdomof
embarkingonthecostlyandpotentiallyfruitlessende&or of quantumelectronicgesearch
seemdoolish andwasteful.However, discoreriesaboutquantumsystemsn just the past

few years may hae rendered this wepoint invalid, as described belo

1.1.4 Further Possibilities

It turnsout that quantumelectronicsmay itself be a stepping-ston¢o an even more
futuristiccomputingparadigmwhich hasco-optedhe name‘quantumcomputing”.In this
realm,discreteelectronsandphotonsproducedesiredcomputingfunctionsusingcoherent
guantumwaves.In late 1994, PeterShor[5] describedhe“killer application”for quantum
computing.This is noneotherthanthe potentialto defeatpublic key encryptionschemes,
which are consideredhe bestcurrenthopefor inexpensve andpenasve securecommu-
nication.Ratherthanthe exponentialcomputationalequirement®f a classicalcomputer
to decryptsuch messagesthe computationtime using Shors quantumalgorithm rises
only asthesquareof theencryptionkey size[6]. Effectively, if Shors schemavereimple-
mentedany messagencryptedwith the public key schemewhethersent10yearsagoor
tomorrav, would be immediatelyreadableby the owner of the quantumdecrypter For
better or worse, it appearsthat it will be extremely challengingto build a quantum
decryptethatcanhandleanencryptionkey largerthanaclassicacomputercan(say1000
bits). However, it is equally difficult to think of a device more covetedby governments
(who arebestableto fund the developmentof sucha device). For this reasonalone,if a
guantum decrypter can baily, it certainly will be, rgardless of the diculty.

Thequantumdecryptelis just a specific(but important)exampleof the power of quan-
tum computing.Quantumcomputingtakes advantageof the inherentparallel natureof
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processingoherentvavesfor thefastsolutionof recursve problemsgssentiallychecking
all possiblesolutionssimultaneouslyOnly the correctsolution will interfere construc-
tively andproducea positive result.Othercomputationsvhich areinfeasibleto solve ona
classicalcomputermay also be proven accessibleusing a quantumalgorithm. Also,
smallerquantumcomputersperhapshandlingonly a few bits at a time, could solve other
seeminglyintractableproblems.For example, provably securequantumcommunication
schemege.qg.,for passingsecreencryptionkeys) have beenproposed7, 8] andtested9].
Theseimplementationsre asyet impracticalfor generaluse.Sereral accessibleeviews
of these and other quantum computing possibilities theen written [6, 9-14].

Clearly, there are tremendousincentives driving the researchand developmentof
guantumcomputing,and equally momentoushallengego be overcome.Of course the
eventualsucces®r failure of quantumcomputingcannot be determinedunlessanduntil
the conceptis thoroughly investigated. And the ultimate in quantumcomputing will
almostcertainlynever be achiezedwithout passinghroughquantumelectronicdirst. Fur-
ther, it seemgpreferabldo facethe quantumchallengenow, ratherthanwhenit becomes
guantumcrisis at the limit of corventionalULSI advancementBoth the inevitability of
thequantuncrisisandthe potentialbenefitsof quantumelectronicandquantumcomput-
ing werethemotivationsfor thisresearchthe broadgoal of whichwastheinvesticationof
guantumelectronics.Researchon the ultimate quantumcomputing systems,the heir-

apparent to quantum electronics, is left for future researchers.

1.2 Approach and Objectves

In generaltherearethreeapproacheso pursuinga scientificfield of study:concep-
tual, computationaland experimental.The choice of approachfor this researchproject
wasafairly straight-forvarddecision As aguedabove, quantumelectronicdruly is arev-
olutionaryconceptlt’ srealizationwill requirenew physics,new fabricationtechnologies,
new circuit architecturesand nev computing paradigms.Thus, in order to illuminate
potentially usefuldirectionsto take with eithersimulationor experiment,aninitial theo-
retical(i.e., conceptualpnalysisof quantumelectronicsandits futurein quantumcomput-
ing is absolutelyessentialMany researcherbiave undertalen suchan analysis,andthe
body of this dissertatiorbeginswith a summaryof this theoreticalork andits maincon-

clusions(Chapter2). The centralfocus of this investigation of quantumcomputing,as
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describedin this dissertation,takes the numerical simulation (i.e., computational)
approachAs in otherfields, simulationfills theinformationgap betweendealizedtheory
and “exact” but expensve experiment.Conceptuakesearchcan only provide a general
ideaof how a real quantumsystemwould behae, beyond which simulationand experi-

ment are required.

In quantumelectronicgesearchsimulationwill largely directexperimentjust asthe-
ory directssimulation.Themostcompellingreasorfor thisis feasibility: the costof simu-
lation is mary orders of magnitude less than experimental trial-and-error In fact,
experimentalwork with all but the simplestquantum-scaldevicesandquantuncircuitsis
not feasibleat all with existing fabricationtechnologiesEven with corventional ULSI
researchand development,simulationmakes possiblethe investigation of a muchwider
rangeof device structureandoperatingconditionalternatvesthanwould be feasiblewith
experimentalone.With therevolutionaryconceptof quantumelectronicswherethe even-
tual device “winners” are not even known, simulationrepresent® much more cost-efi-
cient means of westigating nev device concepts and operation phenomena.

There are other advantagesbesidescost of simulationover experimentin quantum
electronicgesearchFor example,a quantunmsystemsimulationcapabilityis morewidely
applicablethanfabricatingandtestingquantundevices,sincetheformercanbe usefulfor
ary quantumdevice for ary application.Further simulationcangive detailedinformation
aboutdevice operationwhich is not provided by experiment(or eventheory),suchasan
internal view of device operation(e.g., internal carrier concentrationor current flow
lines). An accuratedevice simulatorcantherebyresole ary mysteriesof device opera-
tion. Thus, in quantumelectronicsresearchsimulationwill likely sere to illuminate
promising directions for (futuretpensve) experimental research.

Anotherissuewhich falls underthe headingof “investigative approach”is to choose
the time-rangewhere the researchis expectedto have impact. In other words, is the
researchmeantto be of short-termor long-termpracticalimportanceAlthough quantum
electronicanherentlyhasarelatively long-termpotentialpay-of, thisresearclattemptgo
male its impactmoreimmediatewherepossibleby takinga short-termfocus2 For exam-
ple, somesimple quantumdevicesare beingfabricatedoday andbeingableto simulate

3. The short-termfocuswas, in fact, animportantreasonfor choosingto researchquantumelec-
tronics rather than quantum computing systems.
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thesedevices and thus contribute to this work was consideredessential This focus has
implications for the type of simulatorEoped, as discussed in Chapters 2 and 3.

Basedontheabove discussiontheobjective of this researcthasbeennarrovedfrom a
generalinvestigation of quantumelectronicsto the developmentof a simulationtool for
the investigation of quantum electronic devices. The resulting simulator is called
SQUADS (StanfordQUANntum Device Simulator).Two goalswereervisionedin the use
of thistool: theinvestigation of quantumdevice opermation, andthe investigation of quan-
tum device simulation Thegeneralapproachakenin developingSQUADS wastherefore
to includein it asmary capabilitiesas possible.Progressoward the researclobjectve
wasgaugedby simulatingvariousdeviceswith generallyknown behaior to seewhether
the simulationresultsagreedwith expectationsThis dissertationcontainsmary illustra-
tive examplesof suchsimulations.Defining the researchapproachfor this work in ary
more detail requiresa significantamountof additionalbackgroundnformation,which is
provided in the next two chaptersBefore undertakingthis discussionan overvien and
outline of this dissertation is\g@n belaov.

1.3 Organization

This dissertationis organizedinto nine chapterspf which this introductionis thefirst.
Note thatthe bibliograpty for eachchapteris given atits end,ratherthanasa combined
bibliograply atthe endof the dissertationsincethe reference®f differentchaptershave
minimal overlap.

To give direction and focus to the numerical simulator developmentin this work,
Chapter2 presentsan overview of the currentunderstandingf quantumelectronicsThis
begins with a descriptionof the quantumphenomenand basic structuresthat will be
building blocksfor quantumdevices,andthenturnsto thegenerakcharacteristicef quan-
tum effect devices. The discussionalso analyzesthe merits of some specific quantum
devices. Finally, this chapterconsiderswhat quantumelectroniccircuits may look like,
andthe likely natureof computingwith thesecircuits. The importantresultsfrom this
analysis are its implications for the implementation otJ3QS.

Chapter3 completeghe specificationof the approachtakenin developing SQUADS
by selectingits underlyingbasisfrom the mary mathematicaformulationsof quantum
mechanicsTo accomplishthis, the capabilitiesandfeaturesrequiredof a usefulquantum
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device simulatorarefirst discussedBasedon this, the variousquantummechanicgormu-
lationsareevaluatedin termsof their ability to producea quantumsystemsimulatorwith
the bestcombinationof capabilities,accurag, andcomputationakfficiency. The conclu-
sionis thata dual-formulationapproachwould sene asthe bestbasisfor SQUADS. The
resultingimplementatiorof SQUADS andits simulationresultsarethe subjectof Chap-
ters 4 through 8.

Chapterst and5 describethe basicimplementatiorof the two formulationsof quan-
tum mechanicaisedin SQUADS. The implementatiorof the transfermatrix method,the
de-factostandardn quantumdevice simulation,is describedn Chapter4. This methodis
basedon solvingthetime-independen$chrddingeequation.The transfermatrix method
is suitablefor quick, reasonablyaccuratesimulationsof a wide rangeof quantumdevice
structuresto determinewhich merit more detailed study The implementationof the
Wignerfunctionmethodin SQUADS is thendescribedn Chapter5. This methodis anal-
ogousto solvingthe Boltzmanntransportequationfor corventionaldevice simulation.As
such,it is suitablefor accurateput computationallyexpensve, simulations Basicsimula-
tion results for each method areen at the end of their respegtichapters.

Chapterss and 7 describesomeof the more advancedcapabilitiesof SQUADS, and
presensimulationresultsshoving the importanceof thesefeatures Chapter6 coversthe
implementationin SQUADS of full quantumself-consisteng which requiresthat the
chage densityprofile producedby the quantumtransportequationis consistenwith the
enepgy bandprofile in the simulateddevice. Chapter7 describeghe transientsimulation
capabilitiesof SQUADS in more detail throughan analysisof the effect of appliedbias
slew rate \ariation on the operation of a quantunvide.

To bring closureto the body of this work, Chapter8 presentsa detailedandcompre-
hensve quantumsimulationinvestigation of a singlequantumdevice. As in chaptersd-7,
aresonantunnelingdiodeis usedasthetestdevice. The physicsof thisdevice is analyzed
in asmuch detail as necessaryo presenta completepicture of its operation.Also dis-
cussedarethe implicationsthis simulatedoperationhasfor the resolutionof several sig-
nificantcontroversiesregardingresonantunnelingdiodeoperation Finally, an attemptis
madeto assesshe currentaccurag andreliability of quantumdevice simulationtools,
including SQUADS.

Finally, Chapterd summarizeshiswork, presentsts contributionsto thefield of quan-
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tum device simulation, and ges suggestions for futureowk in this field.
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Chapter 2

Overview of Quantum Electronics

This chapterprovidesa summarywhatis knowvn andwhatcanbe reasonablyleduced
aboutthe possibility of practicalquantumelectronicsThe discussiorcoversthe quantum
effects, basicstructuresdevices, systemsand computingmodels,which might produce
ordersof magnitudedenserfaster and more efficient computingsystemsAlthough this
chapteris notintendedto be a comprehense review of quantumelectronicsjt will sene
to shav wherethis dissertatiorfits in thelargerfield of quantumelectronicgesearchThe
morespecificgoal of this chapteris to discusshe characteristicef computationallyuse-
ful quantumdevices,andthus,what capabilitiesandfeaturesshouldbeimplementedn a
practical quantum dece simulator

The summaryof quantumelectronicdan this chapterns accomplishedn four steps.in
Section2.1, someguidelinesfor the identificationof useful quantumdevices are estab-
lishedby discussindoriefly the past,presentandultimatefuture of quantumelectronics.
The summaryof quantumelectronicsthenproceeddrom its basicelementso complete
systemsin Section2.2,the quantumphenomenandbasicstructureghatwill bebuilding
blocksfor quantumelectronicsystemsareenumeratedSection2.3thendiscussethegen-
eralcharacteristicef quantumeffect devicesdesignedvith thesestructuresandphenom-
ena,and considerghe merits of somespecificquantumdevices. This sectionconcludes
with theselectionof a prototypequantumdevice for usein developingapracticalquantum
device simulator Finally, Section2.4 considersthe likely characteristicoof complete
guantumelectronic systems,and how they might accomplishuseful computing. The

11
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resultingconclusionsaboutquantumelectronicsgspeciallythoserelevantto the develop-
ment of a quantum g&e simulatorare summarized in Section 2.5.

2.1 Past, Present, and Futue

In this section,the basic outline of the quantumelectronicsconceptis definedby
shaving wherequantumelectronicshascomefrom, how existing technologie€aninform
usaboutthe natureof quantumelectronicsandwherequantumelectronicanay ultimately
be headed.

2.1.1 The Genealogy of Quantum Electonics

As hasbeenobsered,quantumelectronicds arevolutionaryidea,andfew of therules
of corventionalelectronicamayapplyto it. However, nothingis completelynew, andrele-
vantexisting knowledgeshouldcertainlybe used wherepossible to guidethe successful
developmentof quantumelectronicsSowhatknowledgeis relevant?On onehand,at the
very smallestscale,chage carriersin quantumdeviceswill obey wave mechanicsThere-
fore, a wave-basedsystemshouldbe soughtfrom which to drav knowledgeandinsight.
The closestcousinof quantumwave systemsds optical systemslin fact, optical comput-
ing, which seeksto produceuseful digital functionality through electromagnetiavave
manipulationjs awell-establishedield of research1-4]. Ontheotherhand,atthetermi-
nalsof thequantuncircuit, theinputandoutputsignalswill bevoltagesandcurrentsasin
corventional electronics.Quantumelectronicsviewed from the macroscopidevel will
probablybevery similarto corventionalcomputing.Basedon theseargumentsFigure2.1
shaws the typesof knowledgethatshouldbe applicablefrom optical computingandelec-
tronicsin the developmentof a usefulquantumelectronicstechnology Relevant knowl-
edge will be draen from these sources throughout this chapter

2.1.2 The Optical Analogy

The basicpremiseof quantumelectronicds to build electronicdevicesthataresmall
enoughthat their operationis dominatedby the wave natureof chage carriers.Several
researcherbave exploredthe strongsimilarity betweensuchquantumelectronicsystems
and electromagnetiavave systems[5-7], which relationshipis often called the optical
analogy* The optical analogyis importantin the developmentof quantumelectronics
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ULSI Electr onics Optical Computing
* Circuits * Phenomena (physics)
» Systems » Basic components and
» Computation functions
» Materials » Useful composite
* Fabrication devices
» Wave “computation”
Quantum Electr onics

Figure 2.1: Progenitors of quantum electonics

Quantumelectronicsdespitehaving mary revolutionarycharacteristicssanmake
useof relevantknowledgefrom ULSI electronicgwhich it seekso replace),and
from optical computing (which it seeks to emulate).

becausat links commonexperienceandintuition to the seeminglystrangequantumphe-
nomenaand systemsThe optical analogyindicatesthatin a quantumelectronicsystem,
chage carrier quantumwaves will be guidedwith waveguides,reflectedwith mirrors,
refractedwith lensessplit, recombinedetc.,to purposefullytransformsomeinput wave
into a new output wave and thereby in somemanney perform a desiredcomputation.
Clearly, quantumcomputingat this level is unrecognizabléom the standpoinbf conven-
tional computing.

Fromthe abose agumentsthe functionof usefulcomponentsn quantumcomputing
systemsare expectedto be similar to thosein optical systemspasedon the optical anal-
ogy. Further all basicwave effects can be producedin ary systemif refraction(wave-
lengthchangewith position)andreflectioncanbe producedlIn optical systemsmaterial
changesesultin refraction,andconductorgproducereflection.Of courseaquantumelec-
tronic systemis chiefly anelection systemnot a photonsystem(althoughphotonsmaybe
involved). The materials,structuresand materialparameter®f electronicsystemsmust
be usedto createthe desiredwave effects.In particular materialparametersn semicon-
ductorsmustbe engineeredat qguantumdimensiongo producereflectionandrefraction.
As it turnsout, two materialparametersghe enegy bandminimun? andthe carriereffec-

1. “Electromagnetic’(EM) might be moreappropriatghan“optical”, sincethe latterimplies only
visiblelight - avery smallpartof theEM spectrumHowever, optical systemsarethe mostfamiliar
andhighly developedEM wave systemsn commonexperiencegspeciallyfor the purposeof com-
putation, so the term will be used in this dissertation.
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tive massfit this requiremenin an analogousmannerto the refractve index in optical

systems. The refractionfe€t (due to vavelength modulation) can be calculated from:

_ h
N2+ (x) [E=U(x)]
In (2.1), A is the carrierwavelength,h is Plancks constantand E is the (constant)otal

2.1)

carrier enegy. Also, m* and U are the position dependentarrier effective massand
enegy bandminimum (a.k.a.potentialenepy), respectiely. Justaswith refractve index
changesn optical systemsjf U or m* changegradually refractionoccursaccordingto
(2.1),while thereis little reflection.Whenthe changds abrupt,bothrefractionandreflec-
tion occur Finally, wheretheenegy bandminimumU risesabove thetotal carrierenegy
E, the wave reflectscompletely Thus,both basicwave effects (reflectionandrefraction)
canbe produced in quantum electronic systems. Théseteiwill be depicted shortly

Technologicallyit is easierto manipulatehe enegy bandminimumthanthe effective
masdo producereflectionandrefraction.This reality hasresultedn a device designtech-
niquecalledbandgapengineering8]. With bandgapengineeringa device is designedy
simply determiningthe enegy bandstructurerequiredto producea desireddevice func-
tion, andthen putting togetherthe necessarynaterialsto create(asnearaspossible)this
enegy bandstructure.In the caseof quantumdevices, it is the (quantum-scalegnegy
band structurethat the propa@ting quantumwave interactswith to producequantum
effects® Note that becauseguantumdevice operationis basedon wave interactionsthe
fabricationof thesedevicesrequiresmuchmore accurag thandoescorventionaldevice
fabrication.Both the size and placemenbf structuresn quantumdevices determinethe
function produced.

Two methodsare usedto createstatic enegy bandoffsetsin electronicdevices: p-n
junctions and heterojunction However, p-n junctions are far too large and have too
much statisticalvariability when quantumscaleinterface control is essentialand they
resultin avalanchebreakdaevn strengthelectricfieldswhendopingis madehigh enoughto
reducethefirst two problems.Thus,isotypeheterojunction mustbe usedto createband

2. The conduction band minimum (or edge) for electrons andateace band minimum for holes.
3. The effective massaffectsthe relative sizeof quantumstructuresput is a secondaryconsider-
ation during initial quantum déce design.

4. An interface betweentwo differentmaterials,suchas GaAs and Al,Ga;_,As, wherediffering
electron dinities and bandaps result in an inherent conduction atfence band minima fskt.

5. A heterojunction where the dwnaterials hee the same doping typeor n.
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offsetsfor quantumdevices.Theconclusiorthattherewill beno p-njunctionsin quantum
devicesleadsto anotherconclusion:quantumdeviceswill be majority carrier (unipolar)
devices, sinceall local regionswill be of the sameconductvity type. In fact, not only
device structureshut alsointer-device isolation,mustbe producedby heterojunctionsf

integration densities much pend that of coventional electronics are to be realized [9].

2.1.3 The Future

In the effort to apply quantumeffectsto computing researcherbave takentwo fairly
distinct approachesThe first approachis to evolve quantumelectronicsfrom existing
computingtechnologiegULSI electronicsand optical computing),as describedn Sec-
tions2.1.1and2.1.2.By thisapproachbandgapengineerings usedon semiconductorto
createquantumsystemsvhoseelementgunctionlik e optical(i.e., wave) componentshut
whosegrossfunction is that of a corventionalULSI circuit. The resulting“distribution
function” quantumdevices usea continuousdistribution of a large numberof (indistin-
guishable)quantain their operation,just like corventional electronic devices. These
devicestypically rely on quantumtransportdominanceonly in the relatively small active
region of the device, with classicaltransport(i.e., scattering)allowable elsavhere.The
resultis thatdistribution function quantumdevicesareactually hybrid classical-quantum
devices. Due to their external similarity, these quantum devices could concevably
enhanceor replacecornventionalelectronicdevicesin-situ. In fact, this is the reasonthis
approachto using quantumeffectsin electronicsis sometimescalled “nanoelectronics”
[10, 11]. Seeral other reiews of quantum electronics areaslable, including [9, 12-16].

The secondapproachto applying quantumeffects to computation,called quantum
computing,largely ignoresexisting computingtechnologiesandgoals.Instead quantum
computingresearcherende&or to develop atruly revolutionaryandfully quantumtech-
nology which takes advantageof the uniquefeaturesof quantumphysicsto accomplish
featsnot otherwisepossible.The quantumdecryptordescribedoriefly in Sectionl.1.4is
an exampleof sucha uniquely guantumsystem.Quantumcomputingrequiresthe devel-
opmentanduseof “discrete-quantatievices,which would operateon the quantumwave-
functionsof individual quanta(e.g., electronsphotons,or atoms).Thesedevicesrely on
therelatively long-rangeandlong-termcoherencef eachquantainvolved (i.e., scattering
destrgstheresult),andthe stateof eachquantas significantto the computationAccessi-
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ble reviews of quantum computing include [17-21].

Many physical systemshave beendiscussed18, 22] as possiblediscrete-quanta
devices,including the quantumdot, a nuclearspin, a localizedelectronicstatein a poly-
mer, a hydrogenatom,anion trap,andevenmoleculesn a saltcrystal.For example,the
basicoperationof a hydrogenatom“bit” is indicatedin Figure 2.2a.Building quantum
computersrequiresforming a 1-D, 2-D, or 3-D array of thesedevices, “programming”
themwith a desiredquantumstate andperformingthe desiredcomputatiorthroughinter-
actionswith andamongthe devices.A comprehensie schemedor accomplishinghis has
beendescribed18]. For illustration, Figure2.2bshavs a 2-D arrayof closely-spacedind
therefore interacting, quantum dots.

a) Possib le Quantum De vice: b) Possib le Quantum Computer:
Hydrogen Atom Quantum Dot Arra y
IIOII to lllll
_>
photon

&2@),

Figure 2.2: Possible quantum computing deice and system

(a) shawvs a two enepy statesof a hydrogenatom,wherea “probe” photonof the

correctenegy will shifttheelectronto theotherenepy level, causingheemission
of aphotonif theelectronwasis in the high enepy state.(b) shavs a 2-D arrayof

interacting quantumdot structures,which might sene as a prototype quantum
computer

Discrete-quantdevicesandtheresultingquantumcomputingsystemsappeato repre-
sentthefinal frontier of computing,combiningthe ultimatein down-scalingandminimal
enegy consumptiorwith the ability to perform amazingcomputationafeats. However,
the time frame and challengesfor constructinga general-purposeomputerare much
greaterfor discrete-quantadevices than for distribution-function, quantum electronic
devices.Therefore sincethis researchpursueda more short-termrealizationof applying
guantumeffectsto computing,the focusin this researchandthe discussiorhereafterin
this dissertationwill be on quantumelectronic(i.e., distribution-function)devices. This
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focushasimportantimplicationsfor the type of quantumdevice simulatordeveloped,and
for the prototypedevice usedto testit, asdiscussedn Section2.3. Hereaftey ary refer-
ence to quantum giees assumes the disttiion function type, unless stated otherwise.

2.2 Phenomena and Structues br Quantum Devices

Givena generalpicture of quantumelectronicsfrom Section2.1, andhaving decided
in Section2.1.3 on the type of quantumdevices that will be considereddeducingthe
detailsof quantumelectronicswith thosedevicesnow begins, startingat the lowest(and
leastspeculatre) level. Section2.1.2reachedhe generalbut important)conclusionghat
therelevantquantumeffectsarewave phenomenaandthatthe structuresusedto produce
themcanbe createdby band-@p engineeringThis sectioninventoriesthe availablerange
of quantumphenomenand associatedtructuralelementsfor quantumelectronics.To
facilitate this, complete and unabashedaatizge is tadn of the optical analogy

2.2.1 Basic Quantum Wave Phenomena

In deducingthe natureof operationof quantumelectronicsystemsthe first stepis to
list the phenomendhat can be usedto develop a quantumwave processingechnology
The basicwave phenomendhatarefamiliar from optical systemsncludewave propag-
tion, refraction, reflection, diffraction, interference,and evanescentwave penetration.
Basedon the optical analogy and using band-@p engineeringjt shouldbe possibleto
produceall of theseeffects in quantumelectronicsystemsas well. Indeed, Table 2.1
describeghesewave phenomendrom a quantumsystemperspectie and gives sketches
of simpleenegy bandstructureswvhich have beenusedto produceeacheffect. See[5-7]
for the theory behind theseave phenomena and structures.

2.2.2 Basic Wave Components and Quantum Structues

The next steptowardsdescribingcompletequantumeffect devicesis to usethe phe-
nomenaandenegy bandstructuresn Table2.1to designsomeof the basicwave process-
ing elementdor quantumelectronicsystemsAgain draving on the optical analogy and
usingband-@p engineeringTable2.2 shavs six suchelementstherefractor(lens)[23],
reflector (mirror) [24], beam splitter [25], waveguide [26], partial reflector [27], and
impedancematcher[28, 29]. Note herethatthe opticalanalogyshouldbe seemasa source
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Table 2.1: Fundamental quantum phenomena and associated structes
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Table 2.2: Basic wave processing elements in quantum eleanic systems
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(Note: darler region = higher band edge)
O Low-band-edge; B High-bend-edge

Refractor (Lens)

BQE: Refraction

ﬁé | T

Reflector (Mirror)

BQE: Reflection

Beam Splitter/Analyzer (Prism)

BQEs: Refraction, Dispersion

Higher Energy

I
T Lower Energy
Waveguide (Waveguide)
777/ 77'

7
BQEs: Reflection (abrupt y > ; ® ; E
waveguide); Refraction (graded Lé _ ; 7 1—>y

77777

waveguide)

Tunnel Barrier (Brtial Reflectar
Beam Splitter)

BQEs: Exanescent Penetration

Barrier must be
very thin
(~100 A or less)

Impedance Matcher (Anti-Refled
tive Coating, Quarter We Plate)

BQEs: Reflection, Refraction,
Interference

JE

Interfj,|
7%}

A\




20 Chapter 2. Overview of Quantum Electronics

of ideasandunderstandinglt is not necessaryo reproduceavery opticalcomponentn a
guantumsystem,althoughthis could probablybe done. The analysisto this point, and
especiallythe opticalanalogy shouldbe sufiicientto provide avisualimageof whatquan-
tum phenomena and quantunvides will be like.

2.3 Devices br Quantum Electronics

The purposeof this sectionis to shav how the phenomenand functional elements
discussedn Section2.2 canbe combinedto producepotentially useful digital quantum
electronicdevicesand systemslt is not possible,of course,to discussevery potentially
useful quantumelectronicdevice — all suchdevices are certainly not known. Instead,
some generalconceptsabout quantumdevices are considered.Then some prominent
examplesof quantumdevicesare considereddraning from the two classesof (distribu-
tion function) quantum devices: quasi-equilibrium devices and farfrom-equilibrium
devices. Finally, conclusionsare dravn aboutthe characteristicsof potentially useful
guantumelectronicdevicesin the nearterm, andthereby a prototypequantumdevice is
chosen as a test-case for the quantuitdesimulator deeloped in this wrk.

2.3.1 General Concepts of Quantum Deices

Themotivationfor investigating quantumdeviceswasto solve the quantumchallenge:
to find a way to continuedown-scalingdigital electronicdevicesin spite of the quantum
barrier Given a short-termapproachto answeringthis challenge the solution soughtin
this sectionis a simple quantumreplacementor the corventionaltransistor First, the
characteristic;mecessaryor a direct replacemenbf a digital computingdevice are dis-
cussedThenthe generalunderstandingf quantumphenomenanddevice structuregis-
cussedn Section2.2is usedto predictwaysin which suchdevicesmightbeachiezedwith
guantum vave phenomena and quanturaw processing elements.

Beginning with conventionalelectronicsghen,Figure2.3 shavs a block diagramof a
generic switching device. A basic corventional digital electronic device functions by
usinganinput voltageto modulatethe heightof a potentialbarrierto currentflow along
the outputpath. The “necessarytharacteristic®f corventional(digital) electroniccom-
puting deices can be described as fallo[10, 30

» gain — small input change producegjeioutput change,
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Input (Gate, Base)

Power Output

> >
(Source, Emitter) Output Path (Drain, Collector)

Figure 2.3: Conventional electonic switch (FET, BJT)

Thebasicdigital device building block consistsof a low-power controlling (Input)

electrodewvhich modulategheresistancef ahigh-paver conductiorpathbetween
the othertwo electrodegPownver andOutput).A quantunreplacementievice must
have an equialent function.

« fan-out — output can supply $igfent current for multiple inputs,

* isolationof input from output— outputvoltagedoesnot affect device operation,

* inversion — output &ries oppositely to input, and

» well-defined logic (wltage) levels for 1/O signals (strong diee non-linearity).
Giventhesegeneralcharacteristicswo classef quantumdevicesareconsideredelov
in terms their potential to replace a gentional digital switching dece.

2.3.2 Quasi-Equilibrium Devices

Quasi-equilibriumTquantumdevicesuselow resistancevaveguidesandinterferencdo
implementswitching. Thesedeviceswork best(or only) with very low biasesalongthe
outputwaveguidepath[9], whichis theorigin of thedesignatiorfquasi-equilibrium”.The
prototype quasi-equilibriumdevice is the quantuminterferencetransistor(QUIT) [31].
The QUIT (seeFigure2.4) hasan analogoudevice in optical systemscalledthe Mach-
Zenderinterferometef32]. In the QUIT, a quantumwavefunctionsplits, travelslosslessly
alongtwo (or more) paths,and thenrejoinsto interfere constructely or destructvely.
Along one or both paths,the carrier wavelengthcan be purposelyalteredsuchthat the
wavesrecombineeitherin-phase(constructve interference)which resultsin high trans-
mission, or out-of-phase (destrwetiinterference), which results inddransmission.

From Equation(2.1), notethatwavelengthis relatedto the position-dependergoten-
tial enegy U. Further sincepropagition alongeitherpathof the QUIT is to belossless,

6. It mustbe emphasizedhat thesecharacteristicarerelevantonly for the hybrid classical-quan-
tum devices,in which dissipationis allowed.In theultimate,discrete-quantdevices,someof these
characteristics are either not necessary or not desirable.
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QUIT Gate Tuth Table

Input1 | Input2 | Output

Output 0 0 1

Wave

0 1 0
1 0 0
1 1 1

Figure 2.4: Quantum interference transistor XNOR gate

A symmetricQUIT exhibits constructve interference(high conductvity) for the
samebiason bothwaveguides but canbedesignedo producedestructve interfer-
ence (lov conductvity) if the inputs difer.

thetotal carrierenegy E is constantThereforea potentialenegy differencebetweerthe
two paths(e.g.,producedby applyinga voltagebetweerthem)will resultin a difference
in wavelength and total phasechangealong the paths. Figure 2.4 shavs a possible
(XNOR) logic gatebasedn the QUIT [9]. Here,thedevice is designedo producea 180°
phaseshift on the carrierwavefunctionbetweena logic 0 anda logic 1 input (gate)volt-

age.

As a discretedevice, the QUIT haslong beentouted as having an extremely low
power-delay product[31], a good measurenf switching efficiency. However, the issueis
whethersucha quasi-equilibriunguantundevice canreplacecorventionaldigital logic in
a denselyintegratedcircuit. As their nameindicates,quasi-equilibriumdevices require
very low appliedbiasedo operateproperly In the caseof the QUIT, carrierheatingresult-
ing from a potentialdrop alongthe waveguide pathsincreasesnelasticscatteringso that
interferenceeffects begin to fade.Device function is also significantly affected by arny
change in the potentialat the output. If the outputpotentialchangeqe.g.,dueto aload
change)the phasedifferencebetweerthe two paths,andthustheinterferenceesult,also
changesOtherproblemsof quasi-equilibriundevicesarethatthey do notexhibit gainand
requirecryogenicoperation[10]. Thus,quasi-equilibriumguantumdevicesdo not appear
to be suitable as a direct quantum replacement farecional transistors.
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2.3.3 Far-From-Equilibrium Devices

If thereis to bea directquantumenhancemenrtf, or substitutefor, corventionalelec-
tronic switches,it will comefrom the far-from-equilibrium classof quantumdevices.
Thesedevicesusetunneling,quantumwells, andsuperlatticeso achieve higheroperating
voltages,albeit with resulting enegy dissipation. The prototype far-from-equilibrium
guantumdeviceis theresonantunnelingdiode(RTD) [33]. Its basicenegy banddiagram
andl-V characteristi@areshovn in Figure2.5. Note thatthis device is essentiallya quan-
tum well definedby tunnel barriers. The RTD has high current (resonance)when an
allowed enepy statein the quantumwell lines up with the bandminimum in the emitter
electrode. Br details on RD operation, see [34].

E Tunnel Barriers | A
X
Em|tter CO||€C'[OI‘ —_ Resonance
S
= Anti-
O Resonance
. NDR
by Uit (o} . . >V
Applied Bias a

Figure 2.5: Resonant tunneling diode structue and I-V curve

Currentis at a maximum(resonanceyvhenthe quantumwell statelines up with
the emitter minimum, so that electronsin the emitter (which are at enegiesnear
the minimum) can tunnel through the quantum well state.

Again the questionis whetherfar-from-equilibrium quantumdevices can potentially
enhanceor replacecornventionaltransistors.This time, the answerappeardo be “yes”.
Resonanttunneling transistorshave been proposedby contacting (either directly or
throughaninsulator)the RTD quantumwell. In fact,resonantunnelingtransistorsof var-
iousdesignshave actuallybeenfabricatedor proposeduseasfrequeng multipliers, par-
ity generatorsmulti-statememory andA-to-D corverters[35]. Therearestill difficulties
with the successfuimplementatiorof this technology{9], thoughthey appeatessfunda-
mental than the limitations of quasi-equilibrium quantuwiaes.
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2.3.4 Prototype Quantum Electronic Device

Basedon the above analysisthe RTD wasusedasthe prototypequantumdevice for
directing the development,testing the features,and benchmarkingthe performanceof
SQUADS, asdescribedn theremainderof this dissertationThe RTD waschosenmainly
in deferencdo theshort-ternfocus:RTD-basedlevicesarenottotally differentfrom con-
ventionalelectronicdevices - they supportrelatively large appliedbiasesthey have I/O
signalswhich arecurrentsandvoltagey(ratherthanquantunmwaveswhich mustsomehav
be converted),and quite usefulroom temperatureperationhaseven beendemonstrated
[10]. In fact, in comparisonto the discrete-quantalevices discussedn Section2.1.3,
RTD-basedlevicesarejust a smallfirst stepfrom corventionalelectronicdevicestowards
the ultimate quantum dies and true quantum computing systems.

In addition to the RTD’s similarity to conventional electronicdevices as described
above, the RTD hasmuchto recommendt for its prominentrole in the developmentof
SQUADS. The generaldifficulty or impossibility of conductingexperimentalquantum
electronicgresearclslows both theoryandsimulationefforts, sinceeachapproachbuilds
on the results,both successeand failures, of the others. Therefore,the secondmost
importantfeatureof RTDsis simply thefactthatthey canbefabricatedwith existing tech-
nology The resultis that RTD-baseddevices have beenwidely studiedexperimentally
[33, 35]. The availability of experimentalmeasurementiasbeenvery beneficialin the
developmentof SQUADS, enablingthe developmentof a moreaccuratesimulationtool.
The symbioticrelationshipbetweensimulationand experimentin this work is clear On
one hand, simulationsindicate which devices, materials,dimensions,doping, etc., are
promising,andthey describehe“ideal” operationto which realdevicesshouldaspire.On
the other hand, experimentsindicate invalid simplifying assumptionsn the simulation
models,the numericalaccurag required,andsecondaryeffects(e.g.,scatteringthatare
(or arenot) importantfor anaccuratanodel. Whenan effect canbe safelyneglected,the
simulationwill be moreefficient, but effectswhich areinappropriatelyignoredin a simu-
lation or notimplementedn the simulatorresultin aninaccurateprediction.Later chap-
ters of this dissertationinclude comparisonsbetweensimulations and experimental
measurements.

Anotherkey featureof the RTD is thefactthatit is the simpleststructuren which both
guantumtunnelingandspatialquantization(dueto quantumself-interferencefandomi-
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natedevice operation,even at room temperatureAs a result,the RTD hasbeenwidely
studiednot only experimentally but alsoanalyticallyandnumerically sothatits physicsis
now well understoodFinally, quantumdevicesareintendedfor very high speedapplica-
tions,andthe RTD is avery fastdevice [36]. All of thesefactsmadevery easythe choice
of the RID as the prototype di&e for the deelopment of SQADS.

For the developmentof a generalquantumdevice simulator the device characteristics
thatthe simulatormusthandleshouldbe enumerateandependentlyof the descriptionof
ary testdevice. This requiresessentiallya summaryof what has beendeducedabove
aboutpotentiallyusefulquantumdevices, basedon the short-termapproachn this work.
Thus, SQUADS must simulate déces which are:

* unipolar (no bipolar éécts such as recombination-generation),

* heterojunction-based (abrupt banésefts),

* far-from-equilibrium (non-linearself-consistent band-bending),

* irreversible (scattering), and

* very high-speed (transient).
A reasonablecasecan be made for the implementationof two-carrier simulation in
SQUADS, since some proposedresonanttunneling transistorsand most quantumwell
laserdiodesare bipolar In thesedevices, both carrier types, both the conductionand
valencebands recombination-generatiomand photoneffects (laserdiodesonly) mustbe
treated.Suchbipolareffectsarenot currentlyhandledoy SQUADS, but theirimplementa-
tion in SQJUADS is certainly feasible.

2.4 Quantum Electronic and Quantum Computing Systems

This sectiondiscusseshe challengesandpossibilitiesof integratingquantumdevices
into highly-functionalquantumsystemsandhow the ultimate quantumcomputermight
operate Theseaspect®of quantum-efect computinggo beyond whatis strictly necessary
for the purposef quantumelectronicdevice simulatordevelopment A prototypequan-
tum device hasalreadybeenselectedor testingSQUADS, andthe device characteristics
which are essentiafor SQUADS to handle,andthosewhich are not, have alreadybeen
determinedThe purposein analyzingthe challengesand possibilitiesof completequan-
tum-efect (includingquantumelectronicandtrue quantum)computingsystemss to show

wherequantumelectronicdevice simulationresearcHits in the progresgowardsthe real-
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ization of quantum-é&éct computing.

2.4.1 Architecture Challenges and Conclusions

In Sectionl.1,the conclusionwasthatthe only way to scaleULSI electronicdevices
beyond the quantumchallenge(the inevitable increaseof quantumeffects) wasto adopt
guantumphenomenasthe operatingmechanismsf the smallerdevices.Quantum-dict
computingwas adwcatedas a revolutionary approachto advancingelectronicsinto the
guantumregime. But in previous sectionsof this chapter a short-term,evolutionary
approacho usingquantumphenomenan electronicsvasactuallyadoptedby looking for
guantumdevicesthat could directly replacecorventionalelectronicdevices (in the same
circuit architectures)Note thatthe quantumchallenges not the only problemfacingthe
advancemenbf ULSI asit pushegowardhigherintegrationdensitiesOtherseriousprob-
lems include interconnect-dominatedielay and scaling limits, increasingcross-talk,
increasinghardandsoft-errorsandinefficientarchitectureslf quantumintegratedcircuits
don't remove or at leastmitigate ead of theseproblems the potentialbenefitsof using
guantumdevicesover corventionaldeviceswill be smallor non-&istent.In otherwords,
to significantlyimprove on ULSI, it will not be sufficient to simply replaceconventional
devices with quantum deces.

Thefollowing is alist of otherproblemsandchallengesacedby ULSI, andtheresult-
ing characteristicthatcomputingsystemsnusthave to achieze quantumscaleintegration
[12, 37, 38].

* Interconnect scaling and delay limits are serious and increasing.

* Limited-interconnect architectures will be mandatory

» Function per interconnect must increase.

» There will be may basic logic units, rather than a singlevensal switch.
» Device and interconnect cross-talk increases akéespacing decreases.

* Isolated, functionally independentuiges will be impossible.

* Interdevice coupling must be used for communication.

* Circuit operationwill be governedby distributedcomputationrandcollective

modes of behaor.

» Hard and soft error probability will tend to increase.

* Fault-tolerant architectures will be necessary
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» Low parallelism limits speed in ceentional architectures.
 High levels of computational parallelism are required.

In discussingquantum-giect computingarchitecturesand operation,it is difficult to
separatary of theseissuesandtheir implicationsfrom the others.Therefore the discus-
sionis presentedn reverse by simply describinga viable quantumelectronicarchitecture
and how it might operate,and then presentingthe reasoningoehindthesespeculations.
Theresultsareasfollows. The quantum-eiect computemwill have ahierarchicalrchitec-
ture.Onthelargescale it maylook muchlike a corventionalULSI circuit, with relatively
conventional interconnectionsbetweenwhat appearto be single devices. But these
“devices” areactuallyquantum*sub-circuits”in themseles,eachproducinga very com-
plex function comparedo the simple switch that they essentiallyreplacefrom cornven-
tional circuits. The quantumsub-circuitsmustusea limited interconnecarchitecturefor
which two optionshave beenproposedcellular automatorarraysand quantumwave fil-
ters. Eachof theseoptionshasits own adwvantagesand challengeswhich are explored
belov. Thesearchitecturesare even more mandatoryasthe sub-circuitsscaledown from
the quantumelectronicdevicesthatarethe focusof this work to true quantumcomputers
(Section 2.1.3).

2.4.2 The Cellular Automaton Architecture

Theinterconnecthallenges perhapsven moreseriousthanthe quantumchallenge
to the advancemenbf electronics.Unlessquantum-dict computersuseslimited-inter-
connectarchitecturesit will not be possibleto improve substantiallyif atall, ontheinte-
grationlimits of corventionalelectronics.n the upperlimit of integrationdensity only
somethindik e a nearesneighborinterconnectiorschemes possible An arrayof digital
devices interactingwith nearest-neighboressentiallydescribesthe cellular automaton
architecturg12]. It hasbeenshavn that,in theory a cellularautomatorarraycanbe cre-
atedto produceary desireddigital function[12]. For example,Figure 2.6 shavs a small
inhomogeneougiffering interactionrules) 2-D cellular automatorarray 3-D arraysare
also possible.

In a quantum-gict computey becauseof the minute size of individual devices, it
might seemthat a quantumcellular automatorarray (QCAA) musthave periphery-only
access inputsmustbe supplied,andoutputsmonitored,only at the peripheryof the cir-
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Automaton Cell

Sources and detectors
arrayed around periphery

Figure 2.6: Inhomogeneous 2-D cellular automata array

Diagramis meantto indicatenearest-neighbanteractionof a2-D arrayof cellular
automata with dfering interaction rules.

cuit. However, it may be possibleto supply inputs optically to interior devices [22].
Capacitve coupling has beenproposedfor communicationbetweennearest-neighbors
within a QCAA [9], andtunnelingmight alsobe used.Both would eliminateall physical
interconnectsvithin the array However, they arerelatively weak(high attenuationjnter-
actions.Thatis, signals(voltagesfor capacitve coupling, quantumwavesfor tunneling)
would be seriouslyattenuatedn the distanceof very few cells. Thus,it is not clearhow
theeffect of aperipherainput signalcouldsuccessfullycascadeéhroughthe arraywithout
externalpower contactdo thearrayinterior. A singleglobalcontactabove or belowv a2-D
QCAA offers somehope of accomplishingsignal restoration,thougha mechanisnfor
doing so must be found. Alternatively, photon emissionand absorptionmight allow a
more lossless interaction betweenides.

Note thatthe QCAA architecturanherentlysolvesthe cross-talkproblemof conven-
tional electronicgo someextent. Cellularautomatorarrayoperationis basedon nearest-
neighborinteraction,using “cross-talk” to communicatéetweendevices.In contrast,in
conventionalelectronicsgcross-talkis detrimentako propercircuit operationandmustbe
suppressedising adequatedevice isolation. Even in the QCAA circuit, the interaction
mustbelimited, sincedevicesmustbeisolatedenoughto maintaintheir own digital state,
and much of the circuit function is accomplishedhroughthe designof the interaction
rules between deces.

Findingsomeway to adequatelysolatequantum-sizedellsin a QCAA seemgjuitea
challengegspeciallysincecell operationis basedon waves,which areinherentlydifficult
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to confine.The isolation betweenindividual cells in the QCAA might be accomplished
with heterojunctiongperhapsot unlike grain boundariesn polycrystallinesemiconduc-
tors.Finally, the cellularautomatorarchitecturegoesalong way towardssolvingthe other
challengesof corventionalULSI architecturesaswell. It canbe stabilizedagainstnoise
(“fail-soft”) [37], and its inherentdistributed processing perhapscombinedwith the
redundang thatis feasiblewith quantum-scalelevices,canprovide fault tolerancefrom
single-cell hardwre filures.

2.4.3 The Quantum Filter Ar chitecture

An alternatve to the quantumcellularautomatorarrayfor the quantumsub-circuitsis
the quantumwave filter (QWF). Externally the QWF looks very similar to the QCAA,
with periphery-onlyaccessHowever, internally, the QWF would not have distinguishable,
independentigital devices, but rathershouldbe viewed as a single, extended,comple
heterojunctiorstructuredesignedo performsomedesiredtransformatiorof the quantum
wave. This quantumwave filter concepis atthe sametime moreradicalandmorepromis-
ing than the QCAA as a basis for a viable quantui@eetomputer architecture.

To visualizehow computingmight be accomplishedvith a QWF, considerthe quan-
tum wavefunction of a carrier propagting through a quantum-scalesystem.Quantum
effectsthatthis carrierexperiencesaretheresultof its wavefunctioninterferingwith (i.e.,
scatteringelasticallyoff) the local enegy bandsandwith itself asit propagtesthrough
the system.Eachsuchinteractionresultsin somepredictable(via the Schrédingerqua-
tion) transformationof the carriers wavefunction. By selectvely combining mary of
theseinteractions,ary desiredtotal transformationof the wavefunctioncan (at leastin
principle) be generatedThis kind of signalprocessings analogougo optical computing
[1], and so is not a purely theoretical concept.

Following this idea further, imagineimplementinga binary adderasa QWFE There
would be one input waveguide for eachbit, and a wavefunctionis sentdown each
waveguidethat hasa logic-1 input. Inside the QWF, the input waves interfereconstruc-
tively anddestructvely, asin the quantuminterferencetransistoy suchthat the quantum
wavesresultingon the outputwaveguidesgive the propersumbit patternfor the existing
input bit pattern.Note that interference(summationof two 180° out-of-phasewvaves)is
essentiallyan XOR operation.NOT can be implementedsimply as a 180° phaseshift.
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Also, the summationof in-phasewavesis like an OR logic function. Finally, a NOT/2

(90° phaseshift) canbe createdsothattwo successie operationgive NOT, althoughthe
usefulnes®f thislogic functionis not manifest.Otherlogic functionsmay be possibleas
well. In fact,the AND, OR, NAND, andNOR logic functionshave beendemonstrateh
optical computingsystemg39]. In ary case,the QWF shouldbe function-completeso
thatit shouldbeableto produceary desiredogic function.Becausehe phaseof thewave
is veryimportantto theproperfunctionof the QWF, boththe orderandthelocationsof the
interferencejunctions are significant. Note that the QWF vindicatesquasi-equilibrium
guantumdevices(suchasthe quantuminterferencdransistorthatweredismissedn favor
of far-from-equilibrium quantum devices (such the RTD) basedon the short-term
approachof this work. In the long-term,quasi-equilibriumdevices will undoubtedlybe
king of the quantum hill.

Basedon the existenceandinitial succes®f optical computing,the QWF conceptas
expressedbove appearso have areasonablehanceof successHowever, two complica-
tions mustbe treated First, in orderfor quantumwavesto interfere,they mustbe phase-
coherentlf independentarrierstravel down eachlogic-1 input waveguide,theassociated
wavefunctionsare not phase-coherenso they would not produceary usefulinterference
result. Since the quantumwave of a single carrier is phase-coherenwith itself, one
approachmightbeto justsplit thatsinglecarriers quantumwave into therequirednumber
of “1” bits andsendit into the inputs.This alsowon’t work, becauséf only asinglecar-
rier goesin, only asinglecarriercanbe detectedatthe output,regardlessof the numberof
outputbits thatshouldbelogic-1. Thingsgeta little betterby splitting the quantumwave
of mary carriersafterthey have traveledtogetherfor a while. Experimentsn interfering
suchmulti-carrierwavefunctionsshav strongelinterferenceghanexpectedassumingnde-
pendenparticles[32], but still notgoodenoughto be usedasthe basisof a QWFE Thus, it
mustbe admittedthatsomemeanf creatinga phase-coheremuantumwave is essential.
At first, this seemampossible sincethe wavefunction,andparticularlyits phasanforma-
tion, hasbeenthoughtto be not directly measurablemuch lessmanipulated However,
experimentsin electronholograply [40] indicatethat wavefunctionphasecanindeedbe
measuredwhich meansthat it may be possibleto createa phasecoherentmulti-carrier
guantum vave just as a coherent opticaéwe is created in a laser

A secondproblemwith the QWF conceptis the large numberof inputs and outputs
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required.Eventhoughthe QWF may performavery complec function,if it doessoin the
spaceof a singlecorventionalelectronicdevice, how cansuficientinputsandoutputsbe
suppliedfor that function? Few useful and significantcomputationgequireonly a few
variable inputs. Fractal calculationsare one example. A more typical caseis a 10-bit
adder which requiresfully 22 inputs(2 setsof 10 bits, and“power”) and 11 outputs(10
bits anda carry). Clearly making over 30 contactsto a device the size of a corventional
transistoris unrealistic,sincemakingjust threeor four is increasinglydifficult now. The
solutionseemso beto serializetheinputandoutput,which shouldreducethe input count
to perhaps4 (2 inputs, 1 output,and power). Unfortunately using serializedinputs and
outputsmight significantlydelaythe calculation,andrequiresthe developmentandnear
ubiquitous use of some form of quantum shiffiseer

The QWEF architecturesharesall of the advantagesf the QCAA over corventional
electronicqlimited-interconnectrchitecturehigh-function“devices”, inherentlyparallel
for speed,and distributed for fault-tolerance).lt also avoids mary of the remaining
unknavnsandchallenge®f the QCAA architectureFirst, inter-device isolationis totally
eliminated,which side-stepshe very difficult problemof QCAA of providing someform
of engineeredf device isolationeven at quantumscaleintegration.In fact,in the QWF,
makingary distinctionbetweerfdevices” and“interconnects’(waveguides)is tenuous—
both perform a significant operation on the praeg wavefunction.

The absenceof isolationin the QWF also solvesthe relatedproblemof the QCAA,
that signal renormalizationwas neededdue to signal attenuationbetweensemi-isolated
nearest-neighbateviceswhich needto communicateThe QWF simply admitsthatwith-
out gain, inter-device isolation is not desirable— the signal should passunattenuated
throughthe QWF andto the outputs.With the QWF theinput wave will eitherbe trans-
mittedto the outputor reflectedosslesslybackto theinput. In fact,ideally no power atall
is usedin the computation!How is it possibleto performa very complex computation
while using zeroenegy, whena non-zerominimum enegy hasbeenderied for evena
singleswitchingevent[41]? This is oneof the amazingfeaturesof quantumphenomena:
aslong asonly wave effectsareused,no enepy is expended Anotherway to saythisis
thatno enegy is lost aslong asno informationis lost [41]. Purequantumwave phenom-
enaloseno information- given a wavefunctionat ary pointin time, andits ervironment

(the QWF, in this case) pnecanprojectexactly how the wavefunctionwill evolve into the
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future (or how it looked in the past).Enegy is only necessarilyexpendedin supplying
inputs and detecting the results of the computation.

2.4.4 General Comments

A completediscussionof quantum-dict computerarchitectureand operationis
beyond the scopeof this dissertationIn this overview, only two moreissuesare consid-
ered.First, recallfrom Section2.4.1the (asyet unsubstantiatedredictionthatquantum-
effect computerswill have a hierarchicalarchitectureratherthanbeinga singlequantum
circuit. The reasonis inelasticscatteringalsocalledthe “decoherenceroblem”[17, 19,
42]. When a quantascattersnelastically it is essentially‘detected”at that location. In
guantumtheory the quantumwavefunctionhas*“collapsed’(it is localizedto a point),and
the new quantumwave hasno continuity or coherencavith the past[43]. But coherence
and continuity of the quantumwavefunctionare essentiaffor properoperationof wave
phenomenarlherefore predictablevave-basedperationof quantumdevicesrequiresthe
bulk of the quantuncircuit to be essentiallyfree of inelasticscatteringThisin turn essen-
tially meansthat the quantumcircuit mustbe smallerthanthe averagedistancebetween
scatteringevents,whichis calledthe elasticmeanfree path.Luckily, the elasticmeanfree
pathcanbe up to mary tensof microns[25], thougha few micronsis moreattainable Of
course limiting the total integratedcircuit sizein a quantumcircuit to a few micronsis
undesirable A hierarchicalarchitectureis the obvious solution, where the few-micron-
sized quantumsub-circuitswould be interconnectednore-orless corventionally in the
larger quantum inggrated circuit [12].

Secondconsidettheimplicationsof thefactthatwave phenomenareinherentlyana-
log in nature,but a replacementor digital electronicsis being sought.Becausewave
effectsaredistributed,they usuallycannot, evenin theory producea perfectdigital result
in ary interferenceevent. As a result,it may turn out that quantum-dect computerswill
only excel over corventionalcomputersn “fuzzy” artificial intelligenceapplicationsThis
applicationalone would be sufficient motivation to pursuequantum-giect computing.
However, the analognatureof quantumwave phenomenahouldnot automaticallydis-
qualify quantum-efect computersasthe future of digital computing.Althoughwave pro-
cessingis inherentlyanalog,detectinga quantais perhapghe only perfectbinary event,
giving eitherzeroor one,andnothingelse.Unfortunately the exactlocation of detection
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of agivenquantais probabilistic.However, aproperlyconstructedjuantumcomputercan,
in theory make the probability arbitrarily closeto binary Note that some*“guessing”
occursin all digital systemsFor example,voltagerangesarespecifiedfor acceptablesig-
nalsin digital logic, maximumlik elihoodcircuitry is now usedin harddisk drive readcir-
cuitry, etc. In this sense, all computing systems are eeatto act as if thewere binary

2.5 Summary

This chaptersummarizedhefield of quantum-efect computing:theideaof producing
usefulanalogor digital signalprocessingisingelectronicdeviceswhoseoperations fun-
damentallybasedon quantumwave phenomenaAccomplishingdigital computationwith
waves seemsat leastinefficient, if notimpossible.However, initial researctwith optical
computinganddiscretequantunsystemgprovidessomecluesto whatmaywork. With the
intentof applyingthiswork in theshort-termtheresonantunnelingdiodewasselecteds
the prototype quantumdevice for directing the development,testing the features,and
benchmarkinghe performanceof SQUADS. The RTD hasmary featureso recommend
it, includingsimplicity of structureandrichnessof physics.Fromthe procesof choosing
this test device, several key featuresthat SQUADS must handle have been specified:
abrupt material changes, self-consisyescattering, and high-speed transient operation.

The discussionin this chapterclearly shavs that investigating discreteRTD-based
devicesis but a tiny stepinto the quantumrealm.However, it is anundeniableandneces-
saryfirst step. SQUADS was designedo illuminate this stepandtherebyto help direct
future progressEvenwith suchtools,theapproachowardthefull realizationof quantum
electronicsmuchlesstrue quantumcomputingwill continueto bedifficult. In spiteof the
considerableffort thathasalreadybeenfocusedon the developmenif quantumelectron-
ics asaviablesuccessoto ULSI electronicsmary significantbarriersstandin theway of
realizing this goal:

 conventional circuit architectures will notosk,
* corventional computing models may noomk,
* quantum pigsics is unamiliar and unintuitre,
* quantum deice simulators are rudimentaignd
« fabrication capability for quantumwees is also rudimentary
Perhapghe biggestbarrierto the developmentof quantum-efect computingis skepti-
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cism. Basedon the mary unknavnsindicatedabove, it is not difficult to understandhis

sentimentA conceitof eachgeneratiornis the beliefthatno significantdiscoveriesremain
to be madein physicsandtechnology This notion hasnever proved correct,andthereis

no indication that the paceof scienceand technologywill even slow, much less stop,

becausef suchbeliefs. Admittedly, the debateis far from over concerningwhetherary

technologywill follow ULSI electronicsif thereis a successotechnologythe demands
of thecomputingpublic will eventuallyforceusto find it, andit will bebasedn quantum
effects. Perhapghe besttechniquesavailablein the questfor quantum-efect computing,
then, are the ability to suspend disbelief and to ignoreerdional wisdom.
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Chapter 3

Quantum Device Simulation Approach

Many formulationsof quantummechanicsave beenproposecasmathematicafoun-
dationsfor numericalsimulation of quantumsystems.Eachhasits own strengthsand
weaknessed he theoreticalinvestigation of quantumelectronicsn the previous chaptey
andespeciallythe decisionamadeaboutthe typesof the guantumdevicesto be simulated,
allows this chapterto describethe processby which the two formulationson which
SQUADS is basedwere chosen.The choice hingeson which formulationsof quantum
mechanicffer the bestcombinationof capabilities,accurag, and computationaleffi-
cieng/ in anumericalsimulation.In addition,this chapterdescribeshe planof actionand
the guiding principles behind DS’ development process.

Thefirst stepin designinga plan of actionfor the developmentof SQUADS is to ana-
lyze the stateof thefield of quantumdevice simulation,whichis donein Section3.1.Sec-
tion 3.2 thenenumeratespecificallythe goalsof this effort to develop a quantumdevice
simulation capability Section 3.3 examinescornventional electronic device simulation
methodsto extract ary insight and guidanceit offers for the developmentof SQUADS.
Next, the variousformulationsof quantummechanicsare comparedn Section3.4, con-
cluding with the determinatiorof which formulationsare bestsuitedto the taskof simu-
lating RTD-like quantumdevices.Finally, Section3.5 combinesall of this analysiswith
thediscussiorof severaladditionalissuego completethe planof actionandlist the guid-

ing principles for deeloping SQUADS.
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3.1 State of Quantum Deice Simulation

Quantumdevice simulationwork to datehasbeenratherdisoiganized.The mainrea-
sonis thatthereis no software packagethat provides a base-lineof functionality which
researchersanuseandenhancedfor example,like PISCEJ1, 2] for corventionaldevice
simulation). Luscombe and Frenslg have adwcated such a tool [3], and Frenslg
describednitial work to realizeit in a simulationprogramcalledBandProf{4]. However,
BandProfhasapparentlynot beenmentionedn the literaturein the five yearssincethis
first descriptionjt wasnotwidely availableatthetime (only onesupportedlatform),and
did not have all of the capabilitiesnecessaryor generalquantumdevice simulation(e.g.,
no transientcapabilitywasdescribed)Work by otherresearcherbave generallygivenno
consideration at all to use of their simulation tools by others.

Dueto thelack of a widely availableandeasilyextensiblequantumdevice simulation
tool, eachresearchteam has had to implementthe samebase-linefunctionality them-
seles, beforethe enhancementsf interestcould be addedandinvestigated. Of course,
this new functionality is not availableto anyoneelse,sinceeachgroup’s quantumdevice
simulationtools have independently-elved structuresandinterfaces.All of thesefacts
have made adwancesin quantumdevice simulation much slower than necessaryThis
understandingnad a definingimpacton the goalsand designprinciplesof SQUADS, as
describedn the remainderof this chapter As a result, SQUADS may becomethe first
guantumdevice simulationtool which hasthe necessargharacteristicto sere asafoun-
dationfor future quantumdevice simulationwork, andthusto enablemuchmore rapid
adwancements in the field.

3.2 Goals of Quantum Deice Simulation

Theoverridinggoal of this researchs to developagenerl quantumdevice simulatoy
which meanghatthistool shouldbeableto efficiently modelquantundevice operationn
ary useful mode of operation.Basedon the conclusionsand decisionsof the previous
chaptey this goal cannow be clarified. The quantumdevicesof interestin this work are
externally similar to corventional electronicdevices, so that the quantumdevices can
eitherenhanceor replaceconventionaldevicesin existing architecturesTherefore,input
andoutputsignalsof thesequantumdevicesarevoltagesandcurrents.Theresultinggoal

of this researchs to develop the capability to simulate currentflow through quantum
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devices, eitherversusappliedbias (current-wltagecurve), time (switchingresponse)or
both (small-signal belvéor).

Having statedthis, the main goal of this chapteris to explain the choiceof formula-
tions of quantummechanicghat sene asthe mathematicabasisof SQUADS. An essen-
tial ingredientin understandinghis choiceis a statemenbf the goalsof this work. Recall
that the goal of quantumelectronicsfor the purposesof this dissertationis to improve
uponULSI electronicdy integratingquantumdevicesat quantumscaleintegrationdensi-
ties. Theidealprogressiorof knowledgein thisende&or is to build from theoryto simula-
tion to experiment.The overview of the theoryof quantumelectronicsin Chapter2 has
alreadybeenusedto direct this simulationeffort. In turn, the main purposeof quantum
device simulationis to guide experiment.The one sentenceyoal of SQUADS, then,is to
fill the knowledgegap betweenidealizedquantumtheoryandhighly expensve quantum
experiment.Thefollowing list enumerates1 moredetailthewaysin which SQUADS can
accomplish this:

* SQUADS can do things which are notgerimentally possible:
* view the internal operation of adee,

view entities not easily measurable (e.g., a quantamefunction),

vary plysical parameters/models independent of real materials and systems,

investicate systems not possible or feasible to produperenentally and

avoid experimental ariation/uncertainty and measurement error
* SQUADS can serg as an ingpensve substitute tox@eriment:
* orders of magnitudeaster and lessxpensve,

reduces the number ofgerimental iterations necessary

mistales are not costly - simply correct and re-run,

risk/benefittrade-of disappears completefreedomto pursuenew ideas,and

allows back-tracking or branching from an intermediate point at will.
* SQUADS can also seevas an adjunct tocperiment:
* replication of @periment to devie additional understanding,
« verification of plysical models and mechanisms, and
* highlights non-ideal dece operation.
Basedon thesepoints, several designgoalsfor SQUADS canbe stated Most impor-
tantly for the choiceof simulationmethods SQUADS shouldbe a geneal device simula-
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tor (i.e., nottied to a singledevice). Also, it shouldprovide aninternalview of the device
stateandoperationsince,new ideasfor quantumelectronicswill undoubtedlycomefrom
insightgainedby “watching”the internaloperationof quantumdevices.This is informa-
tion thatexperimentcant provide: experimentonly givesaggreateterminalvalues(volt-
agesand currentsat contacts).The additionalinformationis especiallyimportantwhen
investicating new situations(suchasthe quantumrealm)or designingnew deviceswhere
the operationcant be extrapolatedrom previousresults,or isn’t understoodasedon the
experimentakresults.In suchcaseswatchingtheinternaloperationis lik e turningthelight
on in a dark room or openingup a black box: reverse-engineeringr guessingwhat’s
going on in the dace is unnecessary - theuvilee’s operation pysics becomes manifest.

Theincreasingmportanceof simulationwith respecto experimenthasbeena steady
trendin electronicsresearchEarly electronicsresearchwas necessarilyan experimental
undertaking— computerf thetime werenot capableof doing simulations As semicon-
ductor devices have decreasedn size and improved in performancethe cost of using
experimentaliterationfor device developmenthasincreaseddramatically However, each
generatiorof fastercomputerdiasmadeit possibleandalwaysmorenecessaryo improve
simulationtoolsandusethemto a greaterextentin researctanddevelopmentfor the next
generatiorof devices.Quantumelectronicsresearcthassimply broughtthis trend much
closerto completion.This changeas duepartly to the greatlyincreasegower of comput-
ersto simulatephysical systemsput moreimportantlyin this caseto thefactthatnumeri-
cal simulation can provide a detailedviewport into a world that is otherwiselargely
inaccessible: the quantum realm.

Despitethe importancethat simulationwill play in quantumelectronicsresearchthe
ultimategoalis to actuallybuild usefulquantumdevices,circuits,andquantumelectronic
systemsOf course reality will be differentthansimulation,so experimentalresultswill
directsimulatordevelopmentasdiscussedn Section2.3.4.0nly after a simulatoris suffi-
ciently developeddoesthe influencearronv begin to reverse,so that simulationsdirect
experiment.Theimportanceof comparingto experimentakesultsduring simulatordevel-
opmentcannotbe overstatedbecausexperimentis thefire in which asimulatoris tested.
The processof simulator refinementand experimentalverification is iteratve. In fact,
comparison®etweensimulationsandexperimentaldatain later chaptersshav examples
of where SQUADS’ development vas partly directed byxperimental results.
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Anotherconsideratiorthatwill directthe choiceof mathematicabasisfor SQUADS
is the desireto be ableto link SQUADS with conventionalelectronicdevice simulators.
Quantum effects are an increasing “nuisance” in shrinking corventional electronic
devices,andwill beunavoidablein thefuture.A quantumdevice simulatorcoupledwith a
cornventionalsimulatorcanbe usedto investigatethis, andtherebyhopefullymaintainreli-
able corventional device operationin spite of these“parasitic” quantumeffects. These
requirementsrein additionto the onethat SQUADS mustbe ableto handledevice char-

acteristics that are considered important, as listed in Section 2.3.4.

3.3 Classical Electionic Device Simulation

Beforeconsideringpossiblequantunmsimulationmethodspnefinal sourceof informa-
tion canhelpdirectthe choiceof quantummechanicgormulationasabasisfor SQUADS:
corventionalelectronicdevice simulation.Tools for corventionaldevice simulationhave
beenrefinedover mary yearssothatthey have exactly the qualitiesdesiredfor SQUADS:
accuray and efficiengy. Further becausea short-termfocus has beenchosenfor this
researchChapter2 concludedhatthe quantumdevicesSQUADS musthandlearesimilar
in mary waysto corventionalelectronicdevices. Thus, mary of the characteristicand
capabilitiesof classicalsimulationshouldbe mirroredin SQUADS. The purposeof this
section,then,is to analyzeclassicaldevice simulationto furtherinform the choiceof the

best quantum dgce simulation method.

3.3.1 The Boltzmann Transport Equation

Corventionalelectronicdevice simulationis basedon the Boltzmanntransportequa-
tion (BTE) [5, 6]. The BTE specifiesthe evolution of the classicaldistribution function,
f(r, p, t), which is the density of carriers at (r, p,t), wherer is the three-coordinate
position, p is the three-coordinatenomentumandt is time. The factthatf . is a phase-
space‘unctior? is key to its usefulnesssa basisfor corventionaldevice simulation.The
BTE can be written

e orpfe appfe  @fO
ﬁ +|:b_t[m +[E[Fp ) t %collisior’ (3.1)

1. The number of carriers within the spatialumedr and the momenturmolumedp.
2. A function of position and momentum (@lecity or wavevector).
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which is often written as

i, e e g
—+ or + dp. = U . (3.2)
it S o t Ceolisior

diffusion drift
In (3.2),V is the carrier glocity, andF is the force on the carriers.

The BTE would be very computeintensve if implementedn morethan1-D. Thus,
simplified modelsof carriertransportwhich derive from the BTE areoftenmorefamiliar.
The hydrodynamicmodel [7] resultsafter moderatesimplificationsof the BTE. Even
more widely usedis the “first order” drift-diffusion model [8]. For electrons,where
n = n(r, t) is the electron concentration, this model is written as:

on _ 1
ot = a@ J,-U,, (3.3)

J, = guynE, +qD,0On. (3.4)
Here,q is the electronicchage, J, is the electroncurrentdensity U , is the netelectron

recombinatiorrate, |, is the electronmobility, and D, is the electrondiffusion constant.
Similar equations hold for holes.

3.3.2 Strengths of the BTE

Now considerwhy the BTE andits simplificationsare ideal for corventionaldevice
simulation,andthuswhatis desirablein a quantumdevice simulationformulation.First,
simulationbasedn the BTE hasall of the characteristicspecifiedsofar for SQUADS: it
is ageneraformulatior?, it permitsaninternalview of device operationandit canhandle
all of the device characteristicistedin Section2.3.4,particularly far-from-equilibrium,
irreversible,andtransient Anothercritical featureof the BTE is thatit lendsitself to vari-
ouslevelsof simplification,to allow either1-D simulationwith the BTE itself, or to make
multi-dimensionakimulationfeasibleusingthe hydrodynamicanddrift-diffusionmodels.
Further by recastinghe BTE in a path-intgral (a.k.a.,Monte-Carlo)form, even 3-D sys-
tems can be feasibly handled while still including the full comiplef the BTE [9].

Themainreasorthe BTE hasthesefeaturess thatits statefunctionf . is aphase-space
distribution function.As such,f . containsall of theinformationof interestaboutthe carri-

ers,includingpositioninformation(to calculatecarrierdensities)andvelocity information

3. Itis not limited to ap single deice or class of daeces
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(to calculatecurrents) For simulationof electroniccomputingdevices,a phase-spaceis-
tribution function is the most natural and efficient, yet complete,way to describethis
information.Boththe BTE andits classicaldistribution functionareintuitive. They do not
requireopaquenterpretatiorto understandT heresultsneedede.g.,carrierdensitiesand
currents) are easily and transparently calculated.

3.3.3 Implications for Quantum Device Simulation

All of theseattributes of corventional simulationshouldbe retainedin choosinga
guantumsimulationmethod.Section3.4 shavs thatsomeof the quantuntransporformu-
lationsdo not give the benefitsof the BTE. Of course the BTE itself cannot be usedfor
guantumsystenmsimulationbecausét is basedon a classicalratherthanquantumformu-
lation of physics.In particular the BTE assumeshatcarriersobey the classicalNewton’s
laws: they arepoint particleswith a singlemomentumthey experienceforcesof a single
value at a single location, and collisions are instantaneou§l0]. Theseassumptionsre
whatallow the useof a phase-spacdistribution function to describethe carrierdistribu-
tions, the mary benefitsof which have alreadybeendescribed.Unfortunately none of
theseassumptionandresultsaretrue atquantumdimensionssinceparticleson thequan-
tum scaleact like waves. The Heisenbey uncertaintyprinciple declareshat a particle’s
position and momentumcan not be preciselyknown simultaneouslyln fact, a particle
usually doesnot have a single positionor momentumvalue, but rathera distribution of
suchvalues.Theresultis thatit is impossibleto have a phase-spacdistribution function
in aquantummechanicalepresentationf a system.This is very unfortunate sincesome
guantumformulationof carriertransporimustbe used but not the phase-spacstatefunc-
tion that has made the BTE so ideal for classical electronic system simulation.

All of the quantumtransportformulationsconsideredelov usesomerepresentation
of the stateof the system(e.g.,the wavefunction ¥(r, t) in the Schrédingerepresenta-
tion). Any of theserepresentationsanbe usedto determinethe information neededor
device simulation(carrierdensitiesandvelocities). The mathematicabasisfor SQUADS
will betheformulationof quantummechanicsghatgivesthis informationmosteasily This
essentiallymeansthat the representatiorof the chosenformulation shouldbe intuitive,
like f ., sothatits interpretations not opaqueor cornvoluted.lt is the purposeof the next

sectionto determinewhich formulationof quantummechanic$asthis quality throughan
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analysis of the arious possible approaches to quanturnogesimulation.

3.4 Quantum Transport Formulations

This sectionfinally answerghe questionof which of the mary formulationsof quan-
tum mechanicgFQM) arebestsuitedto quantumdevice simulation,andthereforewill be
usedasafoundationfor SQUADS. Dueto theincreasingnterestin investigatingquantum
effectsin electronicdevices, several otherresearcherbave alsorecentlyconsideredhis
guestion(see.e.g., [11-13]). The setof FQMswhich areconsideredppropriatgor quan-
tum device simulationis dynamic,andnew formulationswill undoubtedlybe addedover
time, while othersmay evenbe droppedfrom the setasno longercompetitve. The analy-
sisin this sectionshouldthereforebe considered snap-shobf the currentstateof quan-
tum device simulation. Future researchwill undoubtedlyextend the capabilitiesand
surmountheuniquechallenge®f usingsomeof the FQMsasa basisfor numericalsimu-
lation. In fact, this research conttites to that dynamic.

3.4.1 Relationships Between Candidate érmulations

Figure 3.1 shavs schematicallythe relationshipsbetweenthose FQMs which, at
presentaremostwidely proposeddiscussedand/orusedfor quantumdevice simulation.
Theseinclude the Schrédingerequation,transfermatrix, density matrix, Greens func-
tions, Wigner function, and path integral approachesThe respectie statefunctiorf* of
eachFQM is alsoshavn. Basedon the intentionto simulateRTD-like devices,andthe
analysisof corventionaldevice simulationin Section3.3, several characteristicandfea-
turesthat SQUADS musthave beenspecified.Theseincludethe useof anintuitive state
function (for aninternalview of device operation)andthe ability to handlefar-from-equi-
librium, irreversible transientandopensystemsMost of theserequirementsverealready
taken into accountin generatingFigure 3.1, becauseonly those FQMs appropriateto
guantum deice simulation are shen.

FQMs not shavn in Figure 3.1 include the force-forcecorrelationfunction [14] and
current-currentorrelationfunction[15], which arenearequilibrium,linearresponsanal-
yseswhich do not usestatefunctions;the Heisenbegy matrix mechanicsapproach16],
which is mathematicallyequialentto the Schrédingerquationbut is lessintuitive; the

4. A function which describes the staggy(, position and &locity) of the carriers in the system.
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Figure 3.1: Family tr ee of elevant formulations of quantum mechanics

This flow chartshaws the relationshipsbetweenthe main formulationsof quantum
mechanicghathave beenemployedfor electronicdevice simulation,aswell astheir
respectre statefunctions.Many other formulationsof quantummechanicsare not
shawn.

relatedLangevin equationapproact{17], whichis too comple to solve exceptin the sim-
plestcasesthescatteringmatrix approactj18, 19], which is similar to the transfermatrix
approachncludedin Figure 3.1, but which includesscatteringn a lesssatishctoryway
than, for example,the Wigner function approach(also shavn in Figure 3.1); and mary
others.Theapproacheto analyzingquantumsystemseachof which hasits own usesare
virtually innumerable.

3.4.2 Analysis of Formulations

This sectioncompareghe capabilitiesand characteristic®f the six formulationsof
guantummechanicshownn in Figure3.1,first with asummaryof the comparisonandthen
with a more detailed discussion of the analysis underlying the summary

3.4.2.1 Summary

To make afinal choiceof the bestformulationfor usein SQUADS, Table 3.1 grades
eachformulationin Figure 3.1 accordingto its ability to meetthe requirementdisted in
the Section3.4.1.The BTE is alsolistedin thetableto shaw its excellentcapabilitiesfor
simulatingelectronicdevices dominatedby classicalmechanicswhich capabilitieswill
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ideally be mirroredin SQUADS. Becausehe list of FQMs hasalreadybeenlimited to

thosewhich meetmostor all of the known requirementsthe choiceof the bestapproach
for SQUADS will hingeon othermore practicalcriteria. Thus, Table 3.1 alsorateseach
formulation for its relatve computationalefficiency and the simplicity of interpretation
(richnesdn intuitive information)of its statefunction. Basedon all of the data, Table3.1

promptsthe conclusionthatthe Wignerfunctionformulationis optimalfor the simulation
of RTD-type quantumelectronicdevices. For this purposejt hasall of the featuresand

capabilitiesrequired,aswell asan intuitive statefunction and acceptablecomputational
complity. An explanationandjustificationof theresultsof Table3.1for the six quantum
mechanics formulations included ialle 3.1 is gien in the follaving sections.

Table 3.1: Comparison of quantum system analysis apmaches

Characteristic Method of Quantum System Analysis

(5=good; 1=poor) |pre| se | TM | DM | GF | WF | PI

State Function-Based yes |yes |yes |yes |yes |yes |yes

Far-From-Equilibrium yes |yes |yes |yes |yes |yes |yes

Irreversibility (Scattering)] yes | no no yes |yes |yes |yes

Transient Simulation yes |yes | no yes |yes |yes |yes

Absorbing Boundaries yes | no yes |yes |yes |yes |yes

Computational Hiciency | 3 4 4 3 2 3 2

Intuitive State Function |5 3 4 3 2 4 4
Suitability for SQUADS 1 3 3 3 2 4 3

3.4.2.2 The Schrdédinger Equation

Most usesof the Schrodingerequationfor quantumsystemsimulationarebasedon a
scaledsingle-particlewavefunction as the statefunction, since the exact mary-particle
wavefunction becomesunmanageablgomplex with more than just a few carriers.As
indicatedby Table 3.1, two featuresof quantumelectronicdevices have not beenaccu-
rately treatedwith the Schrédingerequationapproach:absorbingboundaryconditions
(i.e., ohmic contacts)in a transientsimulation, and inelastic scattering.Interestingly
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althoughthe Schrodingeequatiorwasfirst postulatedully 70yearsago[20], theincreas-
ing needfor accuratenumericalsimulationof quantumdeviceshasfueledrecentadvances
in theseareaqd21-26]. Althoughthe Schrodingerequationmay have a brighterfuture for
guantumdevice simulation,theselimitations madeit impossibleto basea comprehense
guantum deice simulator on this formulation of quantum mechanics.

3.4.2.3 The TransferMatrix Method

Oneway to surmounthe absorbingooundaryproblemof the Schrédingeequationis
to solve the equationin steady-stateThe simplestresultis the transfermatrix method
(TMM) [27-31], themostwidely usedmethodof quantumdevice simulationto date® The
TMM is basedon the assumptionghat particlesenterandexit the systemascontinuous
streamgbeams)with amplitudesgiven by the fixed boundaryconditions,that a particle
beamenteringatagivenenepy is perfectlyphase-coherendndthatparticlebeamsat dif-
ferentenegiesdo not interact. The resultis a statefunctionfor eachparticlebeamwhich
is simply a scaled steady-statesingle-particlevavefunction.The popularityof the TMM
is dueto its simplicity (in boththeoryandprogramming)andtherelatively low computa-
tional requirementsHowever, becauset is baseddirectly on the Schrodingerequation,
theTMM alsocannot handleirreversibility (inelasticscattering) Further becauseontin-
uousparticlebeamsareassumedhroughouthe system transientsimulationsaredifficult
or impossible to implement using the TMM.

3.4.2.4 The Quantum fansport Equation Approaches

The density matrix, Greenfunction, and Wigner function formulationsin Table 3.1
employ a statisticalstatefunction, ratherthan the exact mary-quantawavefunction (as
with the Schrodingeequation)or onewavefunctionperenegy (aswith the TMM). Quan-
tum statisticalmechanicgdoesnot attemptto retainall information aboutthe evolutions
andinteractionsof perhapamillions of distinct quanta,but ratherdealswith continuous
distributionsof particlesandinteractionsjust asthe classicaldistribution functiondoesin
theBTE. A statisticalstatefunctionis thusanaturalandefficientway to modelparticlesin
amary-bodysystem[32]. A statisticalapproactshouldalsobe quiteaccurate— the myr-

5. This work differentiateshetweenguantumsystemswhich are more commonlyinvesticatedvia
the Schrddinger equation, and quantevices which must hee open, absorbing boundaries.
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iad single-particlewavefunctionsintermingle so completelythat they cannot be distin-
guishedanyway. The statisticalstatefunctionis usuallyformedby assumingotal particle
independencéthe one-particleapproximation).Several such statefunctions have been
foundto beuseful,andthe nameof eachformulationis givenby the nameof theparticular
statefunction employed. Eachof theseformulationsalso hasits respectre, but related,
guantumtransportequation(QTE), which specify how the statefunction evolves with

time. As indicatedin Table 3.1, eachof the QTE approachess ableto handleall of the
guantumdevice characteristic®of interest,just asthe BTE could for cornventionalelec-
tronic device simulation.

The mainpracticaldifferencebetweernthethreeQTE approachess in their respectie
statefunctions,andthis is wherethe Wignerfunction method(WFM) of quantumdevice
simulationachievesits greatessuperiority The Wigner function [33], denotedf,, in this
chapteris a real-alued, phase-spadestatefunction, just like the classicaldistribution
functionf . in the BTE. Recallthe agumentin Section3.3 thathaving a phase-spaceis-
tribution function in quantummechanicds impossible,becausehe Heisenbey uncer-
tainty principle dictatesthat position and momentuminformation can not be known
exactly simultaneouslyln fact,the Wignerfunctionis not a true phase-spacdistribution
function, specifyingthe densityof carriersat eachpositionandvelocity - if it were,f,,
would be exactly equalto f ! Ratherthe Wigner function is called a quastdistribution
function. Far away from quantumstructuresf,, is equalto f .. Wherequantumeffectsare
significant,the f,, mustreflectthesephenomenaandthusit will differ from f .. However,
all obsenables(e.g.,carrierdensitiesandcurrent)arecalculatedrom f, justasfrom f .
In fact, the Vigner function transport equation (WFTE), which in 3-D can be wfitten

: 9,0
a th[f’rw 1Iffdk Vnk-kf k) = B0 @)

ollision

is the quantum analog of the BTE (3.1), as the Walg interpretation of (3.5) shs:

7 f of,0
o, v+ dsqmRlicatestem, _ (3.6)
t 'DD D drift Dcolllslor

diffusion

6. Real-\aluedstatefunctionsarerarity in quantummechanicsandthe Wigner functionis unique
in this respect among mgody formulations.

7. Phase-space function: a function of position atdcity.

8. The WFTE is deveed in Chapter 5.
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Becausef the similarity of the WFM to corventionaldevice simulationmethodsandthe
intuitivenessof a phase-spacstatefunction, the WFM of quantumdevice simulation
receves high marks indble 3.1 in this rgard.

In contrastto the Wignerfunction, boththe densitymatrix [34] andthe Greens func-
tions[35, 36] areratherabstractstatefunctionswhich correlatethe stateof the systemat
one point to that at anotherpoint. The interpretationof thesefunctionsis not intuitive.
However, Figure3.1lindicatesthatboththe densitymatrix and Greens functionformula-
tions arerelatedto the WFM, so their respectre statefunctionscanbe, and often are,
interpretedby conversionto the Wigner function (e.g., after solution of their respectre
QTE)[13]. Thus,theWignerfunctioncanbecalculatedrom thedensitymatrix asfollows
(in 3-D):

fur K t) = IJ’Idr'p(r+§r’,r—%r’,t)e_ikr'. (3.7)

AlthoughthedensitymatrixandWignerfunctionformulationsaretheoreticallyequivalent
(they arerelatedby a Fouriertransform) the unfamiliar natureof the densitymatrix itself
makesWFM muchpreferableln contrastthe Greens function formalismis not directly
equivalentto the WFM; it is more general.Not only aretherefour independenGreens
functions[13] (andsix Greens functionstotal), but eachGreens function also contains
more of the exact mary-quantawavefunctioninformationthanthe Wigner function. The
“double-time” correlation Greens function G~ is most directly relatedto the Wigner
function, but someinformationis integratedout, alongwith performingtwo (information-
neutral) Fourier transformsand a changeto centerof-masscoordinatesto arrive at f,,
[37]. If G<(r1, t;;r, ty) is the initial Greers function, then:

for k1) = J";—‘T*[’ )G (k, wir, 1) ; (3.8)
G (k, wir, 1) = Idz%’(—i)fﬂdr'e‘”‘ﬂjdt UGt b) (3.9)
G, tsr ) = G (r =Tty —ti(ry +1,), 3(t + 1)) (3.10)

The Greens function formulationdoeshave oneimportantadvantageover the WFM.
Its powerful formalismallows for moregeneralanalyticalderivations,presentinghe pos-
sibility of morerealisticsimulation(i.e., with fewer simplifying assumptionsdf quantum
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systemsthanwith the WFM. In fact, the Greens function formalism has producedthe
mostgeneralderivation and form of the WFTE yet [38]. However, solution of the exact
Greens function QTE is currentlyintractable[39]. Simplifying assumptiongandapproxi-
mationshave beenusedto arrive at tractableGreens function QTEs[40, 41], but for the
requirementsn Table 3.1, theseare not currently preferableto the WFM. Again, asthe
costof computingdeclines the requirement®f Table 3.1 may soonbe met moreagree-
ably by approximateersions of the Greemnfunction QTE than by the WFM.

As aresultof theabstractlensitymatrixandGreens functionstatefunctions,it is also
not obvious how to apply appropriateboundaryconditions[40, 42]. The WFM, by con-
trast, can use the sameboundaryconditionsas the BTE. This indicatesanothervery
important adwantage of the WFM over the density matrix and Green$ function
approachesA corventionalelectronicdevice simulatorcan be easily and naturally cou-
pled to a WFM-basedquantumdevice simulator sincethe boundaryconditionscan be

identical. This is not true of the density matrix and Greé&mction approaches.

3.4.2.5 Derivatives of the Wigner Function Method

Returningagainto the WFM, notethat,aswith the BTE, it is currentlyonly feasibleto
numericallysolve the WFTE in 1-D. However, asshavn in Chapter2, the RTD is effec-
tively a 1-D device, so this limitation does not disqualify the WFM as a basis for
SQUADS. Recallthat transportmodelsderived from the BTE, specificallythe hydrody-
namicandMonte Carlomodels have allowed simulationsof 2-D and3-D systemsasdis-
cussedin Section3.2. The fact that the WFTE is the quantumanalogof the BTE has
promptedthe derivation of analogoudransportmodelsbasedon the WFTE. The Wigner
function hydrodynamic(or moment)equationapproach43] offers a simplified formula-
tion thatmakes2-D simulationsfeasible But sincethe (1-D) RTD waschoserasa proto-
type deice, the more accurate WFM is preferred fol B2QS.

The pathintegral (or Monte-Carlo)approacH44] may allow multi-dimensionakimu-
lationsaswell, while includingthefull compleity of the WFTE. However, asindicatedin
Table 3.1, this simulationmethodis significantly more computationallydemandinghan
the WFM, again making the latter preferablefor this quantumdevice simulationeffort.
Also, difficulties arise in the tracing of the quantumtrajectoriesof the path integral
approachespeciallywheretunnelingis involved. A quantacandisappeafrom oneplace
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andappeatin anotherwithout apparentlyhaving traversedthe intervening space calling
into question the entire notion of quantum trajectories.

3.5 SQUADS Simulation Approach

This sectionexplainstherationalefor the remaininghigh-level choicesfacedin defin-
ing or directingSQUADS’ developmentlt alsocombinegheresultsof Section3.4into a
well-defined plan for the design and use ol BQS.

3.5.1 One-Dimensional ersus Multi-Dimensional

Section3.4 concludedthat the optimal approachfor simulating RTD-like (i.e., far
from-equilibrium, irreversible, dynamic, open) quantumdevices, the Wigner function
method,is only currentlytractablefor numericalsolutionin 1-D form. In acceptingthis
limitation, the neartermapproacthasagain beenapplied.First, recallthatoneof themain
reasonshe RTD waschoserasthe prototypesimulatortestdevice wasbecausat is a1-D
device, thusbeingrelatively simpleto fabricateandunderstandomparedo multi-dimen-
sional quantumdevices. Further the previous sectionargued that an equally capable
multi-dimensionalquantumsimulator would require much more computationalpower
thana onedimensionalWignerfunctionapproachandis thereforecurrentlyinfeasibleto
execute. Admittedly, multi-dimensionalguantumsimulationtools are necessaryor more
accuratequantumdevice simulation, and their realizationis being pursuedby other
researchersAvailable computing power will eventually malke them as feasible as
SQUADS is now. Much of thetheory computercode ,andexperiencegeneratedluringthe
developmenif a 1-D simulatoris applicableto the developmentof arelatedmulti-dimen-
sional simulationtool. In ary event, the goal of this researchs now statedformally: to
develop a softwaretool for the accuratesimulationof 1-D quantumdevices(i.e., devices
that are quantum scale in only one dimension).

3.5.2 Envelope Function \ersus Tight-Binding

Anotherdecisionwhich remainsto be madeis thatof the enegy bandmodelthatwill
be usedin SQUADS. Two choiceshave becomepopularfor quantumsystemmodeling:
the “tight-binding” modeP [45] andthe “envelope-function’modef° [46]. Note that the
Kronig-Peniy model [47] is usually used mainly for analytical derivations. All three
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enegy bandmodelsareillustratedin 1-D in Figure3.2. The ervelope-functionapproach
is most familiar, as standardvalenceand conductionband diagramsare basedon this
potential.Herethe potentialis assumedo be anaverageover a unit cell of theatomiclat-
tice of the semiconductorThe carrierkineticsis treatedalmostthe sameasa free carriet
but with a modified masscalled the effective mass,denotedm*. The envelope-function
model is thus often called thefeftive mass model.

A Energy(x) o —»
carrier
T-B
K-P
E-F
Atomic
° ° ° ®<— .
T-B = Tight-binding, K-P = Kronig-Penny, E-F = Envelope-function

Figure 3.2: Energy band models ér the conduction and \alence bands

Thetight-bindingmodelmostcloselymatcheghe physicalatomicstructureput is
alsothemostcomputationallydemandingthe Kronig-Penry modelis usuallyused
mainly for analyticalderivations.Due to its simplicity, this work usesthe erve-
lope-functionmodel,which usesheaverageof thepotentialenegy overaunit cell
of the semiconductor lattice.

The tight-binding approach,as its name implies, takes the oppositeextreme of a
nearly-bounctarrier The potentialis periodic,with deepenegy wells attheatomiccores.
Thus,electronconcentrations highestnearatomiccores,andis periodic.Thetight-bind-
ing approachis theoreticallymore accurateput it is significantly more computationally
demandingThis presentsanothertrade-of choiceof accurag versuscomputationtime.
Thechoiceis notvery difficult in this case however. Thetight-bindingpremiseof nearly-
boundcarriersgoesagainstthe choiceof far-from-equilibriumquantumdevices,with car-
rier enegiesfar above the enegy bandminimum. Further thetight-bindingapproackcan
be very numericallydifficult to implement,with successie multiplicationsof very small

and very large numbers.Thus, the tight-binding approachwas rejectedin favor of the

9. Also knavn as the LC® (linear combination of atomic orbitals) model
10. Also knavn as the “nearly-free” carrier model or théeefive mass approximation.
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ernvelope-functionpotentialmodel. Lik e the choiceof a 1-D simulator this choicemay
also be subject to change as the cost of computwegmpmontinues to decline.

3.5.3 Two-Tiered Approach

During the developmentof SQUADS, it wasdecidedthatimplementingan indepen-
dent, less calculation-intensie quantumsimulation approachin addition to the WFM
would be very advantageousor severalreasondisted belov. The TMM wasthe obvious
choicetofill this position:it hasbeenthestandardapproachn quantundevice simulation,
it is relatively calculation-€ficient, and it is an independenformulation of quantum
mechanicsrom the WFM. Becauséhe TMM is not ableto handleirreversibleandtran-
sientsystemsjt cannot matchthe capabilitiesof the WFM in somecasesHowever, the
TMM is very useful for the folleing roles in a tw-tiered simulator scheme:

* TransferMatrix Method (TMM) roles in SQADS:
« efficient simulationof a wide rangeof structureso determinewhich merit
more detailed study (by WFM simulation),
* high resolution engy spectrum ivestications,
* areality check on WFM results,
« faster implementation and testing of simulator enhancements, and
» 2nd and 3rd dimensions in multi-dimension simulations may be possible.
» Wigner Function Method (WFM) roles in $BDS:
* higheraccurag simulationsto determinewhich devices merit experimental
investication,
* simulations including inelastic scattering, and
* transient simulations.

Note thatwithout two independensimulationmethodsno meanswvould be available,
exceptexperimentfor checkingtheresultsof a simulation.In fact, Section3.laguedthat
certaintypesof informationavailable from simulations,suchasthe internaloperationof
the quantumdevice, canonly be inferredfrom experiment.Evenfor thosetypesof infor-
mationthatcanbe gleanedrom experimentthe choiceof implementingtwo independent
simulationmethodsin SQUADS is alsoa responsdo the very expensve, uncertain,and
time-consumingatureof experiment,aswell asthe sparsityandincompletenessf pub-
lishedresults.Theabove list combinegheresultsof Section3.4into aunifiedplanfor the
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designanduseof SQUADS. LuscombeandFrenslg [3] alsoarguedthata “spectrumof
modelingtools of varying degreesof sophisticationis requiredto meetthe needsof the
various stages of quantumuitee development.

Giventheintentionto implementtwo independentormulationsof quantummechan-
icsin SQUADS, it is advantageou$o maintainasmuchcommoncodebetweerthe TMM
andWFM aspossible Functionalitysuchasinputfile processingoutputandplotting rou-
tines,current-wltagecurve tracing,enforcingself-consisteng numericalmethodsmatrix
manipulations,and others,would all be neededby virtually any simulation.By imple-
mentingthis functionality in a modularfashion,it could be utilized by eithersimulation
methodwhereappropriateThus,maximizingcode-sharindgpetweerthe TMM andWFM

was talen as another design goal for $&DS.

3.5.4 Experimental Verification

The ultimate goal of this researclwasto createa numericalsimulationtool to accu-
rately predict the operationof ary one-dimensionatjuantumdevice. The only way to
determingf, or how well, thatgoalis metis to comparethe predictionsof SQUADS with
actualexperimentaimeasurementsn fact,during SQUADS’ developmentknowledgeof
experimentalresultsmore often directedthe courseof this developmentthanthe reverse.
Severalexamplesof theimpactof comparisorwith experimenton SQUADS development
will be presentedn later chaptersTwo sourcesof experimentalmeasurementsre possi-
ble: in-houseexperimentsandthe publishedexperimentakesultsof otherresearchers he
adwantagesof in-houseexperimentalwork are that desiredexperimentalstructuresand
measurementsan be specified,resultingin more certaintyof what thosestructuresand
the associatedneasurements/ere. Further a potentially wider range,or more targeted
set, of measurements than are usually reported in the literature could be performed.

The choicebetweersourcef experimentaimeasurementwasmadewith the under-
standingof the centralgoalof this project.With thefocusof thiswork onthe development
of a quantumdevice simulator fairly standardand well-understoodgquantumdevices
shouldbe usedfor the developmentprocessThus,evenwith in-houseexperimentalwork,
adwancementsn quantumdevice technologywere not expectedthroughthis project.In
fact,it seemedptimisticto expectto fabricatedevicesof equalquality to thoseof other
researcherg’/ho hadspenta greatdealof time perfectingquantumdevice fabricationtech-
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niques.Thereforejn spiteof the significantadvantageof doing (at leastsome)in-house
experimentalwork, the interestsof time dictatedthatusingonly publishedmeasurements
of other researchersas optimal for achieng the central goal of the project.

3.5.5 Reseach Tool

Onefinal point needsto be madeexplicit in definingthe motivations,priorities, and
principleswhich determinedSQUADS developmentpath.On onehand,SQUADS is not
anendin itself, but is intendedto be usedeventuallyto guide experiment.On the other
hand,becausanaccuratequantumdevice simulatoris suchanimportanttool, knowvledge
gainedin its developmentanduseis importantin its own right. Thus,SQUADS is usednot
only to researclguantumdevice opeiation, but alsoto researclguantumdevice simula-
tion. For thisreasonmary featuresandoptionsthatperhapsvould not exist in acommer-
cial simulationtool aremaintainedn SQAUDS simply for the knowledgethey cangive
theresearcheaboutvarioussimulationissuessuchasthe memoryuseversusspeedver-
susaccurag trade-of, the correct(or incorrect)functioningof a new feature,the impor-
tanceof aphysicaleffect(e.g.,scatteringor self-consisteng), etc. Whereeveraresearcher
might reasonablyvonderaboutissuessuchasthese SQUADS wasdesignedo allow the
choicebetweervariousoptionssothattheissuecanbeinvestigatedasefficiently aspossi-
ble. This is anotherexamplewhereSQUADS’ modularstructureandresultingflexibility
and extensibility allows the substitutionof one solution methodfor anotheyto a degree
unmatched by gnother quantum deéce simulator

3.6 Summary

This chapterhasdescribedhe goalsand guiding principlesusedduring the develop-
mentof SQUADS. In short, SQUADS wasdevelopedasa generalone-dimensionasimu-
lator for far-from-equilibrium, irreversible,open,transientquantumdevices suchasthe
resonantunnelingdiode. SQUADS concentratesn providing accesgo informationnot
availablein experiment,suchasthe internal operationof the quantumdevice. SQUADS
was also designedor flexibility andextensibility, to allow the investigation of quantum
device simulation in termsof alternatve quantummechanicsformulations,numerical
implementations, and quantum system characteristics.

Both the Wigner function andtransfermatrix methodsof quantumdevice simulation
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were chosento accomplishthesedesigngoals.The TMM is an efficient methodfor fast
initial simulations for checkingWFM simulationresults,andfor high-resolutionenegy
spectruminvestigations. The WFM allows a more completedescriptionof real quantum
systemsjncluding scatteringandtransientoperation althoughat a highercomputational
cost.To make theimplementatiorandupgradeof both simulationsmethodsasefficientas
possible anotheresigngoalwasto utilize code-sharingndmodularityasmuchaspossi-
ble. In thefollowing two chaptersa detaileddescriptionis given of the numericalimple-
mentationof thesetwo simulationmethodspeginningwith the transfermatrix methodin
Chapter 4.
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Chapter 4

The Transfer-Matrix Method

The intention of quantumdevice simulation— at leastfor quantumdevicesin this
work, whoseambitionis to replacecorventionalelectronicdevices— is to predictcurrent
flow throughthe device. The transfermatrix method(TMM) accomplisheshis by deter-
mining thetransmissiormamplitudeT of anincidentwavefunction(the quantummanifesta-
tion of chage carriers)throughthe device, asdepictedin Figure4.1. Themagnitudel of
theincidentwave is given by the numberof incidentcarriersat the enegy beingconsid-
ered.TheTMM calculatesl attherangeof enegiesoverwhich | is significant,andadds
the results to awe at total current flw through the déce.

| o | = Incident amplitude
NS~ Q[l)ngicue \M R = Reflected amplitude
R T = Transmitted amplitude

Figure 4.1: Transfer-matrix method overview

Thetransfermatrix methoddeterminesurrentflow througha quantumdevice by
calculatingthe transmissioramplitude T, and thus the current,of mary mono-
enegetic beams of carrierver the range of incident carrier egies.

This chapterdescribegshe TMM in somedetail, beginningwith a review of thelitera-
ture in termsof the accomplishmentand state-of-the-arbf this methodin Section4.1.
Section4.2 then presentsan analyticalderivation from the Schrddingerequationof the
equationsaandexpressionsisedin the TMM. A descriptionof the basicimplementatiorof
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the TMM s then presentedn Section4.3. Several alternatve implementationof the
TMM arediscussedh Sectiord.4.Finally, Sectiond.5investicatesthesealternatve TMM
implementations,esultingin conclusionsabouthown the TMM shouldbeimplementedor
accurag and eficiengy.

In previouschaptersarelatively non-technicalevel of discoursenasbeenmaintained.
As thetheoryandimplementatiorof SQUADS arepresentedbeginningin this chapterthe
presentatiowill necessariljpecomemore mathematicalHowever, it is undesirableand
in factimpossibleto includein this dissertatiora comprehensie descriptionof theimple-
mentationandinternalworkings of SQUADS. The readerinterestedn this level of dis-
course is referred to tf®QUADS Ednical Refeence[1].

4.1 History and State of the Art

The TMM is currently the mostwidely usedmethodof quantumelectronicdevice
simulatior! for severalreasonslt hasbeenin existencefor thelongest(since1962[2)), its
deriationis relatively simple,it is easyto understandqusingthe optical analogy),andit
requiresthe leastcomputationakresourcesThe TMM isn’t the only methodof quantum
device simulationbecauseasdiscussedn Section3.3,it cannot accuratelytreatscatter-
ing andtransientoperation Becauseéhe TMM is widely used,its basictheoryandimple-
mentationhave beenwidely (if incompletely)describedn the literature[2-6]. However,
several alternatve implementationshave never beendirectly comparedto the standard
approachandseveralcomplicatingissueshave apparentlynever beendiscussedOnepur-
pose of this chapter is to properly discuss these issues.

Vassellet al. [3] enumeratecakleven simplifying assumptionsand approximationsn
the original descriptionof the TMM [2], and other short-comingshave beendiscussed
elsavhere.The past15 yearshave witnesseda continualattackon theseapproximations,
andmosthave now beenimprovedor removed. For example,position-dependerdffective
massand more generalstructureswere incorporatedin [3] and most subsequentvork.
More accuratepiece-wisdinear (asopposedo piece-wiseconstantpotentialshave been
usedby several researcher$7, 8]. Self-consisteng hasbeenincludedby simultaneous

1.1t is necessaryo differentiatebetweermuantumsystemswhich aremorecommonlyinvesticated
via directdiscretizationof the time-dependen$chrddingelequation,andquantumdevices which
musthave open,ohmicboundariesAs discussedn Section3.3,time-dependerfschrdodingeequa-
tion has not adequately demonstrated the ability to treatepifeliture of mayrparticle deices.
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solutionof the Poissonand Schrdodingerequationg9-11]. The TMM hasalsobeenused
with bothtight-binding(seeSection3.5.2)[12, 13] andk ¢ p approache§l4, 15], to rep-
resentthe enegy-velocity relationship more accurately Interactionsbetweenenegy

bands(conductionjight hole,heary hole,and/orsplit-off hole) have beenincorporatedn

two-band[6, 12,13], three-band15, 16], andevenfour-band[14] models.The TMM has
also beenusedto determinethe discretebound stateenegies of quantumwells [17].

Finally,al-D TMM calculationhasbeenincorporatedn a 2-D resonantunnelingtransis-
tor simulation [18].

The remainderof this chapterdescribesSQUADS’ implementationof the transfer
matrix method of quantumdevice simulation. This implementationhandlesposition-
dependeneffective mass generaldevice structurespiece-wisdinear potentials andself-
consisteng; andit includesa simplified multi-bandcapability The lasttwo featuresare
describedn Chapter6. Many of the moresubtlefeaturesof the TMM in SQUADS, which

make it a rolust and gtensible quantum dece simulation tool, will also be described.

4.2 Background

This sectionderivesthebasicanalyticexpressionandequationsisedin implementing
the transfematrix method of quantum diee simulation.

4.2.1 General Solutions of the Schrodinger Equation

The TMM is basedon solving the time-independentpr steady-stateSchrodinger
equation,as mentionedin Section3.4.2.3.In 1-D? the time-independenSchradinger
equation (TISE) in the &dctive mass approximation (see Section 3.5.2) is:

h* o8¢
T 97LlJ(X) +UMU(Y) = EY(X). (4.1)
In (4.1),thesolutiony(x) is thequantumwavefunctionof achagecarrier(i.e., electronor
hole)or (asin the TMM) a beamof carrierswith effective massm andenegy E, U(X) is
potentialenegy (i.e., the conductionor valenceenegy band minimum), and b is the
reducedPlancks constantUseof the effective masga.k.a.envelopefunction)approxima-

tion hasimportantconsequenceis termsof the choiceof positiongrid schemeasdis-

2. Recallfrom Section3.5.1thatthis work took the practicalstepof limiting SQUADS to thesimu-
lation of one-dimensional quantum systems.
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cussed shortly

As describedn Sectior4.3,in the TMM, the TISE is solved multiple timesfor abeam
of carriersata sequencef closely-spaceénegies?’ Sincethe TISE is asecondrderdif-
ferential equation,it hastwo independensolutionsat a given enegy E, which will be
denoted (X) and g(x). Thegenerakolutiony(x) is alinearcombinationof f (x) andg(x):

P(X) = alf(x) +b Ch(x). 4.2)
Thewavefunction(x) in ary particularcaseis determinedy the potentialprofile U(X).
For a constantor linear U(x) (and few others),the TISE is analytically solvable. The
TMM takesadwantageof this fact. Of courseusefull-D quantumdevicesdon't have such
simple potential profiles. Therefore,to solve the TISE analytically for real quantum
devices,thesimulationregionis dividedinto a seriesof shortregions,within which acon-
stantor linear approximationto the potentialis acceptableMost implementation®f the
TMM, includingthe descriptionin this section,useonly constanipotentialregions.Even
for aregion of constanpotential therearethreedistinctsolutionsof the TISE, which are
described belw.

A region in which the carrierenegy E is greaterthanthe potentialenegy U(X) is
called a “classically allowed” region, sincecarriersare enegetically allowed to exist in
suchregionsaccordingto classicallaswell asquantum)physics.In a classicallyallowed
region of constantpotential(a CCA region),E > U(x) = U, andthewavefunctioncanbe

written as the sum of foravd-travelling and backward-travelling plane vaves:

1 KX — KX

PY(x) = ale " +ble ™, (4.338)
wheree is the base of the natural log ands the “wavevector” of the quantum patrticle:
K = —v2m(hE—U) (4.3b)

~

Wavevector k playsanimportantpartin quantumsystemanalysis,so its relationshipto
other perhapsmore familiar quantitieswill be given. The wavevector of a particleis a
measure of its momentupm velocity v, quantum \avelengthA , and kinetic engy K

2 2,
- - P _ DK _ 2n LS
) = hk \Y; - o A ” K > o (4.4)

whereh is the reduced Planck constant amdas the efective mass of the particle.
A regionin which the carrierenegy E is lessthanthe potentialenegy U(X) is called

3. Technically the TISE represents an eigalue equation at ergrE.
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a “classically forbidden” region, since carriersare enegetically not allowed into such
regionsaccordingto classicalalthoughnot quantum)physics.Quantumparticles,suchas
electronsor holes,cantravel into andthroughvery narrav classicallyforbiddenregions,a
processcalled quantumtunneling. However, even quantumparticleswill inevitably be
repelledfrom wide classicallyforbiddenregions.In a classicallyforbiddenregion of con-
stantpotential(a CCFregion),E <U(x) = U, andthewavefunctioncanbewritten asthe
sum of &ponentially increasing and decreasing functions:

Px) = al+b e, (4.5a)
K = —“Zm(hU‘E) (4.5b)

~

K is the attenuation constant of thewefunction as it penetrates into the CC§ioe.

Finally, aregionin which the (fixed) carrierenegy E is exactly equalto the potential
enegy U(X) is calleda constant‘classicallyneutral”(CCN) region. ForE = U(x) = U,
the TISE (4.1) requiresthatthe secondderiative of the wavefunctionbe zero.Therefore,
the wavefunction has the folleing general form in a CCN gen:

P(x) = alk+bh. (4.6)

The treatmentof CCN regions has apparentlynever beendescribedin the literature.
Admittedly, its occurrencas unlikely in TMM simulation,andmostTMM implementa-
tions probablyignore this possibility altogether However, a robust simulator(i.e., one
which will not crash or ge erroneous results) must correctly handle this case.

4.2.2 Gridded Potential Profile

Figure4.2 shavs an approximategpotentialprofile U(x) of aresonantunnelingdiode
(the prototypequantumdevice usedin this work). Thereis no analytic solutionto the
TISE for sucha potential.As indicatedabove, a TMM simulationstartsby dividing the
guantumsysteminto mary small regions. Within eachregion, a constantapproximation
U(X) = U is usedfor the potential. This determineghe generalsolutionof the TISE for
thatregion. If asuitablyfine positiongrid is chosenandanappropriatechoiceis madefor
the potential function in eachsmall region, the resulting piece-wiseconstantpotential
functionandits resultingTISE solutionwill trackthe actualpotentialprofile andits TISE
solutionarbitrarily closely Theremainderof this sectiondescribeghe basicpositiongrid
scheme used in SGADS and the choice of potential function for each grgiae.



68 Chapter 4. The Transfer-Matrix Method

I-Contact A System T-Contact

U(x)

Figure 4.2: Typical quantum device potential enegy profile

Thepotentialenegy profile U(x) shavn for aresonantunnelingdiodeis relatvely
simple, lut still far too comple to sohe the TISE analytically

Having arguedthatthe solutionof the TISE canbe facilitatedby dividing the system
into mary smallregions,how shouldthe positiongrid* be designed 7o be consistentvith
SQUADS’ useof the effective massapproximationwhich averageshe potentialover a
unit cell (i.e., theregion “controlled” by a singleatom), neitherthe wavefunctionnor the
potentialshouldbe resolhedto ary finer degreethanthe atomicspacingIn fact,the posi-
tion grid should be designed toveaexactly one grid point per atomic spacing.

Thus,asshawvn in Figure4.3, SQUADS usesa uniform positiongrid with nodepoints
(denotedx,,) separatedhy adistanceAx, startingatx, = 0, andendingatxy = L, where
L is thewidth of the systembeingsimulated.N is the numberof grid regionsbetweerthe
contactgonelessthanthe numberof nodes)sothatAx = L/N. As discussedn the pre-
vious paragraphAx shouldbe equalto the lattice spacingof the material.Of course dif-
ferentmaterialstypically have slightly differentlattice constantssoit is not possiblewith
a uniform grid to exactly mirror the lattice of real quantumdevices, which are always
multi-material systems. The discrepgrstiould bedirly small, hovever.

SQUADS useghegrid nodeschemaldepictedn Figure4.3,aswell asdevice structure
informationandthe appliedbias, to calculatethe potentialU , at eachgrid nodex,,. The
potentialvaluesU , at the internal device nodesmay be approximatedusing a suitable
algorithm,suchasa simplelinearmodelfor the potentialprofile, or calculatedself-consis-
tently (i.e., consistentwith the carrier density),as discussedn Chapter6. To solve the
TISE in eachregion, the TMM musttranslatethe U , valuesat the grid nodesinto U (X)
functionsfor eachregion betweenthe nodes.The logical choicefor U (X) is to usethe

4. The set of points at which ydical quantities, such as carrier densitjl be calculated.
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average of the potential at tbounding nodes andn-1:

u,+U
Up(x) = == (4.7)

This interpolationschemeresultsin a steppedratherthan smooth,potentialprofile, but
with atomicgrid spacingthe errorshouldnot belarge. More accuratepotentialinterpola-
tion schemes are discussed in Sections 4.4.1 and 4.4.3.

Notefrom (4.3b)and(4.5b)thatthe effective massm mustalsobe known in the grid
region to determinethe TISE generalsolutionin that region. SQUADS suppliesto the
TMM thevalueof the effective massatthe grid nodes,m,. Therefore SQUADS usesthe
average of the éctive masses at the dwbounding nodes for that of the enclosegiae:
m,+ My

2
For boundaryconditionson the electrostatigotentialU(x), asindicatedin Figure4.4,

m.(x) = (4.8)

SQUADS defineghe Fermienepy attheleft contact(calledtheincidentcontactfor now)
asthereferencesnegy. Thepotentialattheright contact(calledthetransmitteccontact)is
set by the applied bias,. Thus, contact potentials are:

Uy, = —-Ef, (4.9a)

Uy = —aqV,—Ep, (4.9b)

whereq is theelectronchage, E, is the Fermienepy (relative to theenepy band)atthe
incident contact, anl . is that at the transmitted contact.

The electrostatiqotentialboundaryconditionsdepictedin Figure4.4 differ from the

standardooundaryconditionsin quantumdevice simulation[3, 8, 10, 19-21]. The stan-

dardapproachis to take the enegy bandminimum (ratherthanthe Fermilevel) at the I-

[-Contact E< System >: T-Contact
Region: | 1 | 2 | cee PN-1E N

- ® ® ® ® —p
Node (n):0 1 2 cee N-2 N-1 N
Position: 0 AX  2AX cee (N-1)Ax NAx=L

Figure 4.3: SQUADS position grid scheme

SQUADS usesauniform positiongrid, x,=nAX, atwhich pointsdevice parameters
(e.g.,bandoffset,doping)aresuppliedandsimulationresults(e.g.,carrierdensity
wavefunction) are calculated.
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I-Contact A2 System T-Contact
@
e
I
EF|=0 YT U(X)
-QVa -t------—————— e - - Epr

Figure 4.4: Typical potential with applied bias and boundary conditions

SQUADS usesthe I-contactFermilevel asthe enegy referencg(Eg, = 0), rather
than the I-contact electrostatic potential [U(0) = 0].

contactasthereferencgU, = 0). SQUADS usesthe boundaryconditionsshavn in Fig-
ure 4.4 (also used in [6, 11]) forvesal reasons:

* If multiple enegy bandsareincluded,eachof which may have a differentband
minimum at the contactsthereis no reasonto preferone bandminimum over
another as reference. In contrast, there is only one Ferehideach contact.

At equilibrium(zeroappliedbias),it is reasonabléo expectthereferenceon one
side of the device to equalthe analogougoint on the otherside. Even usinga
singleenegy bandasreferencewith any materialdifference(bandoffset,effec-
tive mass,or doping), the bandminima at the two contactswill not be equal.
However, the Fermi lgels at the tw contacts are wahys equal at equilibrium.

* By extensionpiasV , is appliedbetweerthetwo Fermilevels,notthe bandmin-
ima at the contacts Whenthe contactmaterialsaredifferent,the T-contactband
minimumis —qV, + dU (wheredU is the relatve bandoffset at the T-contact)
below the I-contact, bt the Fcontact Fermi heel is exactly qV, belov E,.

Although the Fermilevel is in a sensea more “fundamental’entity of a device thanthe
bandminimum (basedon the above points), SQUADS recognizeghatusingthe I-contact
bandminimum asreferencen the casesf a singlebandis moreuserfriendly. Therefore,
while all calculationan SQUADS areperformedusingthe I-contactFermilevel asrefer-
ence,whenonly oneenegy bandis includedin the simulation,SQUADS shifts potential

profile plots such that the I-contact minimum is at O gper



4.2. Background 71

4.2.3 Wavefunction Matching Conditions

GiventhepotentialapproximationJ (x) for eachregion using(4.7),thegeneralsolu-
tion of the TISE (i.e., the wavefunction)in eachregion is known, basedon the resultsof
Section4.2.1.But the TISE is not yet completelysolved. In particular the coeficientsin
the generalsolutionsfor eachregion [see(4.2)] areasyet unknavn. In fact, thereare 2
unknawvn coeficientsfor eachregion! However, thewavefunctionsn adjacentegionscan
be relatedusing “matching conditions” at the interface betweenthe two regions. These
matchingconditionsarisefrom ananalysisof the Schrédingeequationwhich shaws that
every physically viable wavefunctionwill be continuousandits probability currentden-
sity® must be constant (in steady-statergwhere in the system.

The continuity requirementsnustbe satisfiedeven acrossnterfacesbetweerregions
with different TISE generalsolutions.In other words, the wavefunctionsof adjacent
regions must be matched,as well astheir probability currentdensities,at the interface
between the gions. for example, at intedicen, the matching conditions afe:

fn(xn) + bngn(xn) = an+1fn+jl_(xn) + bn+1gn+1(xn)1 (4103.)

bn+1 0

an 9 b, An+1 0
il fooa(X) + o foea(X,) - (4.10b)

m,, aX Fal) m,, 9x g“( U M., 0X

Sincethewavefunctioncoeficientsarethe unknavns (the TISE generalkolutionsf andg
areknown, giventheregion potential),(4.10a)and(4.10b)aresolvedfor a,,; andb,,;
in terms ofa,, andb,:
8ns1 = l11 n@n +igo nbp, (4.11a)
b1 = 121 00 +ip 0y, (4.11b)
where thd values are constants. In matrix form, these equations are written

_an+1 _ [l iag @ T an__ 4.12
b “

Note thatthe 2x2 matrix [i,,] essentiallytransfersthe wavefunctioncoeficient relation-
shipacrosdnterfacen, whichis the origin of theterm*“transfermatrix”. Detailedexpres-
sions for the terms in transfer matifik,] are dewed in [1].

5. Probability current density is analogous to “normal” gharurrent density
6. Thesewavefunctionmatchingconditions,althoughuniversallyusedin the TMM, wererecently
disputed by Harrison andaglov [22].
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In SQUADS, [i,] is actually calculated as the product obt#2 matrix fctors,

[in] = [indlind (4.13)
where [i ] is associatedvith region n just beforeinterfacen and [i,,] is associated
with region n+1 justafterit. With threetypesof regions(CCA, CCF, andCCN), thereare
ninedifferentfunctionalformsfor [i,] , sincethistransfematrixincludesfactorsrelating
to the TISE solutionsin bothregionsboundingnoden. In generalto implementr region
typesin aTMM simulator therearer® formsof [i,] to code’ However, thereareonly r
formseachof [i,] and [i,,] . In usingthis separatiorof [i,] , modificationandaddi-
tion of region types are greatly simplified, making @&DS easily &tensible.

Becauseof the centralrole of (4.12)in the TMM, a graphicaldepictionis shavn in
Figure4.5. Using (4.12), the coeficients canbe mathematicallyrelatedbetweenregions
n-1 andn, andbetweerregionsn and n+1. Thenthe relationshipbetweeneachpair of
regionscanbe combinedto relatethe coeficientsin region n-1 to thosein region n+1.
By extension thewavefunctioncoeficientsin ary region canberelatedmathematicallyo
those in ap other rgion using the appropriate transfer matrices.

Region: n-1 n n+1
(System)
[In 1] [In]
anq ~ a, Q1
n-1 [In-l-] [In-1+] n [In ] [|n+] n+1
Interface: n-1 n

Figure 4.5: Relating wavefunction coefficients acoss an interaface

The wavefunctioncoeficientsin adjacentregions,sayn andn+1, arerelatedby
the X2 transfer matrix [j], which is composed of wfactors, [}_.] and [i,4].

4.2.4 System Fansmission Matrix

The I-contactand T-contactcanbe thoughtof asregionsof the device justlike any of
the internal grid regions. The main resultof Section4.2.3wasthat matchingconditions

7. In Section 4.4.3, a fourthgien type will be added, @ging 16 possible forms ofi,] .
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allow the wavefunctioncoeficientsin ary region to be relatedmathematicallyto thosein
ary otherregion. Thus,considerconstructingarelationshipbetweerthe coeficientsin the
I-contactandthosein the T-contactby combiningtherelationshipsacrosseachgrid inter-
facein turn. This netrelationshipacrosshe entiredevice, calledthe systemtransmission
matrix (STM), hasa specialplacein the TMM, for reasonghatwill beapparentn Section
4.3.1. This section describes the simplest method of calculating thé STM.

4.2.4.1 Basic STM Calculation

Asindicatedabove, the STM is a compositeof the matchingconditions(4.12)relating
the wavefunctioncoeficientsacrosseachinterfacein order from oneendof thedevice to
the other To form the STM, first use(4.12) to relatethe coeficients acrossthen = 0
interface (between the I-contact and firstide region) and then = 1 interface:

Zﬂ ) [I(lej ) M[Le !Zi ) MH (4.14)

Now substitutethe expressionfor the n = 1 region coeficients from the first equation

into the secondto relatethe wavefunctioncoeficientsin the I-contactto thosein the sec-
ond deice ragion:

o

Note that the parenthesesan be removed in (4.15) using the associatre property of
matrix multiplicatior? [23]. However, matrix location(order)in the productmustbe main-
tained,sincematrix multiplicationis not commutatve!® [23]. Finally, notethatthe prod-
uct of two 2Xx2 matrices is agn a X2 matrix.

Following the approachndicatedin (4.15),the coeficient relationshipis expandedo
include additionalinterfaces.By bridging the relationshipbetweenthe I- and T-contact
regions (i.e., across all intexfes froom = 0 ton = N), the STM is determined. Thus:

sz = [in) [ind - [id] [id H = éﬁo[@él‘:j =[sT™ [?. (4.16)

0 C

8. Otherapproacheso calculatingthe STM, which are often more efficient althoughtheir deriva-

tions are more compteare described in Section 4.4.

9. If A, B, and C are matrices such that the product ABC can be performed, then (AB)C = A(BC).
10. If A and B are matrices, in general, AHBA.
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The matrix product in parentheses is the STM:
N

s™] = [in] [ina - [idl i = [ [in (4.17)

n=0

Thetransfermatrices[i,] areconstantsdependingonly on the generalsolutionsof the
TISE in the associatedegionsof thedevice [1]. Thus,the STM is a constan2X2 matrix,
where each of the 4 elements is (in general) a conmpimber

Every significantcomputationin a numericalsimulatoris alsoanopportunity evenan
obligation, to find efficienciesthat canbe exploited. The computationof the STM is cer-
tainly sucha computationand SQUADS usessereral “tricks” to make this computation
more efficient. The mostobvious is discussedn the remainderof this section.In mary
simulateddevices,thereareflat-bandregions (whereno enegy bandbendingoccurs)of
significantextentadjacento oneor bothcontactge.g., seeFigure4.4). Sincethe potential
functionin theflat-bandregion is the sameasthatin the adjacentontactthe TISE solu-
tions (including coeficients)is alsothe sameasthatin the contactst! Thus,the STM cal-
culationcanbe confinedto theactive region over which bandbendingoccurs with exactly
thesameresult. This canoftenreducethe lengthof the STM calculationby 50%. Suppose
the flat-bandregionsare beforeinterfacenl on the I-contactside,andafterinterfacen2
ontheT-contactside.SQUADS simply treatsthis asa generalcaseof the STM derivation

above, wherenl = 0 andn2 = N. The STM equation (4.17) nois
n2

STM] = [ing] [inza]  [inged] [ina] = [ [id) (4.18)

n=nl

4.2.4.2 STM Calculation Complications

Therearetwo importantcomplicationgo the basicSTM calculationthatmustbe han-
dledto ensurea robustandaccurateTMM simulator Both complicationsinvolve tunnel-
ing through extendedclassically forbidden (CF) regions betweenthe two (classically
allowed) contactsIn areal system,extendedCF regionswould just resultin essentially
total reflection of the quantumwave (T =0). In a numerical simulator thesecases
requirethe consecutre multiplication of exponentiallylarge andsmallnumbersThis can
resultin numeric overflow (crashingor invalidating the calculation)or rounding error

11. Notethateffective massmustalsobe constanto take advantageof a flat-bandregion, sincethe
TISE solution depends onfeftive mass. SQADS does check for &fctive mass ariations.
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(translatinginto an exponentiallylarger error in the STM result). To prevent this, if an
extendedCF regionis encountereduringthe STM calculation SQUADS mimicsthereal
systemresultby terminatingthe STM calculationandtaking T = O (total reflection)for
thatwave. Of coursethis gambitshouldonly be usedwhenthetransmissiortruly is negli-
gible. Mostwaveswill tunnelthroughsomeamountof CF region (suchasthetunnelbar-
riers in an RTD), but they can still contribute significantly to currentflow. The task,
therefore, is to establish a measure to judge feet®e width of a CF rgion.
From Section 4.2.1, theawefunction in a CCF ggon is

W) = alE +b ", (4.19)

Therefore the propermeasuref the “tunnel width” of a CCF grid region is the exponen-
tial “decay phase” of that géon:

A, =K AX. (4.20)

The total decay phase of a series of CCF ggobres is
0y = ) KLAX, (4.22)
de "

wherex is the positionwherethe seriesof CCFregionsstarts.If @, exceedsa specified
maximumdecayphaseq,,,,, beforetheseriesof CCFregionsends thenthe STM calcula-
tion is terminatedand the transmissionamplitude T for that enegy is taken to be 0.
SQUADS uses®,. = 20, which givesa wavefunctiondecayfactor of e’=2x10",
Nine ordersof magnitudeof attenuatiorensureghatthesewavefunctionscannot contrib-
ute significantly to current fla

The secondpotential problemin the basic STM calculationinvolves a more direct
sourceof numericaloverflow. In a CCFregion, the STM calculationrequiresthe calcula-
tion of numbersof the form €**. Dependingon how large x andk might be, a numerical
overflov mayoccurin forming this number Examplecalculationsshav thatthis situation
is unlikely, but quite possible dependingn the maximumdoubleprecisionnumberonthe
machinebeing used.A robust simulator mustthereforeprotectagainstit. Actually, the
total reflectionconditions (R =1, T = 0) discussedibore occurwell beforenumerical
overflow in mostcaseslin the few remainingcasesthe decayrate of the wavefunction
must be extremely high, so the bestsolutionis simply to implementthe total reflection
gambita little early In SQUADS, the exponentlimit wassetat 10 belonv the maximum
(typically about700), leaving a few ordersof magnitudebreathingroomto do computa-
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tionswith large numberswhich arejust belov the limit. Ratherthenbeing“hard-wired”,
this exponentlimit is calculatedat runtime basedn the maximumdoubleprecisionnum-
ber of the machine on which 8@DS is being gecuted.

4.3 Quantum Device Simulation Using the TMM

Thefirst paragraplof this chapterdescribedhe TMM in very generalterms.In Sec-
tion 4.2, the foundationfor a mathematicatlescriptionof the TMM hasbeenlaid. This
sectioncompleteghe picture. Several importantsimulationtasksin the TMM investica-
tion of quantumdevice operationaredescribedn this section.The mostbasictaskis the
calculationof the current-wltagecurve, which is describedn Section4.3.1.Othertasks
describedncludethe calculationof the wavefunction(Section4.3.2),enegy spectrumof
carriers in the dace (Section 4.3.3), and carrier density profile (Section 4.3.4).

4.3.1 Curr ent-Voltage Curve Simulation

Perhapshe mostbasicgoal of a TMM simulationis to determinethel-V characteris-
tic of a quantumelectronicdevice. Currentdensityis independenof positionin a steady-
statesystemsuchasthat modeledby the time-independengchrdodingerequation.Thus,
currentdensitycanbe calculatedrom the wavefunctionat arny pointin the device. How-
ever, bothcoeficientsof thewavefunctionmustbe known, not justthe generakolutionof
the TISE, at somelocation in orderto determinecurrent. This sectionshavs how the
TMM determinesoth wavefunctioncoeficientsat a singlepointin the device, andwith
these hw current is calculated.

4.3.1.1 Determining the fansmission Amplitude

Figure4.6 shavs the abstractiorof atypical RTD simulatedby the TMM. Considera
quantumwave of kinetic enegy E — U, which s incidenton the systemfrom the |-con-
tact,is partially reflectedbackinto the I-contact,andpartially transmittedhroughthe sys-
teminto the T-contact.The TMM calculationassumegfor the moment)that thereis no
incidentwave from T-contact.The obvious point at which to determinethe wavefunction
coeficientsis oneof the device contacts.To accomplishthis, the generalsolutionof the
TISE in thecontactamustbe specified SQUADS assumegdealohmiccontactgno poten-

)’12

tial dropoutsidethedevice),“soU(x) in eachcontactis aconstantln particulay from the
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boundary conditions (4.9a) and (4.90]x<0) = U, andU(x>L) = U,.

I-Contact A System T-Contact
| —R-‘ ~~~~~~~~~~~~~~~~~~~ — T

Up----
Un(x)

----UN

Figure 4.6: TMM quantum system abstraction

EachTMM calculationdeterminesthe transmissionramplitude T and reflection
amplitude R of an incident beam of egpeE and amplitude I.

On the I-contactside (region 0), incident wavefunctionsmust have positive kinetic
enegy (E>U,) . In otherwords,the I-contactis a CCA region, andthe solutionof the
TISE in this rgion is gven by (4.3a):

iKgX —iKgX

I-Contact: (y(x<0) = aje = +byle (4.22)

OntheT-contactside,therearetwo possibilities.If the T-contactis a classicallyforbidden
region (i.e., E<U,;, usually dueto a negative applied bias), the wavefunctionwill be
totally reflectedbackto the I-contact,andtherewill be no transmission(T = 0) . Conse-
quently waveswith E < U, do not contrituteto currentflow, andneednot be considered
in a currentcalculation.The only non-trivial caseis wherek > U, wherethe solutionof
the TISE in the Tontact is also gen by (4.3a):

—1Ky41X

T-contact: Yy, (X=L) = ay,, e 4 b1 (B : (4.23)

As derivedin Sectiord.2.4,therelationshipbetweerthel-contactand T-contactwave-

function coeficients is written as

-aN+1 _ a| _ |T11 To ao_
= |ST™M = : (4.24)
_bN’j [ ] !b'] !TZl TZZ] LQ

whereT 4, throughT ,, arecomplex numbersgesultingfrom the multiplicationof all of the

12. For accuratecomparisonof simulationand experiment,the systemwidth L shouldbe large
enough to naturally accommodate all band bending between the contacts.
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[i,] factorsof the STM, asdescribedn Section4.2.4.In the I-contact,the coeficient of
the FTW (i.e,, the incident amplitude)is denoteda, = |, and that of the BTW (the
reflectedamplitude)is by = R. In the T-contactthe coeficientof the FTW (thetransmit-
ted amplitude) is denotex,; = T. These changesws

T _ Il _ [T1a Ta2 |
= = . (4.25)
) = i 2

(4.25)is still two equationsn four unknavns, soit is still impossibleto solve for ary-
thing - the entireexerciseof generatinghe STM seemdo gain nothing.Actually, because
the |- andT-contactsareat the boundarieof the systemtwo boundaryconditionson the
TISE canbe supplied(sinceit is a second-ordedifferentialequation)asthe constraints
necessaryto make (4.25) solvable. Concerningboundary conditions, the TMM first
assumesas statedpreviously, that thereis no incidentwave (BTW) from the T-contact
side (by,1 = 0) . Seconda normalizedincidentwave (I = 1) is used!® Thus,the nor-

malized solutions in the contacts are:

Po(x<0) = R, (4.26a)
Ypa(x=L) = T (4.26b)
and (4.25) finally becomes tnequations in tey unknavns:
: ToT ]
T} — [STM] [1} —|'11 '12 [1 (4.27)
0 R To1 Toyf [R
T
0 R=-=2 (4.28)
Ta
0 T=Ty+TLR (4.29)

Note that, sinceT,; throughT,, are complex numbersthe reflectionamplitudeR and
transmissionamplitude T are also comple, having both magnitudeand phase.Thus,
giventhe STM, the wavefunctionincluding coeficientscanbe determinedn eitherof the
contacts.Sincethe wavefunctionin the T-contactis simpler it is invariably usedin the
currentcalculation.From anotherstandpointjt is moreintuitive to calculatecurrentflow

from the transmission amplitude due to their conceptual similarity

13. Both of thesemaneuers are correctedlater in currentdensity calculation,which properly
scales the resultygn the actual incident carrier distitipn at both contacts.
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A quantity related to the transmission amplitddis the transmission cdifient:1
O = (/KT (B)T(B)] , (4.30)
whereT  is the complex conjucateof T. Thetransmissiorspectrum@(E) (transmission
coeficient versusincidentwave enegy) containssignificantinformationin its own right,

independenbf the currentcalculation.For example,sharppeaksin ©(E) indicatereso-
nant enggies in the deice. Example transmission spectra arexshim Section 4.5.1.

4.3.1.2 Calculating Current

Upon determiningthe transmissionspectrum®(E), currentflow can be calculated
using a modified Tsu-Esaki formula [24],

_ gmB 0 1+exp[(Er—E)/B]
WVa) = ZHZDSJBO ©B®)ing> exp[(Egr—E—-qV,)/B]

whereV  is the appliedbiasacrossthe device; B = kg0, with 8 beingthe temperature

=IE (4.31)

andkg beingthe Boltzmannconstantandthe E.’s arethe |- and T-contactFermiener-
gies (wr.t. the enagy band).

(4.31)correctsfor the two boundaryconditions(givenbelowv (4.25))usedin calculat-
ing thetransmissioramplitude.To do this, it usesthe factthatthetransmissiorcoeficient
is thesamefor carriersincidentfrom theleft andright atenegy E. Thus,it notonly prop-
erly scaleghecurrentfrom thenormalizedransmissioramplitude but it alsoaccountgor
carriersincidentfrom both contacts More accurategland more complicated)expressions
for the TMM currenthave beenderived [25, 26] andchallenged27]. Theseexpressions
arenot currentlyimplementedn SQUADS. However, SQUADS doesuseaslightgeneral-
izationof (4.31)and(4.30),allowing the effective massof thetwo contactmaterialsto be
different. This requires th& term to be split up, ging:

_ qm|[3°°
Ve = —=5[OE)In{1+exp[(E -E)/PI}HdE
21T h 0
_quTiJ-e(E)ln{1+exp[(EFT_E_an)/I3]}dE , (4.32)
21h 5
where

14. Technically the ratio of incident current to transmitted current.
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OE) = EEEH%HT*(E)T(E)] . (4.33)

Another simple generalizationis to allow the contactsto be at different temperatures,

making 3 - B,, By, as appropriate. SGADS does not currently implement this feature.

4.3.1.31-V Curve Simulation Oervien

The completeprocedurefor calculatingcurrent-wltage curve of a quantumdevice
using the TMM is as folls:

1) At agivenincidentwave enegy E andappliedbiasV,, computethe
system transmission matripSTM] using (4.17).

2) Calculatethe transmissionamplitude T for that incident wave using
(4.29).

3) Determine the transmissiaoeficientof the systen® from (4.33).

4) Repeatsteps(1) - (3) to determine®(E) over the rangeof enepgiesat
which there are significant incident carriers from either contact.

5) Use (4.32) to calculate the current density at that applied bias.

6) Finally, repeatsteps(1) - (5) over a desiredrangeof appliedbiases,
yielding the current-eltage cure.

Step(4) requireselaboration.In quantumdevices like the RTD, transmissiornreso-
nancegsharppeaksn thetransmissiorspectrum}anbevery narraw. Further mostof the
currentflow may be dueto carriersat theseresonanenegies, sinceoff-resonancdrans-
missioncanbeexponentiallysmall. Thus,theenegy spacingn the ©(E) calculationmust
bevery smallto adequatelyesolhe theseresonanceandaccuratelycalculatecurrentflow.
Of course doingmorecomputatiorthannecessarys almostasbadasdoingtoo little. To
this end, the rangeof enegies shouldbe restrictedto only thosewhich could possibly
carryasignificantamountof current.Theresultingenepgy rangeis depictedn Figure4.7.
Of coursethereis no point in calculatingT for carriersincidentat enegies below the
bandminimum at the T-contact(E < U, )—thesewill be totally reflectedbackto the I-
contact[T = 0]. Also, thereis no point computingT at very high enegies wherethe
numberof incidentcarriersis negligible. In SQUADS, E,., is setat 15 kz6 above the
higher Fermilevel (or 15 kg6 above the higherbandminimumif it is above the higher
Fermilevel). Thus,for purpose®f calculatingcurrentflow via the TMM, SQUADS typi-
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cally usesl,000to 10,000enegy pointsdistributedevenly from the higherbandminimum

up toE,,. Several TMM-simulated I-V cures are shen in Section 4.5.

w A EFT + 15kBG —N

[-Contact [ System » T-Contact

Figure 4.7: Energy range br T(E) calculation in I-V cur ve simulation

The shadedareashaws the incident enegy rangeover which the transmission
spectrum®(E) is determinedfor the current calculation. Enegies where total

reflectionwould occur [E <maxU, Uy)] or wherethereare neligible incident
carriers E>maxEg, Egt, Uy, Uy) + 15k50] are ignored. § is temperature.]

4.3.2 Calculating the Wavefunction

In thetransfermatrix method the quantumwavefunctionis the fundamentatontainer
of carrierinformation. In the TMM, to go beyond the terminal, |-V characteristicof a
guantumdevice, aninternalview of device operatiorrequirescalculationof thewavefunc-
tion. A singlewavefunctionshavs how carriersat particularenegy arebehaing. Wave-
functionsat a rangeof enepgies canbe usedto determinethe enegy spectrum(Section
4.3.3)andcarrierdensityprofile (Section4.3.4).This sectiondescribeghe calculationof
the wavefunctionfor a continuousbeamof carriersincident on the quantumdevice at
enepgy E. Thisis exactly the entity for which the transmissiorcoeficient © wascalcu-
latedfor the I-V curve, asdescribedn the previous section.Although it is necessaryo
calculatewavefunctiongncidentfrom eithercontactfor a givenwavefunctioncalculation,
onecontact(right or left) is the I-contactwhile the otheris the T-contact.Thus,this con-
tact naming scheme can (and will) be retained.

In Section4.3.1,when ©(E) was calculated,t wasonly necessaryo determinethe

wavefunction(for eachenepgy) at a single point: the T-contact.Now the taskis to deter-
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minethewavefunctionatall points,or rather all grid pointsin thesystembeingsimulated.
As showvn in Section4.3.2.1 theresultsof the ©(E) calculationcanoften (but notalways)
beusedto quickly determinghewavefunctionatthedevice’sinternalgrid nodes Sections
4.3.2.2and4.3.2.3thenconsideitwo complicationghatarisein the wavefunctioncalcula-
tion, and &plain hav they are addressed in $IADS.

4.3.2.1 Basic Wavefunction Calculation

Thetaskat handis to calculatethe wavefunction(numericalvalues- notfunctionsand
coeficients)at the grid nodesof the simulatedsystem From Section4.2.1the wavefunc-
tion in region n at noden can be written as

Wp(x,) = a, f(x,) +b,g,X,) (4.34)
Notethatthe wavefunctionmatchingconditions(4.10a)and(4.10b)usedin the STM cal-
culationusethe functionvaluesf (x,) andg,(x,). It is a simplematterto storetheseval-
ues for later use during theavefunction calculation.

Whatisn't known during the STM calculationare the wavefunction coeficients a,
and b,. But asdiscussedn Section4.2.3, given both wavefunctioncoeficients in ary
region, the wavefunctionmatchingconditionscanbe usedto determinethe wavefunction
coeficientsin ary otherregion. Thus,the STM calculationis a prerequisiteo the calcula-
tion of the wavefunction:it givesthe wavefunctioncoeficientsin both contacts,andit
givesall of the wavefunctioncoeficient relationshipsThe I-contactwavefunctioncoefi-
cientsareusedasthe“seed”to calculatethe coeficientsatall internalgrid nodesusingthe
matching conditions.

Of course,the matchingconditions,like the TISE solution values,usedduring the
STM calculationmustalso be storedfor later usein the wavefunctioncalculation.This
storagds minimal (typically 50 KB) if thewavefunctioncalculationis completedmmedi-
ately aftereachSTM calculation,andthe storages thenreusedor the wavefunctioncal-
culation at the nd enegy. The STM calculation is therefore completed as fadlo

pg = Ll) ﬂ; (4.352)
:pnﬂ} = [in [pn} (n=12..,N; (4.35b)

0 [sT™] = [yl (4.35¢)
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Here, [p,] relatesthe region O coeficientsacrossinterfacen to the region n+1 coefi-
cients. After the STM calculation,both region 0 coeficients are known (a, = 1 and

b, = R). Thus,
!a”“] = [p,] H (4.36)
b, R

and the wavefunction codfcients of all other rgions are quickly calculated.

This wavefunctioncalculationalgorithmassumeshata productmatrix [p,] is avail-
able from the STM calculationfor every interfacen = 0, 1, ..., N. However, Section
4.2.4shovedthat,in mary casesthe STM calculationcanbe significantly shortenedy
takingadwantageof flat-bandregionsnearthe contactsOneresultis thatproductmatrices
arenot calculatedandstoredfor grid nodesin theflat-bandregions.However, ratherthan
retreatingto a full (and more expensve) STM calculation,SQUADS again takes advan-
tageof theflat-bandregionsto achieze a moreefficient computation At grid nodesin the
flat-band rgions, the vavefunction is simply anx¢ension of that in the contacts:

iK, X ik, X

Flat-band I-contact avefunction:y(x) = e  +R[e (X<Xx,1), (4.37)

kX

Flat-band Fcontact vevefunction:\p(x) = T [& (X>Xp0)- (4.38)

The STM calculationproducedvaluesfor R and T, sothesefunctionscanbeeasilyevalu-
ated at the rel@ant grid pointsx,,.

Recallingfrom Section4.2.4all of the effort requiredto calculatethe STM, it should
be clearfrom theabove descriptionthatcalculationof thewavefunctionrequiresrelatively
little additionaleffort. Unfortunately several complications,describedbelon, make the

wavefunction calculation more dii€ult in some cases than this simple picture portrays.

4.3.2.2 Classically lerbidden FContact

The maincomplicationin the calculationof the wavefunctionstemsfrom the factthat
the transmissiorcoeficient calculationis only doneat incident enegies that are above
bothcontactenegy bandminima.Thus,in Figure4.7,thetransmissiortoeficientwasnot
calculatedor E < U(L), sincetheresultwould bezero(total reflection).In fact,themean-
ing of a systemtransmissionmatrix, not to mentionits calculation,is dubiousfor carriers
incidentattheseenegieswherethe T-contacts classicallyforbidden.However, it is often
necessarye.g., in the calculationof the carrier density)to determinethe wavefunction
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evenwhentheincidentbeamis eventuallytotally reflected.This sectiondiscusseshe cal-
culationof the wavefunctionin this caseof a classicallyforbidden(CF) T-contact.Figure

4.8 shavs an @ample of such a awefunction.
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Figure 4.8: Wavefunction incident at enegy belon T-contact minimum

The positionprobability is shavn for a wavefunctionincidenton a reverse-biased
RTD at an engy just belov Uy. In this case, T=0 and |R|=1.

To calculatethe wavefunctionwhenthe T-contactis classicallyforbidden[U(L) > E],
SQUADS changeghe standardprocedureonly slightly. The STM calculationproceeds
and the product matricgg,,] are formed just as with a classically alkxl T-contact:

[ pn] = [In] [ pn-l] ) (439)
!an+1] = [p] H - (4.40)
bt R

In orderto determineR from this equation(to seedthe full wavefunctioncalculation),
eithera,,, or b,,; mustbespecifiedn someregion sothatthereareonly two unknovns
in (4.40).Essentiallya new secondooundaryconditionis neededFrom Section4.2.1,if

the Tcontact is a CF ggon, the TISE solution here is:

Kn+1X —HKn+1X

Wna(¥) = aysq LB + by LB . (4.42)
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Sincethe T-contactregion extends(in the simulationabstraction}o infinity, a physically
permissiblevavefunctionin a CF T-contactregion cannot have anexponentiallygrowing
componentpr the wavefunctionwould grow without bound.The coeficient a,; must
therefore be zero. This will senas the second boundary condition.

SQUADS couldcalculatethe productmatricesup to the T-contactandthensetay, ; to
0in (4.40),whichwouldindeedgive R. As usual,however, thisis aspecialcasewherethe
lengthof the T-contactflat-bandregionis zero.In generaljf the T-contacthasa flat-band
region afternoden2, the wavefunctioncoeficientsare constanin this region. Thus,the
coeficient of the exponentiallygrowing piececanbe setto zeroasthe STM calculation
crossesnto the CF T-contactflat-bandregion at noden2. Further productmatrix [ p,,,]
is the STM, sinceit relatesthe wavefunctioncoeficientsin thel-contactto thosein the T-
contact flat-band ggon, and thus in the-Gontact itself. Then (4.40) becomes

0 g 1 1 1 T Tigf |2
= = = [STM = . 4.42
|:bn2+J alz_lnl [IJE[R} [an] |:F\;| [ ] |:R T21 T22 R ( )

R andb,,, are found as:

R=—, (4438.)

T11T22 — T12T21 B T11T22

Opg+r = Top TR = Ty — T, T,

(4.43b)

which aredifferentthanthe expressiondor R and T for a classically-alleved T-contact.
Given R, SQUADS usesthe sameapproachasin Section4.3.2.1to calculatethe wave-
functionfor nodesO < n < n2. For nodesn2 throughN, the TISE solutionfor the T-con-

tact CF rgion is simply galuated at the grid nodes:

W) = by BT, (4.44)

4.3.2.3 Quantum Trning Points

Thereis yet a further complicationin the wavefunctioncalculationfor certainCF T-
contactspr, in fact,wherethe device includesany extendedCF region for someincident
enegies,evenif the T-contacts classicallyallowed. In thelattercase yecallfrom Section
4.2.4.2thatthe STM calculationwas abandone@ndthe transmissioramplitudesetto 0

whenanextendedCF region wasencounteredAgain, it is necessaryo computethewave-
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function evenin suchcasesso the computationcannot simply be abandonedThe trick

will be to introducewhat will be called a quantumturning point (QTP) as the second
boundarycondition. This artifice will terminatethe STM calculationcleanly enablethe
calculationof the reflectionamplitude,and therebythe calculationof the wavefunction.
This sectiondescribe SQUADS implementatiorof QTPsandthe calculationof thewave-

function in these cases.

A quantumturning pointis hereindefinedasthe point at which anincidentwave has
traversedenoughCF spacethat its decay phaseexceedsq,,,,, as definedin Section
4.2.4.2.Recallfrom the STM calculationthat at this point, the wavefunctionamplitude
hasdecayedyy about9 ordersof magnitudefrom its incidentvalue,andhasthuseffec-
tively beentotally reflectedbackto the l-contact.To minimize bothunnecessargomputa-
tion and numerical error of multiplying more exponentials togethey SQUADS
mathematicallyinserts(for the calculationof this one wavefunction)a totally reflecting
barrierto reflectthe tiny remainderof the wavefunction,thusterminatingthe wavefunc-
tion atthis quantumturningpoint. Thisintroducesegligible error, sincethewavefunction
is already highly attenuated.

To calculatethewavefunctionin the caseof a QTR the procedureas almostidenticalto
that for CF Fcontact: at node, the STM calculation ges:

!a”ﬂ] = [p,] H . (4.45)
by R

Whenthe STM calculationfinds that the decayphasehas exceededq,,,, during grid

intenval n = n_,,, aquantumturning pointis insertedatthene<tinterface(nodenqtp).A

qtp’
totally reflectinginterfaceis createdby assuminghat region Ngip+1 (just afterthe QTP)
hasaninfinitely high potential, thp+1(x) = oo, This hasthe unfortunateeffect of making

someof the matrix elementsin [i infinite. Thus, implementingthe QTP boundary

qtpl
condition requires a little finesse.
To implementa secondoundarycondition,SQUADS useghefactthatthewavefunc-
tion mustbe continuous,even at an infinite discontinuityin the potentialenegy U(X),
suchasata QTP In particular sincethe wavefunctionis 0 just afterthe QTP, it mustgoto

zero just before it. Thus, ing®n ng,, at the QTPthe general solution of the TISE is:
Watp(Xgtp) = Aqtp TF qep(Xqep) + Pgtp WgtpXgep) = 0 (4.46)
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O Agp L qte(Xqtp) = Pgtp Wgip(Xqep) = X (4.47)
whereX is justaplace-holdename.(4.47)will beusedasthe secondoundarycondition
in the caseof a QTR To incorporatsit, first write the productmatrix [pqtp_l] , astherela-

tionship between the I-contact cheients to those in ggon n ., (just before the QTP):

atp
a 1
= [p ]H (4.48)
gtp-1
!bqtlc] R
Next, multiply both sides of (4.48) by the folling 2x2 matrix:
f
! apXqp) O ] = (il (4.49)
0 g

By L qtp(xqtp)] = i 1 H _ H _ !Tll T12] H
= Pl | [ =[STM] | 1] = . (450)
!bqtp “BgtpXatp) R R [Tar Tl R

Now use (4.47), and sadvfor R:

X} - T1 Too [1 (4.51)
=X T To [R
T.,,+T
0 rR= -1 2 (4.52)
LT 5+ Tt

Having calculatedR, the sameapproachasin Section4.3.2.1is usedto calculatethe
wavefunctionat node0 throughng, ;. For nodesng, throughN, the wavefunctionis
zero,sincethe QTPis totally reflecting.Notethatin therarecasesvherea QTPis inserted
dueto impendingnumericaloverflow, asdescribedat the endof Section4.2.4.2,the QTP
is treatedno differently for purposesf wavefunctioncalculationthat a “normal” QTP
Finally, notethatfor all case®f wavefunctioncalculation(partialtransmissionCF T-con-
tact,or QTP),the STM calculationalwaysproducedsomereflectionamplitudeR. In con-
trast, only in the first case was there a transmissionamplitude T. Therefore, for
consisteny, the wavefunctioncalculationin SQUADS always usesthe I-contactcoefi-
cients as the “seed” to initiate thewefunction calculation.

4.3.3 Calculating the Energy Spectrum

A useful deriative of the wavefunctioncalculationis the calculationof the enepgy
spectrumP(E) of carriersin variousregionsof thedevice. The enegy spectrums simply
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the numberof carriers(probability density)versusenegy at a given location. SQUADS

allows specific quantumdevices to be defined,as well as regions for that device. For

example,the basicresonantunnelingdiode hasthreedevice regions: the quantumwell

andthetwo contactqseparatedby the tunnelbarriers).During anenegy spectrumcalcu-
lation, SQUADS recordshe maximumamplitudeof eachwavefunctioncalculatedn each
region. This capability can be used,for example,to determinethe enegy and enegy-

width of resonantstatesin the quantumwell of the RTD. The wavefunctionswith the
highestamplitudeare at the resonanenepgy. Resonanstatesare critical to the operation
of quantumdevices,andbeingableto locateandmapthesestatesn detailis animportant
(albeit rare) feature of quantumwilee simulators.

Normally, the transmissiorspectrum©(E) givesessentiallythe sameinformationas
the enegy spectrumP(E), since®(E) haspeaksexactly at the resonanenegies. How-
ever, asshouldbe clearfrom the wavefunctioncalculationdiscussiorin Section4.3.2,the
transmissiorspectrums not availablefor incidentenegy rangesvherea CF T-contactor
QTP occurs.However, theremay still be resonanstatesin the device for wavefunctions
incidentat theseenepgies.Chapter8 describesucha case,andthe enegy spectrumfea-
ture of SQUADS wascrucialin clarifying someparticularlyinterestingRTD behaior in
this case.

4.3.4 Calculating the Carrier Density Profile

A morecommonuseof thewavefunctioncalculationin simulationss for thedetermi-
nationof the carrierdensityprofile c(x) (densityof carriersversusposition)in the device.
c(x) is usefulin determininghow an electronicdevice is operating,andit is an essential
ingredientin implementingself-consisteng [agreemenbetweenc(x) andU(x)] for more
accuratesimulations(seeChapter6). This sectiondescribeghe calculationof the carrier
density profile using the transferatrix method of quantum diee simulation.

The basicstratgy of the carrierdensitycalculationis to add up the densitiesdueto
individual wavefunctionsover the enegy rangewherethe numberof incidentcarriersis
significant. The carrier density calculationis thus similar to the currentcalculation,but
therearesomeimportantdifferencesFigure4.9 helpsto illustratethe similaritiesanddif-
ferencesWith the currentcalculation,waves are incidentat only one contact,sincethe
transmissioncoeficient at a given enegy is the samein either direction (see Section
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4.3.1.2).Further ary enegy at which the T-contactis classicallyforbidden(dark shading
in Figure4.9) is not consideredandary calculationduringwhich a QTP is encountered
(mediumshadingin Figure 4.9) is simply abandonedin contrast,in the carrier density
calculation,all enepgiesat which thereare a significantnumberof incidentcarriersmust
be consideredThis includesthosecasesvherethe oppositecontactis classicallyforbid-
denor wherea QTP s encounteredThe resultis thatthe wavefunctionsof carriersinci-
dent from eachcontactmust be consideredseparately The distribution and range of
incident enggies are identical with the carrier density and current calculationsvbp

/‘EF,+15kBG Ux)
Emaxi Epr+15kgH
— EmaxT
L —>
=
2
S:j Er —
Err
[-Contact | System » T-Contact
[J Normal Transmission ] T=0(QTP) B T =0 (CF Contact)

Figure 4.9: Classes of carriers during carrier density calculation

Even carrierswhich have no transmission(T = 0, dueto a QTP or CF contact)
must be includedin the carrier density calculation.Carriersincident from each
contactmust be consideredseparatelysince the two contactsinclude different
enegy ranges.

Consideringthe carrier densitycalculation,then, given wavefunction)(x), which is
the normalizedpositionprobability amplitudeof a beamof carriersat enegy E, the car-
rier densitydue to this wavefunctionis simply |L|J(X)|Z. The total carrier concentration
requiresa summation(integration) over all wavefunctionsfrom eachcontact,eachmulti-
plied by therespectre numberof carriersincidentatthatenegy. In SQUADS, theintegra-
tion is actually carried out over wavevector k (4.4), ratherthan E, asin the current
calculation,which enablesan integration only over incoming waves from eachcontact.
Onceagin, SQUADS modifiesthe standardormulafor carrierdensity[10, 21] by allow-
ing different efective masses at the dwcontacts, ging:
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2
c(x) =r:—zl[3fg|w,T(x)|2In{l+exp[(EF,—E,)/B]}dk

2
r:;Bﬁm|L|Jn(x)|2'n{1+e><|o{(EFT—ET—qva)/B]}clk . (4.53)

+

4.3.5 Calculating the Wigner Function

Onefinal featureof the TMM simulatorin SQUADS is the ability to view the results
asa Wigner function f, (x, k). As discussedn Chapter3, the Wigner functionis a very
intuitive and efficient way to view the stateand operationof a quantumdevice. Like the
carrierdensityc(x), the Wigner function containsa compositeview of all wavefunctions
computed.However, the Wigner function also shavs the number of carriersat each
wavevector (which is proportionalto velocity) aswell as position, so it containsmuch
moreinformationaboutcarrierbehaior thanthe carrierdensityprofile. To maintainarea-
sonablecompleity in this discoursepnly the basicsof the Wigner function calculation
from individual wavefunctionsare presentedhere.The interestedeaderis referredto [1]
for details of the derivations and numerical implementationof this calculation in
SQUADS.

TheWignerfunctionf, (x, K) is calculatedrom the wavefunctionsvia anintermediate
entity: the densitymatrix p(x,, X,). The densitymatrix calculationis very similar to the
carrierdensitycalculatiort®, beingessentiallya summatiorof all wavefunctionsof signif-
icantamplitudein the systemHowever, insteadof addingprobabilities the densitymatrix
calculationusesa correlation of the wavefunctionamplitudeat one point with that at
another point. That is:

2
P(Xy, Xp) = :—Z'BJ':[LIJW(XDLIJTT(XZ)]'“[f(E|)]dk

2
r:;—BJ(_)m[qJTKXl)qﬁn(Xz)]ln[ f(Ep)]dk , (4.54)

+

where f(E|)=1+exp[(Er—E|)/B] and f(E;)=1+exp(Err—E+)/B] . Note that
P(Xy, X7) = c(X;). The Wignerfunctionis calculatedrom the densitymatrix via a series
of Fourier transforms at successifixed position:

15. In fact, SQUADS usesthe samesubroutineto calculatethe carrier density and the density
matrix, with only a fev lines of code specific to each calculation.
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fux 0 = | e p(x +yi2, x—y/2)dy. (4.55)

—00

It is notdifficult to shaw [1] thatthe Wignerfunctionf ,(x, k) is areal(asopposedo com-
plex) function. Figure4.10shavs the Wignerfunctionfor the RTD in Figure4.8,but ata
positive biasof 0.4 V. TheWignerfunctionwill be describedn moredetailin Chapters,
but for now notethe beam(smallridge) of carrierswhich have tunneledthroughthe RTD
and are ®iting the RTD to the right.
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Figure 4.10: Wigner function calculated from TMM wavefunctions

The TMM-calculatedWignerfunctionf (X, k) is shavn for anRTD at 0.4V bias.
The Wigner function shovs the numberof carriersversusposition and velocity
(actuallywavevector)in the device. The small beamof carrierstravelling at high
velocity into the Tcontact hge tunneled through the quantum well state.

4.4 Alter native Implementations

This sectiontreatsseveral alternatve implementationf the transfermatrix method
of quantumdevice simulation.As shavn, thesealternatves are often more accurateor
efficient than the standard implementation described in Sections 4.2 and 4.3.
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4.4.1 Node-Centeed Regions

One simple but significant modification of the TMM is to use node-centeredyrid
regions,wheregrid interfacesare half-way betweemodesratherthanat the nodes,asin
the (perhapauniversallyused)node-boundedridding schemeadescribedn Section4.2.2.
Themainbenefitof node-centeredriddingis depictedn Figure4.11,which shavs asim-
ple potentialprofile U(x), the pointsU , extractedfrom U(x), andthe piece-wise-constant,
node-bounde@ndnode-centeredpproximationgo the potentialasdeterminedrom the
U,. Node-boundedriddinguses U (x) = 3(U,,+U,) , which resultsin poor fidelity
to the actualpotential profile nearheterojunctionsas shavn. In contrast,node-centered
griddingusesU (x) = U,: the potentialapproximationof the region is just the potential
atthe nodein the centerof thatregion. Node-centeregridding tendsto give muchbetter
agreemenbetweenthe actualand piece-wise-constanotentials,even thoughthe grid
pointsx,, andpotentialvaluesU , areexactly the sameasfor node-boundedridding. The
fidelity of node-centeredridding is especiallygoodwhendevice layer widths are some
multiple of theatomicspacingn therealmaterialsandthe positiongrid nodesarespaced
onelattice constan@part,asdiscussedn Section4.2.2.This putsmaterialinterfaceshalf-
way between nodes, which coincides with the node-centegexhrimterbices.

Actual U(x)

Actual U(X) —>

(Node-bounded) - (Node-centered)

Figure 4.11: Node-bounded/node-centexd gridding and TMM potentials

TMM potentialapproximationdJ (x) for node-bounde@ndnode-centeredrid-
ding schemesreshavn. Node-centeredridding tendsto give significantlybetter
approximation of the actual potentla(x) near heterojunctions.

Thereis also no confusionwith node-centered@ridding aboutwhat to use for the
effective massin eachregion. As with the U, values effective massvaluesm,, aresup-
pliedto theTMM simulatorat the grid nodes For node-centeredridding, m,, in regionn
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is justthatat the associatediode.For node-boundedridding, the averageof the effective
masses at the wbounding nodes had to be used, as discussed in Section 4.2.2.

Sincenode-centeredridding is clearly superiorto the standardnode-boundedyrid-
ding schemethe olbvious questionis why node-centeredriddingisn’t the standardThe
factthatthe grid nodesandgrid interfacesarenot coincidentwith node-centeredridding
resultsin a morecomplicatedTMM implementatiorandcomputation.The main compli-
cations of node-centered gridding include the foilw:

* The transfematrix terms[i,] are slightly more complicated.

» Wavefunctionvaluesusedfor the STM calculation(at internodepoints) cannot

be reused during theawefunction calculation (at node points).

» More care is required in checking for QTPs and numexecflmw.

* The normalization algorithm (see Section 4.4.2.2) is more complicated.

* Linear potential interpolation (see Section 4.4.3) is more complicated.
Thesedifficulties requiremore carefulcoding,and are slower for somecalculations but
the useof node-centeredridding hassignificantbenefitsfor the simulation. Therefore,
SQUADS doesimplementthis gridding schemeThe detailsand complicationsof node-
centeredyridding[1] will notbecoveredin detailhere.However, thelasttwo issuedisted
above will bementionedagainin Sectionst.4.2.2and4.4.3.Sectionst.5.1and4.5.2com-
parethe accuray and computationalefficiengy, respectiely, of the node-boundednd
node-centered gridding schemes.

4.4.2 Alter nate STM Calculation Algorithms

The STM calculationschemedescribedn Section4.2.4is the moststraight-forvard
way to develop a relationshipbetweenthe I-contactand T-contactwavefunction coefi-
cients,and thusto solve for the currentor the rest of the wavefunction. However this
schemd?2, 7,17,19, 5], hereaftercalledtheinterfacealgorithm,is nottheonly reasonable
STM calculationmethod.This sectiondescribeswo others,the region algorithmandthe
normalizationalgorithm, which are often more efficient and more numerically robust
(have lesschanceof numericaloverflow). A comparisorof the computationakfficiency of
thesealgorithmsis givenin Section4.5.2.Both the normalizationalgorithm [4] andthe
region algorithm|[3, 8] have beenusedby othergroups.Most publicationswhich usethe
transfermatrix method do not describe the STM calculation algorithm used.
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4.4.2.1 Region Algorithm
The region algorithm follows the standardinterface algorithm dervation in most
details,but it is designedor fastcomputationof the STM, andthuscurrent.In the inter-

face approach, the STMaw calculated as (4.17):
N

snd = (004 = 1 450

n=0
From Section4.2.3,each2x2 transfermatrix [i,] is the productof two 2x2 matrix fac-
tors, one associatedvith region n just beforeinterfacen andthe otherassociatedvith
region n+1 justafterit, asindicatedin Figure4.12.Theregion formulationjust regroups

[sT™]= [in][in] |12 [ia
= line lin] Hicwaye] lion] B Hin] [in] Hio] i)
= [ine] Hine [igneye] B iz [12] Hin] o] Hio]
fine [ [rae] = [re] [ri o

= [in @ﬁl A E[i o] (4.57)

where the matrixéctors[r,] are associated withg®nn, as shan in Figure 4.12.

Region: n-1 n n+1
(System)
[In 1] [In]
an-1 ay An+1
ol e B i I
n-1 [ I n-l-] [ I n-1+] n [ I n-] [ I n+] n+l
-

Interface: n-1 [r,] n

Figure 4.12: STM factor matrix f or the region algorithm

The region STM calculationalgorithm groupsthe matrix factorsso that the two
matrices associated withgien n are used to compute transfer matgik [r
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Furtherdetailsof the region algorithm[1] will not be reproducechere,althoughthe
basic motivationsand issuesinvolved in its usewill be describedbriefly. (4.57) would
seemto entailthe sameamountof calculationas(4.17)for the interfacealgorithm.How-
ever, sincethereareonly threeregion types(CCA, CCF andCCN), thereareonly three
formsfor [r,] , while therearenineformsof [i,] (onefor eachregion pair). Furtheythe
[r,] canbesimplifiedmuchfurtherthanthe [i] , sinceall factorsof [r] involve solu-
tionsof the TISE in asingleregion. Finally, numericaloverflow, whichis a potentialprob-
lemin a CCFregionwith theinterfacealgorithm(seeSection4.3.2),is improved with the
region formulation.Whereasary [i,] involving a CCFregion containstermsof theform
exp(k,X,) (see[l]), termsin [r] areof theform exp(k, AX), whereAx is the (small)
positiongrid spacing Flat-bandregionsandquantumturning pointsarehandledthe same
in the rg@ion algorithm as in the intex€e algorithm (see Section 4.3).

Because[r ] is, in generalsimplerthan [i ] , theregion algorithmenablesquicker
calculationof the STM, and thus current, than the interface algorithm. However, the
regionformulationis notwell suitedto quick calculationof thewavefunction.Eachregion
matrix [r] transfershe wavefunctioncoeficient relationshipacrossregion n andhalf-
way throughthe next interface,ratherthaninto region n+1, Thus,the productmatrices
producedduring the region STM calculationdo not give the wavefunctioncoeficientsin
the rgions, although these can be computed with additiongt.w

4.4.2.2 Normalization Algorithm

Thethird STM calculationalgorithmimplementedn SQUADS is calledthe normal-
izationalgorithm.Its adwvantagesresimilar to thoseof the region algorithm,but it canbe
usedfor efficient calculationof boththe STM andthe wavefunction.Describingthe nor-

malization algorithm requiresweiting the transfematrix equation (4.12)

_an+1 _ |laatag| (@0 T 7 (80 458
i1 “

an+1fn+1(xn) - i11 i12 anfn(xn) =
_bn+1 gn+1(xn) i21 i22 n bngn(xn)

In words,thetransfermatrix equationsn the normalizatioralgorithmrelatenot the wave-

as

e
i !bngn(xn)_. (4.59)
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functioncoeficients(a andb) acrosgheinterface but eachcoeficienttimesits respectre
TISE solution(af andbg). Although(4.59)doesnt look simplerthan(4.58),thei,; - i,,
termsare muchsimplerto calculatefor eachof the solutionsof the TISE discussedh Sec-
tion 4.2.1.

As wasthe casewith theregion algorithm,the news is not all goodfor the normaliza-
tion algorithm. This formulationrelatesaf and bg, not just a and b, acrossthe device,
andf andg vary acrossgrid regions. To createa continuouschainrelationshipbetween
the solutionin the I-contactandthatin the T-contact,it is necessaryo include region
matricesto incorporatethis changeLuckily, the region matricesarequite simplefor each
of theregiontypesconsideredn Section4.2.1.Also, the elementsn theregion matrix for
a CCF region are of the form exp(k,,AX), asin the region algorithm, so the numerical
overflow danger is minimal with the normalization algorithm.

Onceagnin, the complicationsand details of implementingthe normalizationalgo-
rithm [1] will notbegivenhere,althougha few of theissueswill be mentionedFlat-band
contactregions are handledin the normalizationSTM calculationwith a single region
matrix for a entireregion. Quantumturning pointsarehandledasin the otherSTM algo-
rithms. Calculatingthe wavefunctionis actuallyslightly easiemwith the normalizationfor-
mulation,sincethe two piecesof the wavefunction(af andbg) aregivenby the process,
ratherthan just the coeficients. However, calculatingthe wavefunctionwith node-cen-
tered regions and the normalizationalgorithm requiresthe multiplication of two half-
region matrices to get thealue of the vavefunction at the center of thegien.

4.4.3 Piece-Wise Linear Interpolation

As mentionedn Section4.2.1,the TISE (4.1) is analytically solvablefor only a few
potentialfunctionsU(x). Thus far in this chaptey only constantpotentialregions have
beenconsideredput linear and parabolicpotentialsalso yield an analytically solvable
TISE. It is notdifficult to imaginethatusingsuchpotentialregionscould producea better
piece-wiseapproximationof the actual potential. Many groups|[7, 8, 19, 28-30] have
implementedhe TMM for linearpotentialregions,claiminga significantimprovementin
theaccurag of the TMM. 16 To testtheseclaimsand possiblyachiese betteraccurag, the

ability to handlelinearpotentialregionswasimplementedn SQUADS. This sectionover-

16. Apparently parabolic potentialsveanot been used yet in the TMM.
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views thisimplementationLatersectiong4.5.1and4.5.2)will considertheaccurag and
computational diciency of the piece-wise-linear potential approximation scheme.

The solutionof thetime-independen®chrodingeequation(4.1) for alinear potential
U(X) = cx+d is a linear combination of the Airy functions, Ai and Bi [31]:

Y(x) = alAi(2 +b Bi(2), (4.60a)
mc O (d—E)
z=yx+B  y = %E p=1Y — (4.60D)

Sincethe TMM is suppliedthe potentialvaluesU , atthe grid nodesthe obviousscheme
for creating linear potential gridgesns is simply to connect the points:

U, (x) = Q—i—”—}xu-ﬂ-'lg(x-xn_l) +U,, = cx+d, . (4.61)

n n-1

This adoptsthe node-boundedridding schemeandis shavn on the left in Figure4.13.
Also shawvn in Figure4.13is the node-centeredgiece-wise-lineaschemewhich clearly
haslesserror thanall other potentialapproximationsschemeget consideredHowever,
implementingnode-centeredridding with linear regions is problematic,requiring the
estimationof the potentialderivative atthegrid points.Thelocationof all abruptbandoff-
setsmustbeknown andaccountedor in this estimationpr theapproximatiorwill bevery
poor nearheterojunctionsFor all other gridding and potentialapproximationschemes,
only thepointsU,, hadto beknown. Dueto thedifficulty of handlinggeneraldevice struc-
tures, the node-centered, piece-wise-linear combination is not implementedADSQ

AE AE

Actual U(x) Actual U(x)

(Node-bounded) — (Node-centered)

Figure 4.13: Node-bounded/node-centexd regions with linear potentials

TMM potential approximationsU,(x) for the node-boundedand node-centered
griddingschemesvith linear potentialregionsareshavn. As with constanpoten-
tial regions,node-centeredriddingtendsto give a significantlybetterapproxima-
tion of the actual potential U(x) nearheterojunctionshut its implementationis
problematic.
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Given the TISE solutionin eachregion, the calculationof the STM, current,wave-
functions,carrierdensity and Wigner function proceedust as before.Again, detailsare
givenin [1], andwill not be repeatechere.A few significantdetailswill be mentioned.
First, notethatthe additionof a fourth region type increaseshe numberof possibleinter-
facetransfermatricesto 16 in boththeinterfaceandnormalizationSTM algorithms.This
makesthe division of the interfacetransfermatrix into two parts(eachof which hasonly
four possibleforms) quite essentialseeSection4.2.3). Adding a fifth region type (e.g.,
parabolic)in the future would further necessitatéhis approachA secondssueis thatthe
transfermatricesdo not simplify with linear regions as they did with constantregions
whenusingthe region andnormalizationformulations.This will be apparenin the com-
parisonof algorithmefficienciesin Section4.5.2. Quantumturning pointsare alsomore
difficult to locate,sincedeterminingthe decayphasds morecomplicatedFinally, numer-
ical overflow is apossibilitywith linearregions,regardlessof the STM algorithm(because
simplificationis not possible) . evenwhena QTP is not indicated.In particular the Bairy
function andits deriative grow exponentiallywith z. This occurs,for example,whenc
becomesvery small (a nearly constantpotential). This numericaloverflow is avoidedin
SQUADS by using a constantpotentialregion when z exceedsa (platform-dependent)
calculated limit, as recommended in [8].

4.5 Simulation Results

This sectionsenesa dual purposeFirst, it presentghe resultsof threeinvestications
of the relative merits of variousalternatve implementationdor transfermatrix method
simulation. Second, this section shavs the basic TMM simulation capabilities of
SQUADS. Thethreeinvestigationsincludea comparisorof linear versusconstanipoten-
tial region simulationresults(Section4.5.1),a comparisorof the computationakfficien-
ciesof thevariousSTM calculationalgorithms(Section4.5.2),andaninvestigation of the
significanceof usinga position-dependergffective masqSection4.5.3).All of thesesim-
ulationsusetheresonantunnelingdiode (RTD) showvn in Figure4.14 (andpreviously in
Figures 4.8 and 4.10). Simulation parameters used\ss belav the figure.

4.5.1 Accuracy of Linear versus Constant Btential Regions

As mentionedn Section4.4.3,mary groupsusingthe TMM for quantumdevice sim-
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Figure 4.14: Conduction band profile of RTD used in TMM investigations

ThetestRTD is shavn atabiasof 0.1V, andthe potentialis assumedo droplin-
early acrossthe central“active” region. The RTD is composedf a 5 nm GaAs
quantumwell between3 nm Al 3Gg, 7As tunnelbarriersand 3 nm GaAsspacer
layers.The GaAscontactiayersare19 nm each giving atotal simulationwidth of
L =55nm. Exceptin Section4.5.3,electroneffective massis assumedonstanat
0.0667m, andpermittivity is alsoassumedonstanat12.% . Also, thesesimula-
tionsuse86 positionpoints,10,000enegy points,andatemperaturef 77K. Dop-
ing on both sides is j+2e'8cm®.

ulation, claim thatusinga piece-wise-linea(PWL) potentialinsteadof a piece-wise-con-
stant (PWC) potential significantly improves TMM simulation accurag. This section
presentghe resultsof several TMM simulationsto determine at leastfor the RTD and
simulation parameters in Figure 4.14, whether these claimalkdle v

Thefirst setof simulationresultsareshavn in Figure4.15,which compareghetrans-
missionspectrum®(E) (transmissioncoeficient versusenegy) for the three potential
approximationschemedliscussedn this chapter.a PWC potential (both node-bounded
(NB) andnode-centere@NC) gridding) anda PWL potential. The mainresultis thatdif-
ferencesn thetransmissiorspectrumarequite smallthroughouthe enegy rangeconsid-
ered.In the critical first transmissiorpeak(throughwhich mostof the currentflows), the
shapeandsizeof the peakareindistinguishabldor thethreeschemesandthelocationof
the peakvariesby only 1-2 meV. The secondransmissiorvalley doesshov somediffer-
ence but therearevirtually noincidentcarriersat this high of enegy. Anotherconclusion
is thatthe PWC/NCschemas (asexpected)preferablehanthe PWC/NB approactsince
the PWC/NC spectrumis closerto the (presumably)more accuratePWL result. Finally,
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therelative locationsof the transmissiorpeaksarenot difficult to understandT he confin-
ing “strength” of the barriersis highestwith the PWC/NC schemeand lowest in the
PWC/NB case. A more confiningquantumwell shortenghe wavelengthandthusraises
theenepy of theresonanstate Of coursefransmissions greatesattheresonaneneny.

1.0 T T T | T T T T S =

- (see detail : ﬁ’ E '

- at rlght) e—o PWC/NB

I | . | =—=a PWC/NC .
0.8 |~ A B R oo - o =6 PWL/NB |- .

Detail of first peak

Transmission Coefficient

Energy (meV)

0.4 0.6 0.8 1.0
Energy (eV)

Figure 4.15: Transmission spectra ér the three potential appoximations

The transmissionspectra(transmissioncoeficient versusincident enegy) are
given for TMM simulationsof the testRTD at 0.1 V for a piece-wiseconstant,
node-bounded(PWC/NB) potential; a piece-wise constant, node-centered
(PWC/NC)potential;and apiece-wisdinear, node-bounde@WL/NB) potential.
Theinsetdetailsthefirst transmissiomesonancépeak).The PWC/NCspectrumis
closerthanthe PWC/NBresultto the (presumablymostaccurate PWL/NB curve.
However, all diferencesare relatively small. For example, the peaksin the first
transmission resonance are separated by only about 2 meV

A moredefinitive indicatorof electronicdevice operationis the current-wltage(l-V)
curve. Therefore Figure4.16shavs -V curvesfor theRTD in Figure4.14usingthethree
potentialapproximatiorschemesOnceagain, thedifferencedetweerthe PWCandPWL
simulationsarerelatively small. The inevitable conclusionfrom thesesimulationsis that
usinga PWL potentialdoesnot changethe simulationresultssignificantlyfor this (very
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typical) device,andtherefords notsignificantlymoreaccurateAs thenext sectionshows,

usinga PWL potentialalsocomesat a high computationaprice. SQUADS thereforeuses
the PWC/NCschemeasdefault. It is worth noting, however, thatmoresophisticatedgrid-

ding algorithmscouldusea singlelargelinearregion for extendedyelatively linearpoten-
tials. In fact,the RTD in Figure 4.14 could be exactly representedby 5 linear potential
regions betweentwo constantpotentialregions,which would resultin an extremelyfast
simulation. This wenue is quite wrthy of further irvestigation.

25 [ g  ——— E
; ; o PWC/NB
2.0 [ Y —_— &—= PWC/NC |-
i < i s— PWL/NB

15 g | T IS /

1.0 ““““ """""""" oo

Current Density (10° A/cm?)

0.0 0.1 0.2 0.3 0.4
Applied Bias (V)
Figure 4.16: |-V cur ves br the three potential appoximations

Current-wltagecurvesfor thetestRTD areshavn for TMM simulationsusinga
piece-wiseconstanthode-boundedPWC/NB) potential; a piece-wiseconstant,
node-centered(PWC/NC) potential; and a piece-wise linear, node-bounded
(PWL/NB) potential.Thedifferencesaresmall, meaninghatthe PWL schemadid
not yield significantly more accurate results in this case.

4.5.2 Efficiency of STM Calculation Algorithms

This chapterdescribedhe threesystemtransmissiommatrix (STM) calculationalgo-
rithmsimplementedn SQUADS andusedby otherresearcherghe interface,region, and
normalizationalgorithms.This sectioncomparesherelatve computationaéfficienciesof
thesealternatve STM calculationalgorithms(which give identicalresultsfor the STM),
bothfor currentdensityandcarrierdensitycalculationsNote thatdeterminingthe carrier
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densityrequirescalculatingthe wavefunctionat all points,andis thereforea supersebf
thecurrentdensitycalculation(which only requireshewavefunctionto beknown atasin-
gle point).17 Also, notethateachof the STM algorithmscanbe usedwith any of thethree
potentialapproximationschemesnvestigatedin the previous section.All nine resulting
combinations will be compared.

Table 4.1 summarizeshe resultsof thesesimulations,giving the computationtimes
(in secondsjor all ninecombinationsaandfor boththe currentdensityandcarrierdensity
calculationsat a singlebiaspoint (0.1V) for the RTD in Figure4.14.Thefirst conclusion
from theseresultsis thatthe mostefficient STM calculationalgorithmdepend®nthegoal
of thesimulation.If only currentdensityis needede.g.,for thel-V curwe),thentheregion
algorithmis optimalfor all threepotentialapproximatiorschemesk-or carrierdensitycal-
culations,the normalizationalgorithm is optimal, except for the PWL potential case.
However, the commonlyusedinterfacealgorithmis not far behindthe mostefficientalgo-
rithm in any of the calculations,and is thereforethe bestsingle choice. As a result,
SQUADS usesthe interfacealgorithmunlessinstructedotherwise.Finally, note that the
PWL potentialrequires2.5 - 5 timesas much CPU time asthe equvalentPWC simula-
tion. Thereforeasmentionedn the previous section,usinga PWL potentialis not worth
the effort for generalquantumdevice simulation, contraryto claims in the literature.
Undoubtedly further innovations in these(and possibly other) STM calculationalgo-
rithms could significantly modify these conclusions about the misieat algorithm.

4 5.3 Constant wersus \ariable Effective Mass

Sections4.5.1and4.5.2investigatedtwo aspectof the numericalimplementatiorof
the transfermatrix methodof quantumdevice simulation. This sectionpresentsa more
device-orientedexampleof the useof TMM simulation.In particular this sectioninvesti-
gatesthe importanceof using a position-dependergffective massfor accuratequantum
device simulation.All previoussimulationsn this chapterandmary quantumdevice sim-
ulationsin the literature,assumea constanteffective mass.Of course,in real systems,
effective massvarieswith material.For example,the testRTD in Figure4.14 shoulduse
aneffective massof about0.092m, in thetunnelbarriers,notthe 0.0667n, thathasbeen

17. SQUADS doesnot implementthemthis way, however. The currentdensityis implementedas
an intgyral over enegy, while the carrier density is implemented as argiatieorer wavevector
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Table 4.1: TMM computation times for STM calculation algorithms

Computationtimes (in secondspareshavn for TMM simulationsof the testRTD

at0.1V for thethreepotentialapproximationschemesmplementedn SQUADS

[piece-wiseconstant,node-boundedPWC/NB); piece-wiseconstant,node-cen-
tered (PWC/NC); and piece-wiselinear, node-boundedPWL/NB)], and for all

three STM calculation algorithms (interface, region, and normalization). The

region algorithmis the mostefficient for the currentdensitycalculation,while the

normalizatioralgorithmis optimalfor the carrierdensitycalculation However, the

interfacealgorithmis all-aroundperformer Simulationsusingthe PWL potential
were3 timesslowver on averagethanthe equivalentPWC simulationswhile giving

little additionalaccurag. CPU times are averagedover 3 runson a DECstation
5000-200.

Caleulation ) Pote.ntial' STM Calculation Algorithm
pproximation | erface Region Normalized
Current PWC/NB 24.9 22.3 26.5
bensity  "eweine 24.4 21.6 30.2
PWL/NB 92.0 88.1 146.4
Carrier PWC/NB 74.4 87.9 67.7
bensity  "pweine 76.7 90.2 76.2
PWL/NB 198.2 257.0 289.2

assumedhroughouthe RTD. Usingthe correctbarriereffective masswill make the barri-
ersmoreopaquewhich will decreaseurrent.Figure4.17compareghe TMM simulated
I-V curve for a position-dependergffective masso thatsimulatedpreviously with afixed
effective mass Clearly, the useof a position-dependergffective massis crucialfor accu-
rately modelingquantumdevices. This conclusionalso hasimportantconsequencefor
the implementation of a her function method simulatass discussed in Chapter 5.

4.6 Summary

This chapterhasdescribedhe transfermatrix methodof quantumdevice simulation
andits implementatiorin SQUADS. Althoughthe TMM is the simplestandleastcompu-
tationally demandingmeansof simulating quantumdevices, this chaptershavs (even
without presentingmost of the details)that theseare relative figuresof merit. Specific
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Current-wltage curves for the testRTD are shovn for TMM simulationsusing
either a fixed or a material-dependentand thus position-dependentgffective
massSincethel-V curvesdiffer significantly useof the material-dependeretffec-
tive mass is important for accurate quantuwiagesimulations.

resultsincludedconclusionsaboutthe mostefficient algorithmsfor computingthe system
transmissiormatrix, the startingpoint for all TMM analysis. Anotherresultcontradicted
claimsin theliterature:usinga piece-wise-lineafinsteadof a piece-wise-constanpoten-
tial wasfoundto malke little differencein thesimulationresult,andrequiredaboutafactor
of 3 morecomputatiortime. Therefore the piece-wise-lineamodificationwasnot worth
theadditionalcomputationFinally, it wasshavn thatusinga position-dependergffective
massjnsteadof assuming fixedeffective massasis donequite oftenin theliterature,can
produce ery inaccurate simulation results, and therefore shouldddea.

Perhapsnoreimportantthantheseparticularconclusionss the evidencethesenvesti-
gationsprovide that SQUADS providesa foundationfor the studyof quantumdevice sim-
ulators (as well as quantum device operation) that is broad (mary alternatve
implementationgo work with), strong(well-tested),efficient, and extensible. SQUADS
handlingof severalof thecomplicationsof TMM simulationweredescribedincludingthe
incorporationof contactflat-banddor efficiencgy, theimplementatiorof CCN regionsand
guantumturning pointsfor robustnessandaccurag, andotherprotectve measuresaken
against numericaleerflov and round-dferror.

The TMM is avery usefulmethodof quantumdevice simulation,allowing thetracing
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of current-wltagecurvesandthe calculationof carrierdensityprofiles.However, onevery
importantvariablehasbeenconspicuoushabsenin this entirechaptertime. The TMM is
basedon thetime-independen&chrdodingeequation As aresult,the TMM cannot speak
to ary transienteffect in, or operationof, quantumdevices. On this basisalone,andin
spiteof its capabilitiesandefficiengy, the TMM cannot sene asthe (sole)basisof agen-
eralquantumdevice simulator In contrastthe Wignerfunctionmethodof quantumdevice
simulation,whoseimplementationn SQUADS is describedn the next chapterdoeshave
the necessargapabilities.Neverthelessthe TMM in SQUADS senesseveral important
functions in quantum dice analysis, as outlined in Section 3.5.3, including:

« efficient simulationof a wide rangeof structurego determinewhich meritmore

detailed study (by Wner function method simulation),
* high resolution engy spectrum ivestigations,
* a reality check on Wner function method results, and

« faster implementation and testing of simulator enhancements.
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Chapter 5

The Wigner Function Method

The Wignerfunctionmethod(WFM) of quantumdevice simulationwasintroducedn
Section3.4.2.4.The WFM is basedon solving the Wigner function transportequation
(WFTE), which describeshage carrieractionin a quantumsystemin the sameway that
the Boltzmanntransportequation[1] doesfor classicalsystemslin particular the WFTE
describeghe evolution of the Wigner function f (X, k), which containsboth densityand
velocity information of carriersin a quantumsystem.The WFM solvesfor f,(x, k) ata
discretesetof pointsin thesimulatedsystem Givenf, (x, K), it is asimplematterto calcu-
late aggrgate quantum deéce operation measures such as current and carrier density

This chapterdetailsthe numericalimplementationof the WFM in SQUADS. As in
Chapter, thelevel of mathematicatompleity is mitigatedby placingmoredetailedder-
ivationsin the SQUADS Tedhnical Refeence[2]. Theoutline of this chapteris asfollows.
Section5.1 givesa brief review of the history of WFM simulation.Section5.2, describes
in somedetail the analytical equationsinvolved in the Wigner function formulation of
guantummechanicsincluding the Wignerfunctiontransportequation.The discretization
of the WFTE for numericalsolutionis detailedin Section5.3. Section5.4 discusseshe
advancedmemory utilization schemesusedin SQUADS to reducethe relatvely large
memoryfootprintof WFM simulations Finally, Section5.5 presentsheresultsof several
simulations produced with the WFM capability in S&DS.
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5.1 History and State of the Art

The Wigner function formulation of quantummechanicsvas derived over 60 years
ago[3], althoughits usein quantumsystemsimulationspanonly thelast15 years.How-
ever, becausef the vastknowledgeof numericalsimulationfor otherpurposesandwith
the rapid advanceof computationakapabilities,the functionality and accurag of WFM
simulatorshave improved greatlyover this relatively shortperiod.This sectionprovidesa
brief review of the historyandstateof theartof WFM simulation.JenserandGanguly[4]
also gve a brief regiew of WFM simulation research.

The first usefulnumericalimplementatiorof the WFM wasaccomplishedy Kluks-
dahletal. [5, 6], who simulateda Gaussiarwave pacletin a quantumstructurejncluding
asimplescatteringnodel.Frensle [7-9] reportedthefirst successfusimulationof RTDs,
usingtwo significantimprovementso the WFM: upwind spatialdifferencingandbound-
ary conditions(to simulateohmic, dissipatve boundariespndbackward Eulertime differ-
encing(to avoid divergenttransientsimulations) Both groupslateraddedself-consisteng
to their WFM implementation$10, 11]. Jenseretal. furtheradvancedhe WFM by using
asecond-ordetime andspatialdifferencescheme$12, 13]. They thenusedthesefeatures
in quantumparticle-trajectorystudieg 14, 15], self-consistenttransientRTD simulations
[16, 17], and field emission simulations [4, 18].

During just the pastfive years,Tsuchiyaet al. [19] implementeda position-dependent
effective masscapability Gullapalli et al. correctedthis model[20], andalsoinvesticgated
improved spatialdifferenceschemeg21]. Miller andNeikirk demonstrate@ multi-band
formulationof the WFM [22]. Wu andWu implementedhe WFM including anin-plane
magnetidield [23]. Zhouetal. investigatedthe useof quantummomentequationglerved
from theWignerfunctionformulation[24] (similar to dervationsbasedn the Boltzmann
transportequationfor classicalsystems)Finally, Mains and Haddad[25] recently pro-
poseda significantlydifferent(andpurportedlymoreaccurate humericalimplementation
of the WFM, although this approach has yet to be demonstrated.

The remainderof this chapterdescribesSQUADS’ implementationof the Wigner
function method of quantumdevice simulation. This implementsvirtually all of the
schemesisedby otherresearcherdyut in a singlenumericaltool. Oneof the conclusions
of this chapteris the determinationof the relative strengthsand weaknessesf various
numerical implementations of the WFM.



5.2. Analytical Description 111

5.2 Analytical Description

This sectiondevelopsthetheoryandconceptsecessaryo describethe Wigner func-
tion method.It largely follows the approachusedin developingthe backgroundor the
transfermatrix methodin Section4.2. In several casesthe readeris referredto that sec-
tion, ratherthanrepeatingts detailshere.Somematerialis repeatedn orderto introduce
notation appropriate to the WFM.

5.2.1 The Wigner Function Transport Equation

In Chapter3, the Wigner function was denotedf (r, k, t) to differentiateit from the
classicaldistribution functionf (r, p, t), sincebothcanbewritten with the sameindepen-
dentvariables.Thereshouldbe no confusionin this andfuture chaptersso the Wigner
functionwill hereafterbe written asf insteadof f,, to simplify notation.With this nota-
tion, the fairly generat 3-D form of the Wigner function transportequation(WFTE) in
Equation (3.5) becomes:

of , cpkpf 1. .cdk' _K oy = @f 0
ot * ooy ol 2n (VO kKK o) = BRf (5.1)

To assesshe memoryrequirement®f solvingthe discreteWFTE, assumel00 pointsare
requiredin eachdimension(position and wavenumber)to adequatelyresole physical
processeg.With typical positiongrid spacingof 0.5 nm, this would allow the simulation
of a50 nm quantunregion. In the numericalsolutionof the WFTE, thereis oneunknowvn

and equationfor eachnodepoint. A 3-D simulationwould then have 100 = 1 trillion

equationsand unknavns. Even storing the Wigner function f(r, k) in this casewould

require8 TB, andthe equationsvould requireat least100 timesas muchstorage .Thus,
numericallysolvingthe 3-D WFTE is beyond presentomputingtechnologyln 2-D, stor-
agerequirements$or thenumericalequationsvouldstill bein the100GB rangelt is clear
why in Chapter3 this work waslimited to quantumsimulationin 1-D. Evenin 1-D, the
WFTE is relatively formidableto solve numericallyfor quantumsystemsof interest,as
later sectionsof this chaptershow. It is the goal of SQUADS to implementthosefeatures

that are both necessaryor accurag and feasiblefor numericalsolution on a scientific

1. This equationdoesmalke two importantsimplifying assumptionsthateffective massis position-
independent, and that particles do not interact directly
2. 100 points may beverkill for some dimensionsubit will be inadequate for others.
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workstation.This goal demonstratethe classicaccurag-versus-diciency trade-of. It is
the purposeof this sectionto introducethe form of the WFTE usedin SQUADS after
describingheotherchoicesnadein implementinghe WFM in SQUADS basednareal-
istic evaluation of this trade-of

The derwvation of the form of the WFTE usedin SQUADS is ratherinvolved, so the
details [2] will not be repeated here. The resulting equation is:

1 .dk
o) 2n

wheref(x, k, t) is the 1-D Wigner function (particles/cn) at positionx, wavenumberk,

) hk o 0
_ - — k' ! —_ = | i
’tf(X’ k, t) + maxf(x, k t) + V(x, k=K)f(x K1) atf(X, k,t)C , (5.2

andtimet; h = h/2m is thereducedPlanckconstantAlso, V(x, k), calledthe non-local
potential,is calculatedfrom the real potentialU(x) via a Fouriertransform[2], which in
this case simplifies to:

V(x k) = ZJg’dy sin(ky) [U(x +3y) —U(x—3y)] . (5.3)
Finally, thescatteringerm (0 f /dt) . almostuniversallyusedin WFM simulationgwhere
scattering is included at all) is the relaxation-time approximation:

9 £ix k, t)‘ - Uk, t)—%c(x, ), (5.4)
it c T c X, t)

wherert is the relaxation timeg is carrier densityand “eq” indicates equilibrium.
Althoughthederivationof (5.2) will notbedetailedhere,it is necessaryo mentionthe
approximationsmadein this dervation. Theseapproximationsare describedin more
detail in [2].
* TheWFTEin (5.2) wasderived from the effective massform of the Schroédinger
equation - the same Schrodinger equation used in the tramafex method.
* A single enegy band minimum and associateceffective masswere assumed.
However, SQUADS correctly treats multiple, non-interacting egyebands.
» Carrierswereassumedo interactonly asa distribution. As a result,f(x, k, t) is
the scaledone-particleWigner function for a mixed state(i.e., a carrierin a
superposition of engy states).
» The efective mass w&s assumed to be position-independent.
» The scatteringrate was assumedo be governedby a single relaxationtime 1
throughoutthe device. Scatteringhereforeis independentf theinitial andfinal

enepy (i.e., wavevector).
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To easdéheintroductionto the WFM, severaladditionalsimplificationsaremadein the
descriptionof the WFM in this chapterFirst, self-consistengis notenforcedn this chap-
ter, althoughit is treatedn detailin Chapter6. Also, the boundaryconditionsaretakento
be fixed (time-independent)and given by the equilibrium Fermi-Dirac distribution.
Finally, althoughthe scatteringermis includedin the derivationsin this chaptey simula-
tions in this chapterassumezero scattering.Someexamplesof the importanceof this
effect are gien in Chapters 6 and 8.

5.2.2 Gridding and the Potential Profile

As with the time-independenEchrédingerequation(4.1) usedin the transfermatrix
method,the WFTE (5.2) usedin the Wigner function methodalsocannot be solved ana-
lytically for the kinds of potentialprofilesU(x) occurringin eventhe simplestquantum
devices, such as the resonanttunneling diode. Therefore,a numerical solution of the
WFTE mustbe attemptedat a finite numberof positionpoints. SQUADS usesthe same
algorithmsin theWFM asin the TMM (seeSection4.2.2)to selectthe positiongrid points
X;, calculateelectrostaticpotential U; at thesepoints, and determinethe electrostatic
potential boundary conditions. These algorithms are summarizes. belo

SQUADS uses a uniform position grid with node points x; = iAX, where
i10{0,1,...,N,}, asshavnin Figure5.1. Thetotal simulationwidth isL = N,Ax. As
discussedn Section4.2.2,Ax shouldbe equal(asnearaspossible)to the lattice spacing
of the material.Note by comparisorof Figures4.3 and5.1 thatthe mostcommonly-used
namedor the two contactsaredifferentin the TMM andWFM, andthatgrid regions(in
contrast to the grid nodes) no longevéda significant role in the WFEM.

Emitter E< System >i Collector
' I
. Py o ' ° -— >
Node (i): O 1 2 cee Ny-2 Ny-1 Ny
Position: 0 Ax  2AX s N, Ax=L

Figure 5.1: SQUADS position grid scheme

SQUADS usesa uniform positiongrid, x; = iAx, at which pointsdevice parameters
(e.g.,bandoffset,doping)aresuppliedandsimulationresults(e.g.,carrierdensity cur-
rent density) are calculated.
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TheelectrostatipotentialU; atgrid pointsx; mustbe suppliedto the WFM simulator
to performthe numericalsimulation.As discussedn Section4.2.2, SQUADS definesthe
Fermienegy at emittercontactasthe referencesothatthe potentialat the collectorcon-
tact is set by the applied bislg. Thus, contact potentials are:

Uy = —Ere, (5.5a)

Unx = —AVa—Erc, (5.5b)

whereq istheelectronchage, E ¢ istheFermienegy (relative to theenegy band)atthe
emittercontactandE. is thatatthecollectorcontact.The potentialvaluesattheinternal
grid nodesare suppliedto the WFM simulatorby SQUADS using a suitablealgorithm.
Theexamplesin this chapterusea linear profile algorithm,leaving the discussiorof self-
consisteng (i.e., consisteng betweerthe potentialprofile andthe carrierdensityprofile)

to be presented in detail in Chapter 6.

5.2.3 Boundary Conditions

Anotherissueto be settledbeforeperforminga WFM simulationis the determination
of boundaryconditions(BCs). The WFTE (5.2) containsa first-orderspacialderiative,
meaningthatthe solution(i.e., the WF) mustbe specifiedat one positionpoint (for all k)
to make the WFTE solvable. However, thereare two systemboundarypointsto choose
from. Theissueof how to specifythe BCsin a physically-basednanneywhile not over-
constrainingthe system hasbeendiscussedt lengthby severalresearcherglO, 26, 27].
As statedin Section3.3, the ability to use corventional boundaryconditionswith the
WFM is one of its strongestadwantagesThe almostuniversally agreedupon choicein
WFM simulationss to implementideal ohmic contactswith the carrierreserwir on each
side of the systembeingin equilibrium with the local potential.Only the distribution of
carriersenteringthe systemat eachelectrodas specifiedwhile thedistribution of carriers
exiting the systemat eachelectrodeis determinedby the simulation,andis irreversibly
absorbednto the contactreserwirs. As indicatedin Section5.2.1,the BCsfor the WFM
will betakenassimply half of anequilibrium Fermi-Diracdistribution® at eachelectrode,
integratedover trans\ersemomentato make themappropriatefor 1-D. TheseBCs were
first applied to the WFTE by Frengl{9]:

3. SQUADS alsoimplementdrifted Fermi-DiracBCs,which automaticallynaintaincurrentconti-
nuity at the contacts. Noxamples of these BCs are contained in this manuscripgven
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f(x=0,k>0) = aln{1+exp{—B(K(K) —Er)]} . (5.6a)
f(x=L,k<0) = aln{1+exp[-B(KK) —Ero)]} . (5.6b)

whereE., andE. arethe Fermienepies(a.k.a.Fermilevels)atthe contactgseeFigure

5.2),K is kinetic enayy, and:

h?Kk*

_ 1 _h
B=kB—T KK = 5 (5.7)

m*
B
To determinethe Fermilevel at eachcontact(or at ary otherpoint, assumingequilib-

b

rium), SQUADS takesthe Joyce-Dixonapproximation28] asaninitial guessandusesa
Newton iterationto determinethe exact value. At equilibrium, the Fermilevel is correct

when the carrier concentration equals the doping dehsity

5.2.4 Carrier and Curr ent Density

Having specifiecthe potentialprofile in the device giventhe appliedbias,andwith the
necessarpoundaryconditions,t is now possibleto solve the WFTE for the Wignerfunc-
tion f(x, k, t). The detailsof solvingthe WFTE are coveredin Section5.3. Assumingthe
Wignerfunction hasbeencomputedthis sectionshavs how to calculatefrom it the other
information needed about quantunvide operation, namely current and carrier densities.

Section3.3 statedthat all obsenables(quantum-speator physical quantities)canbe
calculatedirom the Wigner function just asthey arefrom the classicaldistribution func-
tion. Thecarrierdensityandcurrentdensityaretwo examples Sincethe classicalistribu-

Collector

U(x)

———— -- Erc

Figure 5.2: Typical potential with applied bias and boundary conditions

SQUADS usesthe emitterFermilevel asthe enegy referencg Ez = 0), ratherthan
the emitter electrostatic potenti&l(x = 0) = 0].

4. SQUADS assumes full dopant ionization and no local electric fields in this calculation.
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tion function f(x, k) gives the density of carriers versus position and wavevectoy
integratingover wavevectorgivesthe carrierdensityc(x) versuspositionalone[29]. Sec-
tion 3.1.20f the Squadslednical Refeence[2] givesamorerigorousderivationof calcu-
lating the carrier density from theiyvier function, with the result:

c(x 1) = Zi - [k f(x, k.0, (5.8)

The analytic expressionfor calculatingthe currentdensity J(x, t) from the Wigner
functionis likewise givenin [2], in Section3.1.3.Two approachesre usedtherein,the
lessrigorousof which calculatescurrentdensityas(chage) x (density)x (velocity), inte-
grating over velocity (wavenumber).The more rigorous derivation requiresthe steady-
state carrier density and current density to satisfy the continuity (or conseration of
chage) equation. In both cases, the current density is found to be

I(xt) = 23[:0 felickf (x,k, 1) (5.9)

Note thatin steady-stategurrentdensityis independentf position, sincechage is not
accumulatingor depletinganywherein the device. This fact will be usedin derwving
numerical &pressions for current density

This completeghe analyticaldescriptionof WFM simulation.In summary a WFM
simulationinvolvesthreesteps:determinethe potentialprofile at the given appliedbias,
solve the WFTE (5.2) for the Wigner function, and calculatedesiredquantitiessuchas
currentdensityfrom the Wignerfunction. Thefollowing sectiondiscussefiow thesesteps
are implemented in SQADS.

5.3 Numerical Implementation

As with the time-independentSchrédingerequationused in the transfer matrix
method,eventhe simplified WFTE in (5.2) canonly be solved analyticallyfor afew very
simplecasessuchasasingleelectronin aconstanpotentialU(x, t) = U ,. For ary useful
guantumdevice, the WFTE mustbe solved numerically producinga numericalapproxi-
mation(ratherthanafunctionalexpression¥or the Wignerfunction. Thus,thethreesteps
describedabove of a WFM simulationmustbe corvertedinto numericalexpressionsand
algorithms suitable foreecution on a digital computer

At leasttwo generalapproachefiave beenappliedto solving the WFTE for useful
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guantumsystems:the methodof momentsand numericalsolution. With the moment-
method[24, 30], the Wignerfunctionateachpositionis assumedo bea perturbedversion
of theequilibriumWignerfunction,andthe WFTE is simplifiedbasedn this assumption.
This approachmaybe usefulfor multi-dimensionablevice simulation.For essentiallyl-D
guantumsystemssuchasthe RTD, the moregeneralandaccurateapproactof numerical
solutionis feasible.By this approachthe solution of the WFTE (which is the Wigner
function)is soughtatadiscretesetof points.Theprocedurdor calculationof the potential
atthegrid nodeswasdiscussedn Section5.2.2.Theremainingtwo stepsaredescribedn
this section,asimplementedn SQUADS. In particular this sectiondescribeghe proce-
dureof calculatingthe Wigner function and otherdevice operationinformationon a dis-

crete domain.

5.3.1 Discretization of the Independent \ariables

In numericalsimulationof physicalsystemsthefirst stepin solvingtherelevantequa-
tion(s) is discretizationof the problemdomain(i.e., all independenvariables).With the
(inherently steady-statejransfermatrix method,therewere only two independenvari-
ablesin the problemdomain:positionx andenegy E. The statefunctior? in the TMM is
thequantumwavefunction,y(x, E) 5 Recallthattypically thousand®f wavefunctionshad
to be simulatedat closely-space@negiesto calculatecurrent.With the Wigner function
methodof quantumdevice simulation,the Wigner functionf(x, k, t) is the single,aggre-
gatestatefunction,encapsulatingositionandvelocity informationof all of thecarriersin
the system.However, it containsthreeindependentariables:position x, wavevectork,
andtime t. Eachof thesevariablesmustbe convertedinto a setof discretepointsat which
all functions[suchasthe Wigner function f(x, k, t)] will be computed Frenslg [9] has
doneanexcellentjob of describinghow the discretizationof theseindependentariables
is chosenfor the WFM. This sectionis an abbreviated presentationof the decisions
involved and the resulting discretizations.

Sectionst.2.2and5.2.2have alreadyexplainedSQUADS’ useof a uniform, 1-D posi-
tion grid, with nodepointsx;, = iAx, wherei {0, 1, ..., N,} andL = N,Ax. In defin-
ing the wavevectorgrid belov, anothemotivationfor usinga uniform positiongrid arises

5. The state function contains the statg.{location, elocity) of chage carriers in the system.
6. The enagy-dependence af was usually implicit in Chapter 4.
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in the WFM.
In orderto specify the wavevectorgrid (k-grid), considerfirst the calculationof the
non-local potential (NLP) in (5.3), which iswatten here:

V(x k) = 2[gdysin(ky) [U(x+3y) ~U(x=3y)] . (5.10)
Whenthe problemdomainis discretizedthe Fouriertransformabove becomes discrete
Fouriertransform(DFT). Propertieof the DFT make the specificationof the k-grid and
y-grid stronglyinterdependentirst, the DFT ideally takesa discretefunctiondefinedon
auniformgrid asinputandproduceghe sameasoutput:boththey-grid andk-grid should
be uniform.” To minimize computatiorandmaximizereuseof U(X) values,a uniform x-
grid is usedwith Ay = 2Ax.8 In fact,it wasarguedfor otherreasonghatU(x) shouldbe
definedonly on a uniform x-grid, sothis works out perfectly The numberof pointsNy in
they-grid is as yet unspecified. Thus, thegrid as defined sa@&f is:

Ji = 21'AX i"0{0,1, ..., N} Ny =% (5.11)

Therange of thek-grid is also determined by the properties of the DFT [31]:
(k Kmin) = 2TVAY = TVAX.. (5.12)

max
Oneis freeto choosek,,,,, or k.;, asappropriatdo the problem,sincea DFT functionis
periodicwith period (K,.x—Kmnin) - IN this case carriersflowing in both directionsmust
be modeledandrecallingthatwavevectoris proportionalto velocity, SQUADS usesa k-

range centered around O:

Kmax = —Kmin = 3(Kmax— Kmin) = TV 24X . (5.13)
Notethatanunsuitablylarge valueof Ax mayresultin a small k-rangethat missessome
high-enegy carriers.To preventthis, N, mustbelarge enoughto producea smallAx and
therebyalargeenoughk,., to captureall of thesignificantcarrieraction.It turnsoutthat

with Ax equalto thelattice spacingasdiscussegbreviously, k... is almostcertainlysuffi-

max
ciently lage for an accurate simulation.
The numberof pointsN, in the k-grid hasnot yet beenchosen.The only constraint

hereis thatadiscretefunctionandits DFT will have thesamenumberof points.9 SinceNy

7. Although DFTs canbe computedon non-uniformly-spacedata,the simplicity andaccurag of
the DFT calculation are greatly imwed if the data is uniformly spaced.

8. TherelationshipAy = 2Ax is universallyusedin WFM simulation,but its necessitys not mani-
fest.However, for implementingself-consistengvia the Newton method(seeChapter6), this rela-
tionship is @en more dificult to avoid.
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is asyet unspecifiedN, is selectecasdesiredand Ny will be determinedy this choice.
The result is:

_ (kmax_kmin) _ Tt
Ak = N = Nax (5.14)

For the actualvalueskj, SQUADS follows the analysisof Frenslg [9]. He obsered that
solving the discretizedWFTE is more complicatedif k = 0 is taken as one of the kj.
Thus, thek-grid is designed to straddle 0, meaning thais even, and:
I . 0 . .
kj = ENK—A—;([J —-Z(Nk-l)]g jO{0,1,...,N-1} N, is even. (5.15)

The phase-spacé.e., position-\elocity) grid schemeusedfor WFM simulationsin
SQUADS is summarizedgraphically in Figure 5.3 [9]. In addition to the position-
wavevectorgrid, Figure 5.3 also shaws the “incident-particle” boundaryconditionsused
for the WFM, as discussed in Section 5.2.3.

Thefinal independenvariablein the WFTE is time t, whichis only usedin transient
simulations.To performatransiensimulation,thesolutionatt = 0 is first determinedy
solvingthe WFTE in steady-statenode(i.e., with the transienttermof /0t setto 0). The
solutionis thenis advancedin smalltime stepsA,, with thetransientermincluded,until
the completion criterion for the simulationis reached(either steady-stateor N, time
steps).SQUADS usesa fixed A, but the determinationof an appropriatevalue for A,
dependsstrongly on the form of the discretetransientterm, which issueis discussedn
Section5.3.3.5.Thediscretizedime-domainusedin SQUADS, asfarascurrentlyknown,
¥
= nAt n0{0,1,...,N} At = *. (5.16)

n

5.3.2 The Discrete WFTE Matrix Equation

This sectionformalizesthe notationusedin writing the discreteWFTE. Statingthe
discreteWFTE in a standardorm is a significantsteptowardsits solution,sincegeneral
solutionapproachesanthenbeapplied.For simplicity, the steady-stateases considered
first.10 The steady-state WFTE is written:

9. Actually, they have the samenumberof deggreesof freedomFor example,if afunctionis realand
its DFT isimaginary the DFT functionwill have only N/2 points,althougheachpointhasrealand
imaginary parts. The DFT and IDFT are information-conserving operations.
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Figure 5.3: WFM phase-space grid scheme

The phasespace(i.e., position-wavevector) grid usedto discretizeand solve the
WEFTE is shavn for the simplecaseof (N, = N, = 8) . Thereis oneequationfor
eachinternal,unknavn (x, k) pair (opencircles).Theincomingboundarycondi-
tions are shovn asfilled circles. The numberof position points, N, , wavevector
points (N, ), andthe position grid spacing(Ax) are all independentlyspecified.
The k-grid includesboth positve and negative velocities, straddleszero due to
numerical concerns, ard, ., = T/ 2AX.

1k 0 1 dk’ , N 1 %K) _
ma—xf(x, k)+hj’2nV(x,k—k)f(x,k)+T{ Ceq(X) c(x)—f(x,k)| = C. (5.17)
In the discrete domain, the steady-staign®r function becomes:

(x KO f(x, k) =f;. (5.18)
Solving the steady-stateliscreteWFTE meanscomputingthe value of the Wigner func-
tion (arealnumber)ateachnodepoint (x;, kj) in thedomain(seeFigure5.3). Thus,there
are (N, + 1)N, unknavnsto calculate.Of coursetheremustbe one equationfor each
unknaovnin orderto find auniquesolution.For example atypical quantundevice simula-
tion mighthave N, = N, = 10C, resultingin 10,100equationsandunknavns! The pro-
cessof corverting(5.17)into oneindependengquationcorrespondingo eachpointin the
domain is the essence of discretization.

10. Each time step in a transient simulation is virtually identical to a steady-state simulation.
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Note that direct numericalsolution of multiple equationsand unknovns generally
requiresthat the equationsbe linear in the unknavns1112 Describingthe WFM thus
requiresthe introductionof the conceptof solvinglarge setsof linearequationscalleda
linearsystemaswell astheassociateanatrix notation.This introductionis accomplished
usingasimplersetof N equationsn theunknavns x;, wherei 0{1, 2, ..., N} . A com-
plete set of linear equations in these unkwus can be written

81X T3 Xpt .. A Xy = b 10{12, ...,N}, (5.19)

or
N
Ya i = b 10{1,2..,N}, (5.20)
il

where theg; ;. are constants. In matrix notation, (5.20) is:

Q1 Y2 - N Xq b,
Q1 8, .. BN [|X _ |b (5.21)
N1 Az e AN [N _bN_
or:
Ax = b. (5.22)

(5.22) formally introducesnotationusedthroughoutthis thesis:bold, uppercaseletters
representmatrices(2-D arrays),and bold lower-caseletters are vectors (1-D arrays).
Givena setof equationgn the form of (5.21),ary of several linear systemsolving algo-
rithms (suchas Gaussiarelimination) canbe appliedto the taskof solving for the { x;} .
One or more of these algorithms will be used toestie discrete WFTE.

Returningto thediscretizatiorof the WFTE, then,notethatthe Wignerfunctionrepre-
i, with i 0{0,1,...,N,} andjO{0,1,...,N.-1} .In
the form of (5.20), a complete $&of linear equations in these unkwus is

sentsa 2-D arrayof unknawvns:f

Nx DNk ID{O,l,,NX}

O
a f-, ., - b . 1 5.23
,Zoazl( NEND I'JE "] JO{L 2, Ny o

11. Linear equations can novaive the unknens raised to anpower other than zero or unity
12. The indirect (iterate) solution of a non-linear WFTE is treated in Chapter 6.

13. Acompleteset of equations simply means that there is one equation for eactwankno
14.1n this casea completesetof equationameanshattheremustbe oneequationfor each i, j)
pair (i.e., each phase-space node).
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or in matrix notation:

Af =b. (5.24)

In (5.24), A is a squarematrix of a coeficientswith N, = (N, + 1)N, rows and

AHIA

columns, f is a vectorof N,, unknavn Wigner function valuesdenotedf; ., andb is a

i
vectorwith N, elementsdenotedb; ; containingary constantsn eachec;uation(e.g.,
boundaryconditions).Note from (5.23) that althoughthereare two indices,i andj, to
scanthrough,thereis no fundamentatlifferencebetweerthis caseandthe simpleroneof
the 1-D x; unknowvnsin (5.20). One cansimply think of (i, j) asa singleindex to step
through,solve for theunknavnsf; jasl1-D vector andconsidetthemasa 2-D arrayafter-
wards. In Section5.4.1, it is shavn to be adwantageougo order the Wigner function
unknawn valuesby successiely settingx;, scanningthroughthe kj, andthenmoving to
X;,1 - Basedonthis, Figure5.4 depictsthe layoutof the WFTE matrix equation(5.24)for
the \ery simple case &, = 2, N, = 4.

Theformaltaskof discretizatiorof (5.17)is to determinghe coeficientsof thesquare

matrix A in Figure5.4. Eachtermin (5.17) may contritute to eachcoeficient 3 jir

(i, 1) (i" 1) A f b
l 0,0) (0,1) (0,2) (0,3) (1,0) (1,1) (1,2) (1,3) (2,0) (2,1) (2.2) (2.3)

G I s s s s o e ) L Do
WD D0 D0DO0D00D00000|| ek oo
0 00000000000tk b2
30 0000000000 Qg|| ek ¥
WD DODD0DO0DO0DO000O00Qg||fak Do
WD 0DO0D0DO00DO000000g)||feak|_| e
D DOD0DO00O00O0O00OQ)||feak| | b
WD DO0D0DO0DO0DO000O00Qg|| fak b5
) s s s s s e LG b2
e 00D O0D0D00D0O00|| ek b2 1
D D00 DO0DO0D0O0D0O00|| ek b2
e DO D0 DDO0D0O0D0O 0| fek] |

Figure 5.4: Discrete WFTE matrix equation

Although the Wigner function hastwo independentariables,its valuescan be
“unfolded” into a 1-D ectorf; j for the purposes of solving the discrete WFTE.
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(i.e.,in equation(i, j) , and multiplying unknawn f;. ;). In additionto A, the constant
vectorb in Figure 5.4 mustbe specifiedto solve for f. Comparing(5.17) and (5.24), it
appearghatb will be zero,sincethereareonly termsthat multiply the unknavns. How-
ever, in generaltherewill be constantsn someof thetermson the RHS of (5.17)which
mustbe movedto the LHS of the equation(sincethey don't multiply any unknavn) and
thusbecomehe constantectorb. By moldingthe WFTE into theform of Figure5.4and
(5.23), it has becomea set of N,, equationswhich are linear in the unknavns
f(x;, kj) = f; . As mentionedpreviously, theseequationscanbe solved numericallyusing
linearsystemsolvingalgorithms Having formalizedthis plan,the motivationfor, andgoal
of, the discretizationof the WFTE into a setof linearequationshouldnow be clear The
actual discretization is tak up in the follawing section.

5.3.3 Discretization of the WFTE

This sectionfinally tacklesthe discretizatiorof theWFTE (5.17).Sincethediscretiza-
tion of eachterm hasits own complicationsandalternatve discretizationschemesgeach
termis treatedn summaryform in separateectionselon. Most of the detailsof the dis-
cretizationprocessaregivenin the SQUADSTednical Refeence]2]. To furtherminimize
thecompleity of this presentationsomeshort-handotationis firstintroducedn Section
5.3.3.1.The diffusion, drift, and scatteringterms are then treatedin Sections5.3.3.2,
5.3.3.3,and5.3.3.4 respectiely. The transientterm, whosediscretizations presentedn
Section5.3.3.5,addsperhapghe mostcompleity andnotation.Significantobsenations
about the WFTE discretization are/gm in Section 5.3.3.6.

5.3.3.1 Short-Hand Notation

To simplify the notationin the remainderof this (andlater) chaptersa few additional
symbolswill be introduced.The following definesthe transientoperatorT, diffusion
operatorK, drift operatorP and scattering operatQ:

T[f(x k, 1)] s% f(x k, 1), (5.25)
K[ F(x, K)] = mﬂaix F(x, k). (5.26)
1_dk

PLT(x 0] = 5[5 VX k=K) F(x k), (5.27)
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S[F(x, k)] = [ LG ST k)} (5.28)
£
With these, the transient WFTE is
(T+K+P+9)[f(x k t)] =0, (5.29)
and the steady-state WFTE (5.17) can be written
(K+P+9)[f(x,k)] = 0. (5.30)

5.3.3.2 Diffusion Term

The discretization of the difsion term is tackled first. From (5.26):
K[ f(x,K)] = k f( K O K[f ] (5.31)

Several discreteforms of the diffusion term are possible,dependingon the difference
schemeusedfor the spatialderiative of the Wignerfunction.However, in orderto couple
theincomingboundaryconditionsinto the solution,but not the outgoingboundaryvalues,
an upwind differencescheme(UDS) mustbe used,as arguedandimplementedirst by
Frenslg [9]. Upwind differencingmeansusinga backwarddifferencefor k < 0 andafor-
warddifferencefor k > 0. Frenslg usedafirst-orderUDS (UDS1),while JenserandBuot
useda second-ordetUDS (UDS2). SQUADS implementsbothUDS1andUDS2,aswell
asathird-orderUDS (UDS3),facilitatinga directcomparisorof theaccurag andcompu-
tational cost of each.

The derivation of the discreteexpressiondor the threeUDS discretizationsaregiven

in [2]. The results are:

_hk 1 O fien =1 (<3N
Kalfijl = =0 TN (5.32)
O it fi (J>3Ny)
2 = T S5Aw . _ , :
" m 24x0 fio ;=45 t3F (J>3Ny)
hk. f —-of + 18f —11f, . (j<3N.
(3[fi,j] _ __J%EZ i+3, i+2, i+1, i ] e k, (5.34)
M OAXG-21, 5 ; +9f;, ;—18f; j + 11f; | (j>3N,
where, from (5.15):
= ) O
K; DN Ax[ -Z(Nk+1)]H (5.35)
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In spiteof the strongcasemandatinganupwinddifferenceschemeit is possibleto use
a non-UDSat interior nodesaslong asthe boundaryconditionsare coupledin correctly
with a UDS. At leasttwo groupshave taken this approachpecausehe UDS is not the
mostaccurateapproximationto the deriative at a point. Onegroup[10, 32] useda 2nd-
ordercentraldifferenceschemg CDS2),but changedo UDS1 at the outgoingboundary
nodes.Anothergroup[21] useda hybrid UDS2/CDS2schemgdenotedHDS22 herein),
but usedUDS2 at the outgoingboundary To enablethe investigation and comparisorof
thesedifferenceschemesaswell UDS, SQUADS implementsCDS2,CDS4,and CDS6,
and also allovs ary hybrid combination of a UDS and a CDS:

HDSj = G—Jer(BUDSi +aCDSj) . (5.36)

For detailsonthesediscretizationssee[2]. Theerrorintroducedby changingthe discreti-
zationschemenearthe boundariehasapparentlynot beeninvestigatedby otherresearch-
ers yet, so this will be a subject fova@stication in Section 5.5.

It is worth recallingat this pointthatthe WFTE (5.2) wasderived with the simplifica-
tion of a position-independerdffective mass.The WFTE for a spatially-\arying effective
masshasa muchmorecomplicateddiffusionterm([2, 19, 20]. As aresult,this form of the
WFTE is not currentlyimplementedn SQUADS. Also recallthat TMM simulationsin
Chapterd (seeFigure4.17)demonstratetheimportanceof properlyincludinga position-
dependenteffective mass.As an attemptto recover someof the physics of a position-
dependeneffective mass,Frenslg [9] useda simple model which simply moved the
effective mass inside the discrete d@ative. For UDS1, (5.32) becomes:

f.

O—tLi_ i (j<iIN)
10 Miyq m 2k
Kalfi 1 = (bkj)A_XE ¢ ¢ (5.37)
| (j>2N,)
E_ m, m 2k

To testits accurag, this simple position-dependergffective massmodelwasalsoimple-

mented in SQADS (for all difference schemes), and will bevéstigated in Section 5.5.

5.3.3.3 Drift Term

Thediscretizationof the drift termin the WFTE is summarizedn this section.From
(5.27), the drift term is:
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P[ f(x, K)] s% %V(x, k-Kk)f(x k) O P[f, ]. (5.38)

Thederation of thediscretedrift termis rathercomplicatedandis again detailedin [2],

with the follonving result:

where the discrete non-local potential is:

N,/ 2
Vo= 2 5 sin[ 2 U, . —U ] (5.40)
i,J"‘Nkz N, Vi =il .
Il

=1
The derivationin [2] alsoshowvs thatNy = ;N,, which relationshipwas unknavn when
the discretization of the independeatiables vas discussed in Section 5.3.1.

As with thediffusionterm,alternatvesto the standardirift termhave beensuggested.
Jenser{33] proposeda Simpsonintegrationrule (triangularsmoothing)for the discrete
integration,with the intentof makingabruptchangesn the potentialprofile (i.e., hetero-
junctions)have a somevhat mutedeffect on the high-enegy tails of the Wignerfunction.
Gullapallietal. [21] insteadproposeda rectangulaismoothedntegration,with the result
that the real potential U(x) has a decreasingeffect on the NLP V(xy) as (x—Xp)
increaseslin contrast,in the standard\LP calculation(5.41),the effect U(X) remainsin
full forceto adistance(x—x,) = N,Ax/2, beyondwhich the effect dropsimmediately
to 0. Thestandarctalculationassumeso scatteringandthe cut-off distances somevhat
arbitrary Frenslg [27] discusseghe rationalesfor emplgying alternatve NLP s from a
theoreticalperspectie. To determineconcretelythe effectsof theseapproachesall three
drift term discretizationschemesreimplementedn SQUADS, andthe effects of using

each are analyzed in Section 5.5.

5.3.3.4 Scattering €&rm

Comparedo that of the other WFTE terms,the discretizationof the scatteringterm
derivedin [2] is relatively simple, mostly becausehe investigation of alternatve imple-
mentationsof scatteringin the WFTE have not yet beeninvestigatedwith SQUADS (or
apparentlyby any otherresearchers)rom Section5.2.1,then, the analyticalscattering
term used in SQADS is:
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S[F(x k )] = —%[f(x, K, 1) — tz(x—)’(i’)t)c(x, t)}. (5.41)

Theexpressiorfor calculatingcarrierdensityfrom the Wignerfunctionis givenin Section
5.3.4:

Ny
Ak
=1
so that (5.41) becomes
0%
i

5.3.3.5 Transient €rm

Finally, this section presentsthe discretizationof the transientterm. This task is
describedn detailin [2]. Unlike the discretizatiorof the otherWFTE terms,thetransient
termcannot bediscretizedn isolation.Instead transientdiscretizatiorresultsin a modi-
fied WFTE, althoughthe discretizationeffort for the othertermscanstill be used.For
comparison, the unmodified WFTE from (5.29) can be written:

0= —%f(tn) FLIFE)], (5.44)

wheref(t,) is the Wgner function at time,,, and one final operator has been defined:

L=K+P+S. (5.45)

Supposéhe solution f(t,) attimet, is known, andthatattimet,, , = t, +At isto

be determined.Five reasonableforms of the transientoperator are implementedin

SQUADS, agnin to allow direct comparisorfor the purposeof determiningthe optimal

approachlin theearliesimplementation®f theWFM [5], bothfirst andsecond-ordefor-
ward (or plicit) Euler transient terms were tested. These the follaving WFTES:

* First-order forvard Euler (first-order dylor series xpansion):

£ ftyrAY—f(ty
il = ~ = Lf(t, (5.46)
0 f(t,+At) = [1+AtL]f(t,. (5.47)

» Second-order forard Euler (second-ordeaylor seriespansion):
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of 1,20 f
(t,+At) = f(t) + Ata ) + éAt —| (5.48)
t=ty ot -
At2 2
0 f(t +At) = [1 AL+ 1L }f(tnj. (5.49)

Implementatiorof the first two termson the RHS of (5.49)areobvious, giventhe deriva-
tionsfor K, P, andS abore. However. theimplementatiorof L% is rathercomplicatedso
its full detail[2] will notberepeatedhere.Notethatthetwo forward Eulertransienforms
requireaninitial Wignerfunction, producedusinga steady-statsolutionof the WFTE or
a transfermatrix calculationof the Wigner function, asdiscussedn Section4.3.5.How-
ever, forward Euler approacheare very computationallyefficient, asthey do not require
the solutionof a matrix equationto determinethe Wigner function f (t, + At) at the next
time step,but simply the multiplication of a matrix andvector The stability (tendeng to
diverge) of forward Euler approaches isnalys a concern.

Frenslg laterargued[9] thatanimplicit (or backward) Eulertransientermshouldbe
used,sinceonly suchhasaboundederrorwhich doesnot grow to infinity overlong simu-
lation times,in contrasto the forward Eulerapproached-renslg useda first-orderback-
ward Euler, and SQUADS alsoimplementsa second-ordebackward Euler, which appear
very similar to the fornard Euler gpressions ahe:

* First-order backard Euler (first-orderdylor series xpansion):

f _ft, r A - f(t)
3 . = AT = Lf(t,+ A1 (5.50)
O [1-AtL]f(t, +At) = f(t,,. (5.51)

» Second-order baclkavd Euler (second-ordeaylor series gansion):
(t) = f(t, +AY) —Atg " %Aﬁ% , (5.52)
t= tn + At at t=t +2
2
0 [1—AtL+A—tL2}f(t FAY = (L) (5.53)
2 n - n‘. .

Note that althoughthe forward and backward Euler equationsappearquite similar, the
former only requiresa matrix-vector multiplication (computationproportionalto NXNﬁ)
pertime step,while thelatterrequireghefull solutionof asetof linearequationgcompu-
tation proportionalto NXNi) per time step[9]. Solving the steady-stat&VFTE always
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requires the full solution of a linear system of equations.

Finally, SQUADS alsoimplementshe second-orde€ayley (a.k.a.Crank-Nicholson)
form of thetransienterm,which wasfirst proposedy JenserandBuot[13]. In this case,
the WFTE is

(0 f,+A)—f(t) 1
il - =SLal f(ty+ 80 + (1), (5.54)
0= [ _%tgkﬂ[f(tm)] —af(t,) | (5.55)

where’(t,,,) = f(t,,1) + f(t,,. With the Cayley form of the transientterm, the matrix
equationis actuallysolvedfor f(t,,,). After doingso,the previous solutionis subtracted
out to get the ne Wigner function,f(t,, ).

Frenslg [9] discussedn somedetail the considerationsnvolvedin the properselec-
tion of the time stepAt. Kluksdahlet al. [10] arguedthat stability of simulationsusinga
forward Euler schemeequiresthat At < AX/v,,,,, wherev, .. is the highestvelocity of
ary carriersin the simulation,which oftenrequirestime stepssmallerthan0.1fs. In con-
trast,the backward Eulerapproachs inherentlystable(erroris bounded)put arelatvely
smalltime step(typically 1 fs) will keeptheerrorsmall. Thenetresultis thatthetime step
for aforward Euler simulationmustoftenbe atleast10 timessmallerthanthatof a back-
ward Euler simulation.However, exceptin specificcasesthe backward Euler simulation
requiresa factor of N, (typically 50-200) more computation.Thus, the forward Euler
approachmay be computationallypreferablein mostcasesgcontraryto the agumentsof
Frenslg [9]. Thecomputationakfficiency, aswell asthe stability andaccurag, of thefive

transient simulation approaches anestigated in simulations presented in Section 5.5.

5.3.3.6 The Discrete WFTE
This sectioncombineghe resultsof the previous sectiongo describethe full discrete
WFTE. In thediscretedomain the WFTE will besolvednumericallyasa matrix equation:
Af = b. (5.56)
This sectiondiscussesvhich entriesin the coeficient array A andconstantvectorb are
non-zero For illustration, this sectionusesN, = 5, N, = 6, andUDS2for the diffusion
term. The steady-stateaseis consideredirst, followed by a descriptionsof the minor
modificationsto the matrix equationfor solvingthetransientWFTE. The discrete WFTE
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for steady-state is:
0 =L[fj;]=(K+P+9)[f; ]

hk; B‘fi+2,j+4fi+1,j_3fi,j (J'S';Nk)%
2MAXE £, —4jiy +3F ¢ (12N [

Ny eq Ny -

+% T Vi fi,j,+%[fi—&j ]‘iz fi,j,%—fi,j, (5.57)
Yit=1 Ci =1 U _

where0<i<N,, 0< j<N,-1, andthenon-localpotentialV is givenin (5.40).The non-

zerocoeficient structurefor thediscreteWFTE, to be explainedbelaw, is shavn in Figure

5.5.

Understandinghe matrix structurein Figure5.5is non-trivial. The drift term P sup-
plies non-zerocoeficients to every column wherei = i', resultingin solid N} x N,
blocksof non-zerocoeficientsalongthe maindiagonal. Thescatteringerm S contrikutes
to thesesamecoeficients. Thediffusionterm K only hasnon-zerocoeficientsforj = |,
andonly for i' =i. Thus,thediffusiontermproducesoeficientsalongthe maindiagonal
(thedashedine in Figure5.5) andon oneor moreout-lying diagonalsdependingon the
differenceschemeused.Finally, note that for the first two andlast two blocks of equa-
tions,someof thesediagonalof diffusioncoeficients“f all off theedge”of the coeficient
matrix. This simply meanghatthey arecoeficientsfor valuesof the Wignerfunctionout-
sidethesimulationregion, which valueshave beenspecifiedhroughboundaryconditions.
In otherwords,theseWigner function valuesare known, so the coeficient multiplied by
the WF valuemovesinto the RHS constantvectorb. For the steady-statease thesefew
boundary condition cases produce the only non-zero elemelnts of

Now considerthe discretetransientWFTE. For example, the first-orderbackwards
Euler WFTE is:

[1=ALI[f el = [F5 5 0] (5.58)
The non-zerocoeficient structureof this equationis identicalto that of the steady-state
WFTE. In the transientequationabove, the steady-stateoeficients (and the boundary
conditions)aremultiplied by —At, and1 is addedo eachcoeficient onthe maindiagonal
of A. Alsof,

i, j,n from the previous solutionis addedto the correspondingelementof the

constanwectorb. The Cayley transientequations nearlythe same put insteadof solving
directly for the updatedwignerfunctionf ., theunknowvn vectorholdsf ., = f ., + f.
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The second-ordeEulerschemesddadditionalnon-zeraterms,sothatblockswith outly-

ing half-diagonals in Figure 5.5 become nearly fyjix N, blocks, as described in [2].

5.3.4 Discrete Carrier and Current Densities

Oncethe discreteWigner function hasbeencalculated pther carrierrelatedinforma-
tion canbe computedrom it, suchasthe carrierdensityandcurrentdensity This section
presentsdiscreteexpressionsfor thesequantities.Deriving the discretecarrier density
expressions straight-forvard. The analyticalexpressiorfor the carrierdensitywasgiven
in (5.8):
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WEEEE = [ ] '
EuEEN [ ] ] .
EEmEm .
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EEEEN '
‘mEEEEER n N b, 4|
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Figure 5.5: Discrete WFTE coefficient matrix structure

Like the discretizationsof mary differential equationsthe discreteWFTE hasa
bandedstructure which enableghe employmentof optimizedmatrix storageand
solutiontechniquesThedrift andscatteringermsin the WFTE producethe coef-
ficientblocksalongthediagonal the diffusiontermproducegermsalongthemain
diagonal(thedashedine) andoneor moreout-lying diagonalsThetransienterm
also adds to the main diagonal dméénts.
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ox, 1) = Zi [k 06k O 0 olxt) = ¢ (5.59)

In the discrete domaimlk [ A,, and the intgral becomes a summation:

JAY
Ci,n = E[Z fi,j,n' (560)
ji=1
The derivation of the discretecurrentdensityexpressionis more complicated so the
completedetailsareonly givenin [2]. Recallthe analyticalexpressiorfor currentdensity

in (5.9):
J(x, t) = > m]’dkkf(x ki t) O J(x, t,) = J; (5.61)

SQUADS follows the approachof Frenslg [9], who notedthat currentdensity beinga
vector is mostappropriatelyand accuratelydefinedat the centerpointbetweenposition
grid nodes.Frenslg also pointed out that the discreteexpressionfor current density
dependsn the form of the diffusion operatorK. Sincethe diffusion operatoroptionsin
SQUADS arealmostinnumerablepnly a few of the discretecurrentdensityexpressions
will be given.

ubst _ —qhAkp [

I = kj fi [ (5.62)
172 — ™m 1, ,

" 2 DJ < k/2 I+ J J > k/2 J I J[

ubs2 _ —qhAk1 .
Vvv2 = Smm é% SICRIwY +3fi+1,j)+j>%/2kj(3fi,j—li-1,j)% (5.63)
k

| <N/2
Ny .
jups2icpsz . —GhAk Z D of; j+(a+3B)fihy j—Bfia; (13N (5.64)
i+1/2 A
" 4"(0‘+B)m D afig +(a+3B)f ~Bfiy; (>IN

Becauseéhe sign of currentflow is falrly arbitrary SQUADS assumeshe sign of the cur-
rentflow is the sameasthat of the biasappliedat the collector (x = L) . Although this
goes aguinst convention, there should be no confusionabout device operation,since
SQUADS only models one carrier type (electrons or holes) ivengieice.

5.4 Efficient Solution of the Discrete WFTE

Solutionof thediscreteWFTE in Figure5.5requiresthe useof a setof simplemathe-
matical operationsto transformthe coeficient matrix into the identity matrix (all ones

along the main diagonal,and zeroseverywhereelse). The RHS vector b undegoesthe
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sameoperations At the conclusion,the Wigner function valuescan be readfrom RHS
vector For example, the first equation will then be:

(1.0)fp o = by o- (5.65)
This section describes the procedures useditoesttly sole the discrete WFTE.

In spite of the approximationsand simplificationsmadein the deriation of the dis-
creteWFTE, asdiscussedn Section5.2.1,the numericalsolutionof this equationis still
guite computationallyjdemandingbothin termsof memoryrequirementandCPU usage.
However, SQUADS’ implementationof the WFTE solution usestechniqueghat allow
both of thesedemandso be greatlymitigated,asdiscussedh this section An understand-
ing of the basicconceptsaandmechanic®f solving systemsof linearequationg34, 35] is
assumedThroughoutthis section,a typical “test case”simulationwith N, = N, = 10C
andUDS2 for the diffusionterm will be usedto evaluatethe memoryand CPU require-
mentsof solving the discrete WFTE. For illustration purposesthe N, = 5, N, = 6,
UDS2 example of Figure 5.4 will agn be used.

5.4.1 Memory Management Schemes

A significantconcernduring the developmentof the WFM in SQUADS wastherela-
tively high amountof computermemoryrequiredfor the solutionof the discreteWFTE.
Considey for example,the memoryrequirement®f solving the testcasediscreteWFTE
matrix equationusedin this section.Sincethereare(N, + 1)N, = N, unknowvn valuesof
the Wignerfunctionto solwe for, thereareN,, rows andcolumnsof coeficientsin the A
matrix. Solvingthis systemof equationsaccuratelyrequiresdouble-precisiortoeficients,
eachof which occupy 8 bytesof storage.Thus,for the testcasesimulation,solving the
discreteWFTE appeardo require 8Nik= 8(1004) = 800 MB of memory!Clearly, the
memoryrequirementseemto make finding the Wigner function (and thus simulatinga
guantumsystem)infeasibleby the WFM. However, this sectiondescribeshe matrix stor-
age and solution schemeausedin SQUADS to reducememoryrequirementdo only a
small fraction of 800 MB, while still retaining full accuyain the solution.

Thefirst job in minimizing the memoryusageof a matrix equationis to determineghe
structure(a.k.a.sparsity)of the coeficient matrix. In otherwords, which coeficients of
thematrix areinitially non-zeroandalsowhich will becomenon-zeraduringthe solution
of the systemof equationsThefewer non-zerocoeficientsa systemof equationsas,the
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smallerthe memory requirementsand solution time of the system.For the illustration
example, the location of non-zeroandfill-in 1° coeficientsin the matrix equationis as
shavn in Figure5.6. Note that mostof the coeficientsin A areinitially 0, andremainso
during solution of the matrix equation.In fact, this examplegivesa fill factor® of only
about 33%. Br the lager (lut typical sized) test case, the fdictor is only about 2%.
Obviously, thereis no pointin storingcoeficientsthatarealwayszero.To avoid this,
sparsematrix storageschemesare devised to storeas few null coeficients as possible.
Whenthereis a structureor pattern(asopposedo randomnessp thenon-zeracoeficient
locationsthis structurecanusuallybe exploited to producenot only highly efficient stor-
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Figure 5.6: Discrete WFTE matrix equation coefficient/fill-in structure

Fill-in (filled circles)for a standarda standardsaussiareliminationsolutionof the
discreteWFTE is shawvn. The bandwidthdoesnot increaseanddueto the struc-
ture of the initial non-zero cdinets, fill-in is not too seere.

15. Coeficients that become non-zero during a Gaussian elimination solution of the system.
16. Ratio of non-zero plus fill-in cdefients to total matrix size.
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age schemesput also very efficient solution schemesThe most commonschemefor
improving thefill factorof “banded”matriced’ suchasthatin Figure5.5is “diagonal”
storagewhereeachdiagonal(a.k.a.band)thatcontainsnon-zeracoeficientsis storedin a
successie columnof the storagearray ThediscreteWFTE coeficient matrix hasa band-
width of 4N, + 1, althoughthe bandwidthdependstronglyon the discreteform usedfor
thediffusiontermK. Usingthediagonalstorageschemethe coeficientsfor atypical(i.e.,
not nearthe top or bottom of the coeficient matrix) block of N, equationsvould be as
shavn in Figure5.7. Note thatthefill factorhasincreasedo roughly 60%, andis essen-
tially independenof N, andN, (but not K). Thefull diagonalcoeficient matrix for the
WFTE has4N, + 1 columnsandN,, rows. Thus,total memoryusagefor the testcase
dropsto 32 MB - still alargeamount but certainlyacceptabléor a scientificworkstation.
A sideissuecannow beconsideredndputto rest.In Section5.3.1,it wasstatedwith-
out proof thatit is advantageouso orderthe unknavnsin the matrix equationby setting
X;, scanninghroughthe kj , andthenmoving to x;,,, asshavn by the unknavn vectorin
Figures5.5and5.6. If the oppositeorderingof unknovnshadbeenused(i.e., i insteadof
| in theinnerloop), the non-zerocoeficientswould be spreadacrossthe entire matrix,
makingthediagonalstorageschemaiselessEventhoughthe samenumberof coeficients
areinitially non-zero,more coeficients would fill in during the solution of the matrix
equationresultingin a coeficient matrix fill-f actorfor thetestcaseof 5/16= 31%, ver-

susjust over 2% previously. The CPU costof solutionis even more adwerselyaffected.

OOOOOOOOOOO*IIIIIIOOOOO
OC0O000000O00ONEEEEENOEOOOO®
OCO0000O0CO0OO0O0ONNENEEEENOGOOROOOO®ES®
0000 NOGOEENERNREEROGOOOOOOGOO®
0000 NOEREERERENRNEOOOEOODOOOG®O®OO
OO0 0O EERERERRENOOOGOOOOOG®O®O® OO
}
B Initial non-zero ® GE fill-in O Always zero

Figure 5.7: WFTE coefficient matrix structur e with diagonal storage

A typical block of N, equationss shawvn. ThereareN, + 1 suchblocksin thedis-
crete WFTE matrix equation. The main diagonal isashas a dashed line.

17.Bandedsimply meanshatthereare 1l or morediagonalsof non-zerocoeficients,usually sur-
rounding the main diagonal, outside of which all Go&ts are zero.
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Theseobsenationsadequatelyustify theunknavn orderingusedin SQUADS (andby all
other WFM researchers).

SQUADS usesdiagonalstoragefor sometypesof WFM simulation,aswill be dis-
cussedn Section5.4.2,but mostWFM simulationsusea more efficient storagescheme.
Notefrom Figure5.5that,becaus®f the diagonalstructureof the coeficient matrix, only
arelatvely small*window” of rows interactat a giventime during solutionby having ini-
tial non-zerocoeficientsin agivencolumn.Thus,it is not necessaryo calculateandstore
all of the coeficients before startingto solve the system.ConsiderFigure 5.8, which
shaws the top portion of the coeficient matrix from Figure 5.5 after the Gauss-Jordan
elimination of all coeficientsin first N, columns.Following this elimination step, the
remainingnon-zerablocksof coeficientsin thefirst N, rows arestoredfor useduringthe
back-substitutiorphaseof matrix solution,the remainingcoeficientsin the WGE matrix
areshiftedup andleft by N,, andN, new rows of coeficientsarecalculatedandinserted
into the newly-vacatedbottomrows. Theprocessepeatsuntil all N, equationshave been
similarly eliminated,at which point, back-substitutiorfollows on the storedcoeficients.
This windowed Gaussiarelimination (WGE) schemereducesmemory requirementgo
just 8 MB for thetestcase(plus a smallamountfor the WGE matrix). This is a factorof
100 impravement @er storage requirements for the full da@ént matrix!

This sectionhasconsiderednly the discreteWFTE matrix structurefor a UDS2 dif-
fusionterm.It shouldbeclearfrom Section5.3.3thatSQUADS alreadyimplementamary
discretizationrschemesandotherscould be addedin the future.In generaleachdiscreti-
zationschemecanresultin adifferentnon-zeracoeficient structure andthereforerequire
adifferentstorageandsolutionschemeNeverthelessSQUADS’ goalis to producenearly
optimal performancendstoragerequirement$or eachandevery discretizatiorschemat
implements.in orderto accomplishthis, SQUADS waswritten in a flexible andgeneral
(asopposedo hard-wired)manner In particular beforethe matrix solutionis initiated,
SQUADS takes the initial non-zerostructureof a block of N, rows of coeficients and
actually performsa simulationto determinehow the coeficient matrix will fill-in during
the WGE procedureBasedonthis simulation,optimal storageandsolutionalgorithmsare
chosen for that WFTE solution.
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5.4.2 Computation Time and Accuracy

This sectiontakes up the issueof how to quickly and accuratelysolve the discrete
WFTE matrix equation Froma userstandpointoncememoryusages acceptabldor the
available hardware, minimizing computationtime and getting an accurateresult are
always moreimportantthanreducingmemoryusage As it happensalmostevery effort
describedn the previous sectionto reducememoryusageproduceda concomitantreduc-
tion in computationtime. CPU time decreasedecausesmaller amountsof memory
neededo be appropriatedtherewaslessswappingof memoryto andfrom disk, andthe
smallerworking blocksof datacould be handledmore efficiently while in memory Per-
hapsthe mostimportantstepin this regardwasthe adoptionof the WGE schemewith the
resultthatvirtually all of thecalculationoccurredn arelatvely smalldataarraythatcould
oftenfit entirelywithin the (very fast)level-2 cachememoryon mary workstationsBut in
addition to memory usagereduction,there are other issuesto considerand avenuesto
explorein the effort to reducecomputatiortime. Thesearediscussedbelon asthey relate
to the solution of the discrete WFTE in SADS.

Oneway to improve the speedof solving a matrix equationis to use pre-packaged
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Figure 5.8: Windowed Gauss-drdan elimination of discrete WFTE

With this procedurepnly a smallwindow of thediscrete WFTE matrix equationis
consideredat atime. The coeficientsin thefirst N, columnsarefully eliminated,
the remaining coétients in the firsiN, rowsare stored for the back-selstep,
theremainingcoeficientsin thewindow areshiftedup andto theleft by N, posi-
tions, and\, new rows of coeficients are added to the bottom the the windo
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matrix solvingroutines.Typically, agreatdealof time, effort, andknowledgegoesinto the

developmentof theseroutines,with the resultthatthey achieve excellentspeedandaccu-
racy for awide arrayof coeficient matrix structuresFor this reasononeshouldusually
employ the highestlevel pre-packagedoutinesthat are appropriateto the task. At the

highestlevel are completematrix solving packagesHowever, thereare somesignificant
disadwantagedo the useof suchroutines:enhancing/modifyinghemis often time-con-
sumingor illegal; they usuallycannotachieve the performancef specializeccodewhich

takes advantageof the structureof the coeficient matrix; andthey requirestandarddata
storageschemessuchas diagonalor full-block storage.The resultfor our caseis that
theseroutineswould require4-5 timesthe storage and probablytwice the CPU time, as
SQUADS’ optimizedschemeln orderto retainthe WGE optimizedschemethe highest
level pre-packagedoutineswhich areappropriatearethe BLAS (basiclinearalgebrasub-
programsyoutines.Typically, theseroutinesship with, andoptimizedfor, eachworksta-
tion. During compilation, SQUADS incorporatesBLAS if it is available, and uses
equialent replacementoutinesotherwise.SQUADS simulationswhich use BLAS are
typically 20% faster than those which use the replacementfunctions. In fact, when
SQUADS wascorvertedfrom in-line codeto the BLAS replacementunctions,a similar
speedgain was realized,mainly becausemore aggressie optimizationis possiblewith

smaller self-contained code blocks.

Although the schemefor solving the discrete WFTE describedin Section 5.4.1
resultedn amuchsmallerandfastersolutionof this matrix equationsomedisadwantages
of this schemeandtheresultingspecializedolutionalgorithmshouldbe mentionedFirst,
moreeffort mayberequiredin maintainingandupgradinghe codeascomparedo amore
generalmatrix equationsolver. Also, the optimizedstorageandsolutionalgorithmsmust
be modifiedif the sparsitystructurechangesActually, this taskis well automatedy the
fill-in simulationdiscussedn Section5.4.1.As aresult,all thatmustbe doneis to supply
the correctnon-zerocoeficient structureto the WGE routine, and optimal storageand
solution algorithms will be used.

Oneimportanttechniquewhich is invariably usedto help assurean accuratesolution
of a matrix equationis pivoting (exchangingtwo rows) [34, 35]. This techniquereduces
numericalerrorby re-arrangingequationsat eachGE stepsuchthatmultipliersarealways
smallerthan unity. This requiresthat the coeficient on the diagonalat eachGE stepis
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larger than ay below it in that columnt® For example, solving the tavequation system

2000.001 0.001 1000/ [*1| _ |2000.00 (5 o)
1000.002 1000 0.001 |x,|  |1000.00

001x, + 1000x,
DOOX, + 0.001X,

is morelikely to producean accurateesultif the two equationsare swappedbeforeper-
forming GE. In partial differentialequationg PDEs)that represenphysical systemsthe

d"1® andthediscrete

initial coeficientmatrix for thediscreteform is usually“well-behave
WFTE is no exception.However, the GE procesgemovesary suchassurancesndcould
evenresultin a0 onthediagonal atwhich pointthe matrix equationis unsohablewithout
pivoting.

The problemwith pivoting is that,in general,jt expandsthe bandwidthof the coefi-
cientmatrix, resultingin higherstoragerequirementandCPUsolutiontime. Considelthe
discreteWFTE coeficientstructuraen Figure5.5.If diagonalstoragds usedfor thisarray
pivoting would, in general,expandthe bandwidthof the matrix. However, if pivoting is
restrictedto theremainingrows in eachblock of N, the bandwidthdoesnot expandvery
much.In fact, with block storageandthe WGE algorithmdevelopedin the previous sec-
tion, pivoting only within thefirst N, rows of the WGE matrix doesnotincreasestorageor
computatioratall (seeFigure5.8). Testsimulationsndicatedthatpivoting by this scheme
wasonly undertalkenabout5% of thetime, whichindicateshatthediscrete VFTE is quite
well-behaed. However, the probabilisticinevitability of nearzerodiagonaltermsmales
the useof pivoting essentiallymandatoryto assurenumericalaccurag. SQUADS there-
fore implementghelimited pivoting schemedescribedabore. For particularlyill-behaved
simulations,SQUADS allows the specificationof moreaggressie pivoting, althoughthe
computation time increases dramatically

Another standardmatrix equationsolution techniquewhich hasnot yet beenmen-
tioned is lowerupperdecomposition(LUD) [34], which is an alternatve to Gaussian
elimination.This approachs usefulwhenafixedcoeficientmatrix A canbemanipulated
onceto thenquickly solve a seriesof systemsAf = b with differentRHSvectorsb. The
guestionis, arethereary situationswhereA is fixedbut b changegrom oneWFTE solu-

tion to the next? It turnsoutthatthereare,but only underratherrestrictve circumstances.

18. This is actually partial pivoting. Completepivoting swapsrows and columnsto put the largest
remaining codifcient belav and to the right of the currentpi coeficient into the piot position.
19. That is, it has relatly large coeficients in the piot position on the main diagonal.
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Somerestrictionsareeasilymet:thatN,, N, , andthediscretizatiorschemesf all WFTE
terms must not changebetweensuccessie solutions.This would normally be the case
arnyway, sincechangesn ary of thesewould requirea lot of overheadeffort. A moresig-
nificant restrictionis that the relaxationtime T mustbe fixed (if scatteringis included).
This is assumedn SQUADS aryway. The one “problem” restrictionis that the enegy
bandgi.e., the potentialprofile) mustremainfixed betweersuccessie solutions.This last
restrictionis metby only transientsimulationswhereself-consisteng (seeChaptero) is
not enforced,and wherethe appliedbias remainsfixed for several time steps.The two
typesof WFM simulationswhich fall in this cateyory are Gaussiarwave paclet simula-
tions (which currentlyassumdixed enegy bands)and switching simulations(wherethe
biasis switchedatt = 0 andthesystemis allowedto evolve with this fixed appliedbias).
For both casesthe transientterm of the WFTE is the sourceof the varying RHS vectot
sinceb holds the préous WFTE solution (see Section 5.3.3.5).
Thetestcasesimulationwill beusedto comparehe CPUandstoragerequirement®f
the LUD andWGE solutionapproaches-or a UDS2 simulation,5-;NXNE FLOPS(float-
ing-point operations)are required for each LUD solwe (after the first), comparedto
1—§NXNi FLOPSfor the WGE solution(andfirst LUD solve). For thetestcasesimulation,
the WGE approachs thereforeabout27 timesslower thanLUD! The maindisadantage
of the LUD approachs thatit requiresstorageof all non-zeroandfill-in coeficientsin A.
For LUD simulations, SQUADS usesa block-diagonaktorageschemerequiring32 MB
for thetestcasesimulation,a factorof 4 largerthanthatusedby the WGE approachThe
speedadwantageof the LUD approachis suficient justification for its extra storage
requirementshut only for simulationswhich meetits restrictions.Thus, SQUADS imple-
mentsboththe LUD andWGE solutionschemesandautomaticallyusesthe appropriate
onefor the simulationtype. Onefinal noteis that, becausehe coeficient matrix for tran-
sientsimulationsis inherentlydiagonally-dominant® the overheacbf checkingfor pivot-
ing makeslittle senseandis thereforenotimplementedvhenthe LUD approachs used.
This allows higherorderBLAS routinesto be usedin the LUD approactthancanbeused
with the WGE approachimproving therelatve computationaéfficiency of theLUD even

further

20.Thatis, thediagonaltermis muchlargerthantheotherson eachline, in the caseof thetransient
WEFTE, because all other terms are multipliedhby
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5.4.3 Other Solution Schemes

Two otherresearcherbave developedalternatealgorithmsfor minimizing the storage
requiredto solve thediscreteWFTE, andthereforemight sene asalternatvesto the opti-
mized schemedescribedin the previous sections.Jensenand Gangulys approach[4]
requiresthe sameamountof memoryas SQUADS’ optimized scheme However, it is
somevhatmore complicatedo describeandimplement,andit would not meshwell with
the LUD solution (i.e., it haslesscodeoverlap). However, it doesallow for the use of
higherlevel matrix solutioncodeswhich usuallyimplieseasiemaintenancandupgrade-
ability. Invariably, “higherlevel” alsoimpliesnottakingfull advantageof thematrix struc-
ture, resulting in higher CPU time to solution. Therefore,Jensers approachwas not
implemented in SQADS.

Another approachto reducingmemory usagewas usedby Janseret al. [36]. This
methodusesan iterative conjugate-gradien{CG) algorithmto find the steady-statsolu-
tion of thediscretedWVFTE. Althoughthis approachrequireshe sameorderof computation
time asthenon-LUD approachin SQUADS, it only requiresA8N, N, bytesof storagefor
DSO = 1, comparedo 4NXN§ for the algorithmusedin SQUADS. Sincethe CG algo-
rithm cannot be usedto directly find the transientresponseit hasnot beenimplemented
in SQUADS. However, SQUADS hasalreadybegun to usespecializedcodefor various
simulationmodes(e.g., the LUD approactfor non-self-consistentransientsimulations),
and the CG approachwould be an excellent candidatefor further specializationof
SQUADS for steady-state (including self-consistent) simulations.

5.5 Simulation Results

This sectiondemonstratesnary of the basic capabilitiesof the Wigner function
methodof quantumdevice simulationin SQUADS, asdescribedn precedingsectionsof
this chapter This demonstrations accomplishedhroughthe investigation of several key
implementationdetailsof the WFM. First, Section5.5.1 describeghe simulationof the
evolution of a Gaussiarwave paclet (like a chage paclet) in bulk semiconductorThis
scenarialsohasananalyticsolution,enablingthe comparisonn Sections.5.2and5.5.3
of themeritsof alternatve diffusionandtransientermdiscretizatiorschemeslescribedn
this chapter The optimal discretizatiorapproacthis thenappliedin the remainingsimula-
tionsof thischapterSection5.5.4thendescribeshequantumdevice (aresonantunneling
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diode)andsimulationparametersisedin further WFM simulationinvestications.Several
steady-statg¢Section5.5.5) andtransient(Section5.5.6) WFM simulationsfor this RTD
produceother conclusionsaboutaccurate WVFM simulation.Finally, Section5.5.7 com-
paresWFM and TMM simulationsof this RTD with experimentalmeasurementsand
attemptsto explain the absencen the literatureof direct comparisonbetweenquantum

device simulations andx@erimental measurements.

5.5.1 Gaussian Wave Packet Simulations

A seeminglyinfinite selectionof discretizationoptions for the WFTE have been
implementedn SQUADS anddiscussedn previous sectionsof this chapter This section
investicates asefficiently aspossiblewhich discretizatiorapproachs “optimal”. In other
words,which discretizatiomapproactoffers the bestcombinationof accurag, efficiency,
androbustness? Publishedresultsof suchcomparatie investicationsarerare,in contrast
to the claims [9, 12, 19-21, 25-27] of the relatve superiority of one discretization
approactover another Of the threemeasure®f merit, efficiency is relatively lessimpor-
tant,sinceanincorrectsimulationresult(dueto pooraccurag or robustnessjs uselessno
matterhow quickly it wascomputed Further the capabilitiesof computationahardware
continueto increaseapidly, andcomputatiortasksthatareunacceptablgxpensve today
will lik ely become feasible in the near future.

Thebestway to judgerelative accurag of numericalcalculationds to simulatea sys-
tem that also hasan analytic solution. Any differencebetweenthe numericand analytic
resultsis dueto numericalerrorin the simulation.Oneof the few non-trivial casesvhere
an analytic solutionto the WFTE exists is the propagtion of a Gaussianvave paclet
(GWP)in bulk semiconductd® [10, 32, 37]. Although this scenarioseemsunrelatedto
Wigner function simulationof quantumdevicessuchasthe resonantunnelingdiode,the
only significantdifferencedn termsof the computationare the initial conditionandthe
boundaryconditions. The computationof the Wigner function proceedsidentically in
either case.

Note that with flat potential GWP simulations,no comparisonof various potential
term discretizationscan be accomplishedHowever, there are few position-dependent

21. “Accuragy” indicatesnearnesdgo the correctresult, while robustnessndicatesthe reliability
that a astly inaccurate and phically incorrect result will not be produced.
22. A flat potential(x) = 0 is assumed throughout the simulatiogioe.
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potentialsfor whichthe WFTE is analyticallysolvable.Further afterscatteringelastically
(as opposedto dissipatve scattering)off a position-dependenpotential, the resulting
GWHP is invariably too “noisy” (lots of fine structure)to assignary significanceto
numeric/analyticiscrepanciesAlso, sincescatterings notincludedin theanalyticcalcu-
lation, it mustbe turnedoff in the numericalsimulation. GWP simulationsare able to
comparethe theoreticalaccuracief the diffusion and transientterms,however. These
terms hae mary alternatves, and are otherwiseny difficult to accurately compare.
From [38] the vavefunction for a GWP is:

) _ 2
WX 1) = [ _ 1 . 2}1/4e|(kox—wot)exp[_();¢t')} , (5.67)
2ma (1 +ipt) 4a”(1+ipt)

wherev,, is the aerage elocity, a is the minimum position spread, and

hk 2w
b S Vo= — = k—o (5.68)
2ma m 0

For generality SQUADS alsoallows the centerof the GWP to be at alocationotherthan

B

x = 0 att = 0 by replacingk with x — X, in (5.67).

For a GWR the wavefunctionalreadyrepresenta mixedstate(i.e., it hascomponents
atmary enepgies),sothewavefunctionanddensitymatrix areidentical. The Wignerfunc-
tion for a GWPis calculatedrom the densitymatrix via a Fouriertransform asdescribed
in [2], with the final result:

(X—X%Xo— vot)z}

fux kt) =2
ik ) = 200 T

2
= X exp%—2a2(1 + thz){(k ko) — Bt(x—xg— vot)} O
U

O . (5.69)
2a%(1+p%?) | O
where X, is the position-centerof the GWP at t = 0. Note that the initial condition

(t = 0) for a GWP simulation is:

(x—xo)2
fw(x k 0) = 2exp — >
2a

Startingfrom this initial condition,the GWP will spreadanddecreasen amplitudewith

}exp[—Zaz(k —kp)] . (5.70)

time.
The GWP simulationsin the Sections5.5.2and5.5.3usea = 5Ax in (5.69),where
AX is the positiongrid spacing.GaAsis the assumeadnaterial,soit is appropriateo take
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Ax = 0.56E nm (to make the grid spacingequalto the physical atomicspacing for rea-
sonsdiscussedn Section4.2.2). The simulationsalsouseNx = Nk = 100. The basic
approachin this investigation is to comparesimulatedand analytic resultsfor various
WFTE discretizationschemesfter 20 fs of GWP evolution. As an example,Figure5.9
shavs the GWP at = 0 andt = 20 fs (twenty 1 fs steps) from a typical simulation.

5.5.2 Diffusion Term Discretization Comparison

The diffusion term discretizationschemesmplementedn SQUADS were described
in Section5.3.3.2.To compareheaccurag andcomputationaéfficiency of thesediscret-
ization approachesCayley discretizationwill be usedfor the transientterm, with a 1 fs
time stepfor all simulations.Table5.1 summarizeshe resultsof 45 simulationscompar-
ing every diffusion term discretization implemented in S&DS?3 for three cases:

1) GWPcenteredat x, = L/ 2 with zerogroupvelocity. This simulation
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Figure 5.9: Gaussian wae packet simulation typical result

Theinitial (t = 0) andfinal (t = 20 fs) GWPsarecombinedn this plot. Theini-

tial GWP wascenteredat X, = 0 andtraveling in the +x directionwith average
wavevectork, = k.,../ 2. After 20fs the GWPis approachinghe oppositeendof

thesimulationregion, andthe fasterandslower componentsi.e., higherandlower
wavevector respectrely) have spreadthe GWP out in the x-dimension.The rip-

ples and ngative regions in the final GWP are the result of numerical error

23. Fifteendiffusion term discretizationschemesareimplementedn SQUADS. In thesesimula-
tions, the kbrid difference schemes are formed as HDS = UDS + 2 GDS %, B = 1 in (5.36)).
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Table 5.1: WFTE diffusion term discretization scheme accuragyefficiency
The maximumpercenterroris shavn (determinedrom the analyticresult)aftera
20 fs WFM simulationof a Gaussianwave packet using various discretization
schemedor the diffusion term of the WFTE. For thesediscretizationschemes,

UDS = upwind differencescheme CDS = centraldifferenceschemeandHDS =

145

hybrid differenceschemegcombinationof a UDS anda CDS). Trailing numbers
indicatethe order of the differencescheme.The simulationsare 1) a stationary
GWP in the centerof the simulationregion, 2) a moving GWP within the simula-

tion domain,and 3) a moving GWP interactingwith both boundariesMotion of

the GWPintroducessignificanterrorinto the simulation while interactionwith the

boundariedoesnot. HDS22 is the optimal diffusion term differenceschemein

terms of accurgcand computational gfiency.

Diffusion Xg = L/2 Xo = L/4 Xy = Relatve | Memory
Term Compute, Usage
Discretizatiod Ko = 0 |Ko = Kna4 (Ko = Kna’ 2| Time (MB)
UDS1 10.7% 40.0% 47.3% 1.0 25
UDS2 6.18% 23.2% 29.3% 2.4 41
UDS3 4.34% 19.1% 37.9% 4.7 57
CDS2 2.90% 16.7% 38.4% 1.5 33
CDS4 3.81% 15.7% 36.5% 3.4 49
CDS6 3.83% 15.6% 36.5% 6.1 65
HDS12 4.58% 21.8% 31.7% 1.0 25
HDS14 5.02% 22.0% 30.8% 2.4 41
HDS16 5.03% 22.0% 30.8% 4.7 57
HDS22 3.86% 15.6% 35.9% 24 41
HDS24 4.58% 17.1% 34.1% 2.4 41
HDS26 4.61% 17.1% 34.1% 4.7 57
HDS32 3.35% 17.0% 38.4% 4.7 57
HDS34 3.98% 16.7% 36.9% 4.7 57
HDS36 4.00% 16.7% 36.9% 4.7 57

allows a determinationof the optimal diffusion term discretization

absent the complications of interaction with the boundary conditions.

2) GWPinitially centerecat x, = L/ 4, with agroupvelocity equialent
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to ky = 0.25

speed carrier motion on WFM simulatiorig&ncy.

max- 1his allows a determinationof the effect of high-

3) GWPinitially centeredat x, = 0, with a groupvelocity equialentto

the incoming and outgoing boundaries.

max- 1his shaws the significanceof theinteractionwith both

Fromthedatain Table5.1,theseGWP simulationsndicatethaton average HDS22is
theoptimaldiffusiontermdiscretizatiorapproachlow errorandcomputationatost),fol-
lowed by CDS2andHDS12. The simulationsalsoshaw that errorimproveswith higher
order UDS, but not with higher order CDS. Also note that error increasessignificantly
whenthe averagevelocity of the GWPis non-zeroln UDS1,this errormanifeststself as
excessve spreadingand amplitude decay of the GWR while in other discretization
approachesa large part of the erroris dueto oscillations(including regions of negative
values)thatform in the GWPR The relatively large error of UDS1 makesit unsuitablefor
accurate quantum diee simulation, making a second-order scheme a minimum.

Recallfrom Section5.3.3.2thatboththe CDSandHDS discretizationsequirechang-
ing the differenceschemeat outgoingboundariesFrensely[27] arguedthat this could
introducesignificantadditional error in WFM simulations.However, thesesimulations
indicate that error does not significantly increasedue to changingthe discretization
approactattheboundaryFinally, notethaterrorfor eachof thesesimulationds relatively
high. Clearly, moreeffort shouldbe appliedin the future to understandinghe sourcesof
this numericalerrorin the standardVFM implementatior(usedin SQUADS andall other
WFM code to date).

5.5.3 Transient Approach Comparison

In additionto the mary diffusion term implementationsSQUADS also implements
severalapproachefor accomplishingransientsimulations.Thesetransienttermdiscreti-
zationsincludefirst-orderandsecond-ordeforward Euler (FE1 and FE?2), first-orderand
second-ordebackward Euler (BE1 andBE?2), andCayley (a.k.a.Crank-Nicholson)This
sectionusesGaussiawave paclet simulationssimilar to thosein the previoussection put
thistimethegoalwill beto determingherelative accuraciesf thetransientiscretization
approachesTo this end,HDS22 discretizationwill be usedfor the diffusiontermin all
simulationsandthetransientermdiscretizatiorwill bevaried.Notefrom Section5.3.3.5
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thatFE2andBE2includea second-ordepositionderiative. For theassociatedifference
schemeSQUADS implementdUDS1,UDS2,CDS2,CDS4,andthe correspondindgdDS
scheme$2]. A seriesof simulationssimilar to thosein the previous sectionindicatedthat
UDS1 wasthe optimal differenceschemglow computationatostanderror) for the sec-
ondderwative term. Thereforeall FE2 andBE2 simulationsin this sectionuseUDS1 for
the second derative.
Thefollowing GWP simulationswereusedin this investigation of the accurag of the
transient term discretization schemes:
1) GWPIin the centerof the simulationregion with zeroaveragevelocity
(Xg = L/2,ky = 0),
2) GWP enteringthe simulationregion with a moderateaveragevelocity
(Xg = 0, ky = Ko/ 4), and
3) Repeat®f theabove simulationswith thetime incrementeducedy a
factorof ten(At = 0.1fs) andthenumberof time stepsincreasedy a
factor of tenNT = 200).
The numericalresults(error comparedo the exact analyticalresult) for eachof the five
transientdiscretizationsareshowvn in Table5.2. The conclusionfrom theseresultsis very
clear:the Cayley discretizationfirst usedby JenserandBuot[12], is optimal over awide
rangeof simulationconditions.It strengthis dueto its unitary nature[26], which attribute
tendsto maintainthe total numberof carriersin the GWP betterthanthe othertransient
approached:rensle [27] suspectethatthe Cayley discretizationwasmoreaccuratéhan
the more widely-usedfirst-orderbackward Euler, but thesesimulationsprovide the first
hardproof. They alsoshav the superiorityof Cayley over FEL1andFE2,which wereused
in some early WFM simulations [10, 32] due to a re&yi low computational cost.
Note thatthe useof a smallertime stepdramaticallyreducedthe error of all simula-
tions. Theseresultssuggestthat 0.1 fs should be considereda reasonabldime stepin
WFM simulations.Due to the high computationatostandthe lack of concreteevidence
prior to thesesimulations all transienfWFM simulationsexceptthosein [10] have useda
time stepof 1 fs or larger Computationatostconcernsalsoresultedin the useof al fs
time stepin this work, althoughthe rapidly increasingpower of scientific workstations
should mak the use of a 0.1 fs time step quite feasible in the near future.
Another conclusionfrom theseand similar GWP simulationsis that FE1, FE2, and
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BEZ2 arenot robust, having a tendeng to diverge (error grons exponentially)after some
lengthof time. Usingsmallertime stepswill delaydivergence put thisreduceshecompu-
tational advantageof the forward Euler approachesit is not apparentoeforerunning a
simulationwhattime stepwill berequired,althoughguidelineswerediscussedn Section
5.3.3.5.Theonly wayto make certainatransiensimulationis notdivergingis to run addi-
tional time steps.Finally, implementatiorof the second-ordetransientschemess much
morecomplex thanCayley. For all of thesereasonsCayley discretizations recommended
for the transient term in WFM simulation. lact, Caylg is used in the remaining simula-

tions of this section and in all later chapters of thaskuw

5.5.4 WFM Simulations of RTDs with SQUADS

Furtherinvestigationof the WFM implementationn SQUADS requireshe simulation
of actualquantumdevices,ratherthanthe bulk semiconductoregionsusedin the Gauss-
ian wave paclet simulationsabove. This sectiondiscusseghe selectionof a quantum
device to be usedfor the simulationspresentedn the remaindeiof Section5.5,aswell as

Table 5.2: WFTE transient term discretization scheme accuracy

The maximumpercenterroris shovn (determinedrom the analyticresult)aftera
20 fs WFM simulation of a Gaussiarwave paclet using various discretization
schemedor the transientterm of the WFTE. The discretizationschemesnclude
first- andsecond-ordeforward Euler (FE1andFE2),first- andsecond-ordeback-
ward Euler (BE1 andBE?2), andCayley. The simulationsare 1) a stationaryGWP
in the centerof the simulationregion, 2) a moving GWP startingat the x = 0

boundaryBoth 1.0fs and0.1 fs time stepsaresimulated NotethatFE1 andFE2
are unreliable (may diverge). Cayley is the optimal transientterm difference
schemen termsof accurag and computationakfficiengy. A time stepof 0.1 fs

seems necessary for accyrdmit it entails a huge computational cost.

At = 1.0fs, NT = 20 At = 0.1fs, NT = 200
Transient
conome | 0=L/2 | x=0 | x9=L/2 | x=0
kp =0 Ko = Kmax’ 4 ko =0 Ko = Kma’ 4
FE1 14.2% 5.16e10 0.790% 31.5%
BE1 7.32% 49.3% 1.073% 15.4%
Cayley 3.86% 15.8% 0.516% 3.20%
FE2 75.3% 8.11e23 0.684% 7.09%
BE2 6.48% 47.1% 0.693% 8.03%
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the choiceof simulationparametersisedin thesesimulations.In Section2.3.4,the RTD
was selectedasthe default quantumsimulatortestdevice. Oneimportantreasonfor this
choicewasthefactthatRTDs have a wealthof experimentaimeasurement® which sim-
ulationscanbe comparedor accurag. Several factorsmustbe consideredn choosinga
particularexperimentallymeasuredRTD for comparisorto a WFM simulation.Of course,
the RTD musthave botha structureanda materialsystemhatareaccuratelyknown. Also,
the distancebetweencontactsof the device (denotedL in this work) shouldbe small as
possible,sothat WFM simulationsof the structureare computationallyfeasible.Finally,
the RTD musthave adequatelyreportedmeasuremendetails(e.g., ambienttemperature,
contact parasitics, and circuit model of measurement apparatus) and results.
Basedontheseconsiderationghe experimentaRTD describedn [39] waschoserfor
this investication of WFM quantumdevice simulation,having met most of the require-
mentslistedabove. Thelayerstructureandenegy bandoffsetsof this GaAs/Al, ;Ga, /As
RTD aredepictedn Figure5.10.The RTD lateralareais givenasl - 5 um diameteywith
a typical diameterof 3 um. The experimentalmeasurementgand thus all simulations)
were carriedout at 100 K. Unlessstatedotherwise scatteringis includedin the simula-
tionsbelow, usinga relaxationtime constanfor GaAsat 100K of 441fs.2* The 30%alu-
minum contentof the barriersproducesa conductionbandoffset of approximately0.23
eV [40]. Exceptwherestatedotherwise,this chapterassumeshat effective massis not
position-dependenBincemostof the device is GaAs,the GaAshulk effective mass(in
the ™ band)of 0.067m, wasused.Finally, the relative permittvity wastakenas13.1in
GaAs and 10.06 in AlAs, with a lineaawation with respect to aluminum fraction [41].
Finally, the WFM simulationparametersvill belisted. The optimaldiffusionandtran-
sienttermdiscretizationsverefoundto be HDS22andCayley, respectrely. As discussed
in Section5.3.1,the position grid spacingshouldbe equalto the lattice spacingof the
material, giving Ax = 0.565 nm for GaAs. Somelength of the hearily dopedcontact
regions must be includedin the simulationdomainin order that the assumectlassical
boundaryconditions(seeSection5.2.3)arefar awvay from the strongquantumeffectsnear
thetunnelbarriersandquantumwell. Thesesimulationsused26.3nm contactregionsgiv-
ing N, = 120. All simulationsusedN, = 100C. Thechoiceof transiensimulationparam-

24. Therelaxationtime is estimatedusinglogarithmicinterpolationbetweenwo valuesfor GaAs
given in [15] at 77 K and 300K.
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eters will be discussed in Section 5.5.6.

In orderto comparethe WFM simulationresultsto experimentalmeasurementst is
necessaryo useanenepgy bandprofile U(x) thatcloselymatcheghe experimentalcase.
The properway to achieve this is by enforcingself-consisteng but this addedcomplica-
tion is not discusseduntil Chapter6. Instead,the simulationsin this chapter(like the
TMM simulationsof Chapter5) assumea linear potentialprofile acrossthe active region
of the device, with flat enegy bandsin the contacts,as indicatedin Figure 5.10. To
approximatelymirror the experimentalkenegy bandprofile, theactive region in thesesim-
ulations is defined to include a 3 nm accumulatigmoreand a 12 nm depletiongien.

5.5.5 Steady-State Simulations

Up to this point, this chapterhastaken a conceptualapproachto the discussionof

guantumdevice simulationusingon the Wigner function method.That approachmoder-
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Figure 5.10: Conduction band profile of RTD used in WFM simulations

The conductionbandof the RTD usedin all remainingsimulationsof this chapter
is shavn at a biasof 0.16 V. To approximatethe experimentalconductionband
profile, a 3 nm accumulationregion anda 12 nm depletionregion are specified.
The potentialis droppedinearly acrosghe“active” region. The RTD is composed
of a5 nm GaAsquantumwell betweerb nm AlGaAs tunnelbarriersand26.3nm

GaAscontactlayers,giving atotal simulationwidth of L = 67.6nm. Contactlayer

doping isN = 10'¥/cm?; the other layers are undoped.
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atesbeginningin this section,assimulationsof a realquantumdevice, the RTD described
in the previous section,are presentecaind analyzed This more practicalapproachbegins
with aplotin Figure5.11 of the Wignerfunctionfor thisRTD at1 V bias.This relatvely
high biaswaschoserfor this plot sothatthe beamof carrierstunnelingthroughthedouble
barrierstructureandpropagtinginto theleft contactwaslarge (dueto a high currentflow)
andmoredistinctfrom the equilibrium carriers(dueto a high enegy separation)Figure
5.11canbe comparedo the TMM-computedWignerfunctionin Figure4.10,andshavs
that the WFM captures the basic quanturyspds of R Ds.
Anotheressentiajuantumdevice simulationresultis the carrierdensityprofile, which
in WFEM simulationis calculatedby integratingthe Wigner function over the wavevector
domain,asdescribedn Section5.3.4.As atypical exampleFigure5.12shaws the carrier
densityfor the simulatedRTD at a biasof 0.16V, which is nearresonancgpeakcurrent)
for thisRTD. Notethe quantumexclusionof carriersnotonly from the barrierregions,but
alsofrom the regionsjust outsidethe barriers,even on the accumulatiorregion side (in
this case pntheleft). By contrasta classicakimulationwould predicta high carrierden-
sity all theway up to theemitterbarrier Also notethatthereis a substantiatlensityof car-
riersin the quantumwell at this bias, sincethe discretequantumwell stateis still above

the emitterminimum. Thus, carriersareableto tunnelfrom the emitterinto the quantum
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Figure 5.11: RTD Wigner function at high bias

The simulatedWigner function f, (x, k) is shovn for an RTD at 1 V bias. The
Wigner function shavs the numberof carriersversusposition and wavevector
(proportionalto velocity) in the device. The beamof carrierstravelling at high
velocity into the right contact kia tunneled through theT®.
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Figure 5.12: RTD carrier density profile near resonance (peak cumnt)

The conductionbandprofile is also shovn (dashedine). Quantumexclusion of
carriersis evidentin the barriersandin the accumulatiorregion (in this case just
outsidetheleft barrier).However, the substantiatlensityof carriersin thequantum
well at this bias indicatesthat the discretequantumwell stateis still above the
emitter minimum, and being filled by carriers from the emiter

well state and then to the collector

Having demonstratedn the above discussionthat the WFM reproduceshe basic
guantum(and classical)physics of RTDs, the remainderof this sectionsummarizeghe
resultsof first-time investigationsof threeaspectof WFM simulation.The first seeksto
ascertainthe significanceof inelastic scattering(i.e., enegy dissipation)in quantum
device operationand simulation. To this end, Figure 5.13 shavs simulatedRTD -V
curvesbothwith andwithout scatteringTheconclusions thatscatterings very important
beforeresonancdpeakcurrent).In this region of operation,the Fabry-Perotresonance
effect [42] enhancedunnelingcurrentif carriersmaintainphasecoherenceghroughthe
entiretunnelingprocessTheability to includescatterings oneof the mainadwantage®f
the WFM overthe TMM, thelatterstill beingthe mainstayof quantumdevice simulation.
In spiteof the importanceof scatteringn accuratequantumdevice simulation,evenwell
below roomtemperaturgthesesimulationsusea 100K device temperature)the develop-

mentof moreaccuratescatteringmnodelsthanthe relaxationtime approximatiorhave not



5.5. Simulation Results 153

B0 <
! ! No Scattering
i : : (PVR=212) | |
3.0 A ¥ S I With Scattering |-~
’ : | (PVR=7.62) | |

N
o

1.0 ¢

ﬂﬂﬂﬂﬂ
.......

Current Density (10° Alcm?)

AL LA L | P | L
0.0 0.1 0.2 0.3 0.4 0.5
Applied Bias (V)

Figure 5.13: Simulated RTD I-V cur ves with and without scattering

The I-V curvesshav that the inclusion of scatteringin simulationssignificantly
reducescurrentwhenthe RTD is operatingin the Fabry-Perotregime (up to and
includingthe currentpeak).After resonancescatteringhaslittle effect on current,
sincecoherencas irrelevant. PVR is the peakto valley currentratio, animportant
figure of merit for RDs.

beenattemptedn the WFM. Basedontheresultsin Figure5.13,this oversightshouldcer-
tainly be addressed in the future.

The next WFM investigation concernghe inclusionof a position-dependergffective
mass(PDEM). For reasonghatwill shortly be apparentthe simulationsin this chaptey
andmostWFM simulationsby otherresearchergssume positionindependengffective
mass.As discussedn Section5.3.3.2,the correctderiation and implementationof a
PDEMis quiteinvolved[19, 20], andis thereforenotimplementedn SQUADS. However,
thesimplePDEM modelusedby Frenslg [9] wasimplementedn SQUADS to determine
its efficacy in reproducingthe effectsof a PDEM. The RTD |-V curve with this PDEM
modelis shovn in Figure5.14,clearlydemonstratinghatthe Frenslg¢ PDEMis unaccept-
ablefor accuratequantumdevice simulation.Thus,in orderto incorporatea PDEM, the
correct(andvery complicatedjmplementatiormustbe used.Oneadwantageof the TMM
overthe WFM is thatcorrectlyimplementinga PDEM is mucheasierIn fact,oneconclu-
sion from the TMM simulationsin Chapter4 (seeFigure 4.17) was that including a
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Figure 5.14: RTD I-V cur ve with simple \ariable effective mass model

This simulationis identicalto the I-V curve in Figure5.13 including scattering,
exceptthatthe Frenslg position-dependerdffective massmodelhasbeenturned
on here.The regions of negative current(power production)clearly demonstrate
thatthis modelis not acceptabldor accuratequantumdevice simulation.The sim-
ulation does assume a more vemtional appearance at biaseswa.5 V

PDEM is necessary for accurate quantumaiesimulation.

Variousoptionsfor implementingthe diffusionandtransientermsof the WFTE have
beendiscussedand comparedandonly a single approachs commonfor implementing
the scatteringterm. The remainingterm of the WFTE yet to be investigatedis the drift
term. Therefore,as a final investigation of the steady-statdVFM, recall from Section
5.3.3.3thatthreedifferentalgorithmshave beenusedto calculatethe non-localpotential
(NLP) in thedrift term.Only thestandardnodelis mathematically:orrect,25 but the mod-
ificationswere proposedo addresotherconcernssuchas smoothingout abrupttransi-
tionsin the potentialprofile. Figure5.15givessimulatedRTD I-V curvesfor eachof the
NLP models.Note that scatteringwasnot includedin this simulation,so that differences
in thesimulationresultswould notbeobscuredEvenso,thedifferencedetweerthethree
I-V curvesare not large. Thus, the NLP modificationsshould not significantly degrade
accurayg, andthus may be usedwithout undueconcern.Whetherthey accomplishtheir

25. See the e@at in Section 5.5.7.
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Figure 5.15: RTD I-V cur ves br differ ent drift term implementations

Comparedo theeffectsof alternatve diffusion,transientandscatteringerms,the
alternatve drift terms[basedon modified non-localpotential(NLP) calculations]
producerelatively little quantitatve differencein the simulatiedl-V curve. Thus,
the alternatve (rectangle-andtriangle-smoothedNLP forms canbe usedwithout
undue concern about introducing agkaerror in the simulation result.

ancillary purposesis well worth further investigation, but this questionwill not be
addressed here.

5.5.6 Transient Simulations

In additionits ability to includedissipation.anotherimportantadwantageof the WFM
overthe TMM s its transientsimulationcapability which will be discussecinddemon-
stratedin this section.Sincenumeroudransientsimulationsaredetailedin Chapters-8,
only a cursorylook at transienftWFM simulationwill be givenhere.In particular thetra-
ditionaltransientRTD simulationsof switchingfrom peakto valley andvice-versawill be
describedFor the RTD being investigatedin this chaptey the peakand valley applied
biasesare0.16V and0.28V, respectrely. Figure5.16 shavs the position-aeragedcur-
rentafterinstantaneouslgwitchingthe RTD betweerthesetwo biasesNote that steady-
stateis essentiallyreachedn about600 fs whenswitchingfrom peakto valley, while the
oppositeswitchingeventtakesabout800fs. Thecurrentpulseandhigh-frequeng oscilla-
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Figure 5.16: Transient current after switching RTD between peak and alley

The simulatedRTD is switchedinstantaneouslatt = 0 from 0.16V to 0.28V
appliedbias(peakto valley operation)andvice versa.The RTD takesonly 600to
800 fs to essentiallyreachsteady-stategdemonstratinghat RTDs are inherently
fastdevices.Theorigin of the currentpulseafter switchingis discussedn Chapter
7, and the cause of the high-frequenescillations is discussed in Chapter 8.

tions will be discussedn detail in Chapters/ and 8, respectiely. The simple message,
however, is thatRTDs andsimilar quantumdevicescanoperateat very high speedaswas
claimed in Section 2.3.4.

5.5.7 Comparison to Experiment

It hasbeenstatedseveraltimesin this work thatthe raisond’etre of electronicdevice
simulatorss to predicthow electronicdevices(whetherexisting or proposedvill operate.
In orderto determinehow well a simulationtool meetsthis goal, its predictionsmustbe
comparedo experimentaimeasurementsf real electonic devices And yet, in aliterature
review of WFM simulationpapersonly onepaper[10] out of roughly 50 provided both
experimentaland WFM simulationresults(I-V curves)for the samedevice. It happens
that this is the samedevice describedn Section5.5.4andusedin the RTD simulations
above. In that paper the simulationresultsappearto agreequite well with experimental
measurementd.he obvious questionis: why arecomparisondetweernlWFM simulations
andactualdevice measurementsot publishedThe answerwill be equallyobviouswhen
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Wigner function method(WFM) andtransfermatrix method(TMM) simulations

areshovn (eachscaleddown by afactorof 10) alongwith the experimentakurve.

The simulatedpeakcurrentsare morethanan orderof magnitudelarger thanthe

experimentalvalue. Someof the discrepang canbe attributedto inaccuraciesn
the simulationmethods(especiallythe WFM), and someis undoubtedlydue to

non-idealities in thex@erimental deice and measurement.

the xperimental and simulation results for th€ORused in this chapter are juxtaposed.

Figure 5.17 givesthe experimentall-V curve from [39] aswell asl-V curvesfrom

both WFM and TMM simulations.Note that the simulatedl-V curvweshave beenscaled

down by a factorof ten. Thus,the simulatedpeakcurrentsare morethana factorof 10

largerthanthe experimentalalue?® Two othervaluesof interestthe peakandvalley volt-

ages,are100 mV (about33%) largerin the experimentalmeasurements hus,although

the simulationshave correctlyreproducedhe basicphysicsof the RTD, the quantitatve

accurag of the simulationsleavesmuchto be desired.lt is for this reasonthat compari-

sonsbetweenWFM simulationsandexperimentalresultsare not published:the compari-

son would call into question the usefulness of the simulator

26.Notethatthelateralareaof the experimentalRTD wasnot directly specifiedin [39]. Therange
of sizeswasgivenas1-5 pum diametermesaswith atypical diameterof 3 um. Figure5.17 calcu-
latescurrentdensityfrom total currentassuminghetypical diameterAlso, whena position-depen-

dent efective mass is included in the TMM, the simulated peak currentistarfof 3 smaller
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In orderto improve the agreemenbetweenquantumdevice simulationsand experi-
ment,both experimentalisteandsimulationtool developerswill have to cooperateOn the
experimentakide,the structureof the device mustbe accuratelydeterminedandreported.
For example,in RTDs, even single atomic layer error or variationin the tunnel barrier
widths producesa hugecurrentchange sincetunnelingcurrentvariesexponentiallywith
barrierwidth. Similarly, aninexactly known quanturmwell width will changethe peakand
valley voltages Otherimportantintrinsic device characteristicarethe dopingprofile and
the lateral area.For example,sincea range of sizeswas given for the RTD simulated
above, thecurrentdensityin the experimentaldevice wasunknavn by afactorof 25. Also,
the measuremendetailsmustbe accuratelydescribedFor example,device temperature
may differ from the ambient theremay be significantparasitic§inductancecapacitance,

andresistance)n the measuremertircuit,2’

andtheremay be parasiticsassociatedvith
thedeviceitself (suchassurfaceleakagecurrenton the sidesof amesapr a surfacepoten-
tial on the sides of a mesa, whicbwld reduce the &dctive lateral area of the dee).

Onthesimulationside,quantumdevice simulationsmustbe ableto accountor exter-
nal parasitics Sincequantumdevicesareinherentlyvery small,andthusvery sensitve to
externalconditionsandnon-idealitiesthe effectslistedin the previous paragraphmustbe
accountedor in, andstudiedwith, simulation.This canbe accomplishedy derving an
equivalentcircuit modelfor the quantumdevice, asis donein Chapter8, andusingthis
modelin alarger circuit simulationincluding suspectedar knowvn parasiticsin this way
the significance of the parasitics can be understood and tlesitsahiticated.

Sincethe TMM is a well-behaed andwidely acceptedimulationapproachmuchof
thediscrepang betweersimulationandexperimentis likely to be dueeitherto non-ideal-
itiesin theexperimentakystempr functionality (suchasscatteringthatcannotbeimple-
mentedn a TMM simulation.The WFM, onthe otherhand,is still ataformative stageof
development,andits discrepang with the TMM (aswell asexperiment)arelikely due
largely to inaccuraciesn the WFM. Many advancementsanbe madein the WFM which
should producebetteragreementvith experiment,as detailedin Section9.3. Some of
theseinclude a fundamentallydifferentand more accuratamplementatiorof the WFTE
[25, 27], simulationswith a muchhighernumberof wavevectorpoints,interbandinterac-

27. Thefactthat the experimentalpeakandvalley voltageswere at higherbiasesthanin simula-
tions, even when self-consisteng (see Chapter6) was enforced,indicatesa seriesresistance
between the measurement probes and metal contacts, or between the contacts wicd.the de
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tions,and2-D simulationcapability In spite of the discrepanciebetweernthe WFM and
TMM, the two quantumdevice simulationapproachestill producequalitatvely similar
results A comparisorof the Wignerfunctionsproducedoy eachsimulationmethodfor an
RTD at high bias (Figures 4.10 and 5.11) fulérities this.

In summaryalthoughthereis presentlya significantquantitatve discrepang between
guantumdevice simulationsand experiment,it is still importantto make direct compari-
sonsbetweenthe two. Throughthis exercise,the accurag of quantumdevice simulators
will improve more quickly, enhancingts usefulnessn quantumelectronicsresearcrand
development.

5.6 Summary

This chapterthasdescribedhe Wignerfunction methodof quantumdevice simulation
andits implementationn SQUADS. As discussedn Section3.5.3,the capabilitiesand
potential of the Wigner function methodcomplimentthoseof the TMM in SQUADS.
Whereasthe TMM is well-suited to efficient, wide-rangingsimulations,the WFM is
requiredfor transientquantumdevice simulations andfor ary simulationswherescatter-
ing is to beincluded.To the user thefunctionality of a simulatoris largely determinedy
therangeof outputinformationit canproduce By this measurethe WFM asimplemented
in SQUADS caninvestigatethe operationof a quantumdevice at a singlebias,with plots
of the Wignerfunction,carrierdensityprofile,andpotentialprofile; over arangeof biases,
with 1-V and Q-V plots (chage in eachdevice region versusbias); and undertransient
operationjncludingtime-logsof terminalandaveragecurrents 3-D plots of currentden-
sity and chage densityversusposition andtime, and Q-T plots (chage in eachdevice
region versustime). Most of the moreadwancedfeaturesof the WFM in SQUADS will be
used in the ivestigations in Chapters 6-8.

As discussedn Section3.5.5andamply demonstrateh this Chapter SQUADS was
designedto allow the investicgation of quantumdevice simulatoss, as well as quantum
devices As aresult,a wide rangeof alternatve implementationf the discreteWigner
function transportequation,which is the basisof the WFM, are availablein SQUADS.
Theimplementatiorandcomparisorof thesealternatvesenabledhe determinationn this
chapterof their relatve accuracieand efficiencies.From Gaussiarwave paclet simula-
tions, optimal WFTE diffusionandtransienttermimplementationsveredeterminedFur-
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ther simulations of resonanttunneling diodes shaved the importance of including
scatteringn the simulation.Finally, the threeproposeddrift term implementationsvere
shawvn to producelittle differencein the simulationresult,so that alternateforms canbe
used as desired without adarincrease in simulation error

Anotherimportantcontribution of this chapterderives from the ratherunimpressie
comparisorbetweensimulation(both WFM and TMM) andexperimentall-V curvesfor
anRTD. To date,the underreporteddark secretof quantumdevice simulationis thatit is
not quantitatvely accurate Publicationsshov quantumdevice simulationresultswhich
look qualitatvely reasonablehut which invariably make no comparisorto measurediata
for thesamedevice. Thereasons thatthe quantitatve matchis currentlyvery poor. How-
ever, unlessand until comparisondetweensimulationand experimentare made,there
will benoway to judgetheaccurag of the simulator andno public discussiorandinves-
tigationof how theaccurag mightbeimproved. As aresult,theimprovementof quantum
device simulationwould be muchslower thannecessaryBy disclosingthe currentlimita-
tions of quantumdevice simulation beyond the few groupswho pursuethis endeaor
directly, this work should help to acceleratehe processof quantumdevice simulation
development.

Finally, in spite of the quantitatve disagreemenbetweenthe WFM and TMM, both
simulationapproache$iave demonstratedheir ability to provide qualitatve insightinto
guantumdevice operation With this understandingChapters-8 describethreein-depth
investications, basedmainly on the WFM capabilitiesof SQUADS, of quantumdevice
simulation and the operation oTRs.
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Chapter 6

Quantum Self-Consistency

Self-consistengin electronicdevice simulationmeansensuringthat the carrierden-
sity profile in the simulateddevice is consistenwith its potentialprofile, as dictatedby
Poissons equation.In previous simulationsin this dissertationthe potentialprofile was
approximatedby some simple algorithm, and no attemptwas made after solving the
Wigner function transportequationor Schrodingerequationto assurethat the resulting
carrier profile was consistentwith the assumedotential. However, to accuratelymodel
real quantumdevices, enforcing self-consisteng is essential.This chapterdetails the
implementatiorof self-consistencin SQUADS, anddemonstratess significanteffecton
device operationpredictions.For two reasonsmostof this chapteris dedicatedo self-
consisteng in Wigner function method(WFM) simulation.First, scatteringnustalsobe
includedfor accurateself-consistensimulations,andonly the WFM caninclude scatter-
ing. Second, SQUADS implementsfour alternatve implementationof self-consisteng
for the WFM, while only one of these approaches is possible with the TMM.

The organizationof this chapteris as follows. Section6.1 presentshe background
informationnecessaryor anunderstandingf theimplementatiorof quantunmself-consis-
teng. The next threesections(6.2-6.4) presenthe analyticalformulationand numerical
implementationof eachof the four WFM self-consisteng approachesSection6.5 then
simulateghe self-consistent-V curve of anRTD asatestcaseto comparethe efficiency
(computationatost),accurag (ability to correctlyreproducedevice physics),androbust-
ness(reliability) of theseiteration methods.Finally, Section6.6 describesbriefly the
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166 Chapter 6. Quantum Self-Consistency

implementatiorof self-consistencin TMM simulation,andgivesafew associategimu-
lation results.

6.1 Background

As describedn Chapters, the Wigner function methodof quantumdevice simulation
modelsa quantumsystemby computingthe evolution of the Wigner function f(x, k, t)
according to the Wgner function transport equation (WFTE):

?Ef(x, 1) + %(aix F(x K, 1) + %I%'V(x, K—K') f(x, k', 1 —% ok =t (6
To enforceself-consisteng in the WFM [1-5], the Poissonequation(PE) relating the
potential profile to the carrier density profile must be satisfiedsimultaneouslywith the
WFTE. In 1-D, the PE can be written:

B X u00 | = aped = o’k -] 6.2)

where € is permittvity, u is the (Hartree,or mean-field)potential, g is the electronic
chage, c is the free electrondensity and C is the fixed chage density (e.g., ionized
dopants). The conduction band minimum is calculated from the potential:

U(X) = u(x) +dU(x), (6.3)
wheredU is the (fixed) heterostructurbandoffsetandU(x) is the potentialusedin calcu-
lating the non-localpotentialV(x, k) in the WFTE. To completethe WFTE - PE interde-
pendence, the carrier density is calculated from tign&Y function using:

c(x) = Zi - [k f(x,K). (6.4)

Conceptuallyaself-consistensimulationgoroceedssfollows: the PEuseghecarrier
density profile ¢(x) to determinethe enegy band profile U(x) of the device, and the
WFTE usedJ(x) to determinglamongotherthings)c(x) . Therelationshipgbetweercarrier
densityand enegy bandsis non-linear Finding the simultaneoussolution of the WFTE
and PE thereforerequiresiteration. Section5.4 describedhe high computationatostof
solvingthe WFTE, so ann iterationsolutionof the WFTE will be n timesasexpensve.
The result is that the computationalefficiency of the WFM self-consisteng iteration
methodis critically important.To investigate and compareefficiency and otherstrengths
andweaknessesSQUADS implementsfour basicself-consisteng iteration methodsfor
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the WFM: steady-stat&summel, transientGummel, steady-statdNewton, and transient
Newton.

Dueto thedifficulty of implementingandmaintainingmultiple self-consistengitera-
tion approaches a numericalsimulator mostresearcherssingthe WFM rely on a sin-
gle implementation,usually the steady-stateor transientGummel approach,in their
guantumdevice researchTestcasesimulationsn Section6.5illustratethe dangerof this
practice, andshav how to take adwvantageof the complementangtrengthsof both steady-
state and transientiteration methodswhere appropriate. SQUADS’ modular structure
malkes it ideally suitedto the implementationand comparisonof alternatve simulation
approachessuchasthe comparisorof self-consistengiterationmethodsin this chapter
Only by presenting the thegmyumerical implementation, and simulatio@mmples for all
of these simulation alternaéis in a cohege frameavork is this comparison possible.

In selectingspecificsimulationexamplesfor this comparisonpbviously only transient
iterationmethodsaresuitablefor time-dependenhvestigations,suchasswitching,small-
signal,or large-signalsimulations. However, for the very basicelectronicdevice simula-
tion taskof tracingthe current-wltage(l-V) curve, steady-statenethodsarealsosuitable.
Thereforetheaccurategeneratiorof thel-V curve for the“prototypical’ quantundevice,
the resonantunnelingdiode (RTD) [6-8], sened asthe testcasefor evaluatingthe four
self-consistengiterationmethods.In fact, this device and simulationtask have beenthe
mostcommonin the Wigner function simulationliterature.Figure 6.1 shaws a “typical”
measuredRTD |-V curve[7]. Somefeaturesof notein thisl-V curve area negative differ-
entialresistanceegion anda bistableregion. The“plateau”shapen the negative differen-
tial resistancaegion is actually the time-averageof a very fastoscillating current. The
ability of the variousself-consisteng iterationmethodsto efficiently andreliably repro-
duce these features will be the basis for their comparison.

6.2 Discretization of the Pvisson Equation

To solve the WFTE - PE system,the simulationdomain must be discretized,and,
accordinglythesetwo equationsDetailsof WFTE discretizatioraredescribedn Chapter
5. This sectiondescribesnostof the PE discretizationJeaving only thosedetailswhich
differ betweenthe self-consisteng iteration methodsfor the following sections.The PE

hasbeendiscretizedn two waysby researchergvesticatingthe WFTE - PE system:ihe



168 Chapter 6. Quantum Self-Consistency
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Figure 6.1: Experimental RTD I-V cur ve

ExperimentalRTD |-V curve [7] shaving the characteristimegative differential
resistanceegion andplateaustructurebetween0.8V and1.3 V. The plateaucur-
rentis actuallythe time-averageof a high-frequeng oscillatingcurrent.[Permis-
sion to reprint data gen by TC.L.G Sollney

directform [9] andthe differential (a.k.a.Newton) form [3]. The appropriatdorm of PE
dependson the self-consisteng iteration method,as discussedn Sections6.3 and 6.4.
Both forms are described here.

Recallfrom Chapter5 thatthe positiondimensionof the WFM simulationdomainis
discretized as:

X, = iA,, i0{0,1,..., N}, (L =N,A)), (6.5)

wherelL is the width of the simulationregion. With this discretizationthe direct Poisson
equation can be written, for a position-dependent pewityttt

(1+a)u,,—2u +(1-a)u,_, = (9°A/g)[Ci -] | (6.63)
a=(g,1—¢.1)/(4g) . (6.6b)

Details of the dewvation of (6.6a) are gen in [10].

The Newton form of the PEis morecomplicatedout moreflexible. Newton equations

1. For the position-independergermittivity assumedn the simulationsof Section6.5,a = 0, and
the discrete PE (in both direct andfeliential forms) iseen simpler
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areinherentlyiterative, seekingto find the solutionto a non-linearsystemby successiely
betterapproximationsTo derive the Newton PE, first definethe “Poissonfunction” P(u),
whichis basednthe PEandmustevaluateto 0 whenthe self-consistenpotentialandcar-
rier density are supplied as input. From (6.2):

P = g 200 g 00 | - 0100 -] 6.7)
In (6.7), n is theiterationindex (which for transientsimulationsis alsothe time step).A
Newton iterationis a 2-stepprocessFirst, the Newton PE systemof equationgs solved
for du, thechange in the potential:

(n)
[al:)—(rf)lj)}[éu(””)(x)] BT 68)
ou

Then the potential is updated:

U™V = M) +su™Y(x) (6.9)
If the Newton iterationcorvergesto the self-consistensolution, P(")(u) cornvergesto 0,
and thereforeso will the updates,du. The corverged self-consistenpotential will be

denotedu*(Xx) .
In discrete form, the Neton PE becomes:

ap_(n) n+1) -
|
[ (n)}[éui 1 =P (W] (6.10a)
ou;.
u™ =y e (6.10b)
where:
POW) = (1+au—2u™ + (1-a)ul) - (g®aZ/e)[C-c™] . (6.11)
(n) 2,2~ (n)
o’ _ (n) (n) m | AL og
aui('n) = (1+a)d,; 1 —20  +(1—-2a)d 4 i + H?I- GUi('n) : (6.12)

andg; ;. is the Kronecler deltafunction? Note that dc/du is left unspecifiedfor now
sinceits valuedependn which self-consisteng iterationmethodis used.It is not diffi-
cult to shav [10] that the direct PE, (6.6a),is a specialcaseof the Newton PE, where
oc/du = 0. SQUADS implementghedirect PE usingthis specialcaseof the differential

2. TheKronecler deltafunctionis unity whenthe two subscriptaareequal,andzerootherwise In

(6.12), for @ample, 9, ,; ;- is unity where columm’ equals rw i+1, and zero otherwise.
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PE.To make the admittedlyabstracNewton PE (6.10a)a little moreconcretefFigure6.2
shaws the discrete, direct PE in fdifential (.e., Nenvton) matrix form folN, = 10.

[ NX - 1columns »|
b @+a) T [acp]”

(fa) -2 (1+a) U, x)
(1-a) -2 (1+a) 8 5(1)
0 (1-a) -2 (1+a) OUy 4(U)
§ (1-a) -2 (1+a) *| pusf | = - | Ps(Y)
é (1-a) -2 (1+a) OUg 6(U)
(1-a) -2 (1+a) Sz )
(1-a) 2 (1{a)| | Pug s(U)
(1-a) -p Bug o(U)

Figure 6.2: Discrete, direct Poisson equation in matrix brm

The exampleabove assumedNx = 10. Becausehe dc/du feedbackermis zero
in the direct PE, the coeficient matrix is constant(iterationindependent)so the
iterationsuperscripis omittedfor this term. Also notethatsinceu, anduy, are
fixed boundary conditions, du, = duy, = 0, and equationscorrespondingto
these points do not appear in the discrete PE.

As discusse@bove, enforcingself-consisteng (i.e., finding the simultaneousolution
of the WFTE andPE)is aniterative processSolving the PE with the carrierdensitypro-
file c(n)(x) asinputyieldsanupdatedpotentialprofile u(”+1)(x) . Solvingthe WFTE with
this updatedpotentialproducesa new carrierprofile c(n+1)(x) . However, it is oftenpossi-
ble to predict c(n+1)(x) approximatelyevenwithout solvingthe full (andvery expensve)
WFTE. An inexpensvely computedpredictioncould be usedto make u(”+1)(x) closerto
the self-consistensolution u*(x) , andthusallow u*(x) to be found with fewer iterations
(andsolutionsof the WFTE). In fact, this inexpensve predictionis exactly the purposeof
the dc/du term. Thatis, the dc/du term (which shouldbe basedon a distillation of the
WFTE) providessomecorrectve feedbackio achiese fastercorvergenceto the self-con-

sistentoperatingpoint. By takingdc/du = 0, the direct PE doesnot attemptto usethis
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prediction, while the Neton PE does, witldc/du # 0.

An unresohed issueis what shouldbe usedfor the initial potentialprofile u’ in the
first solutionof the Newton PE andthe WFTE at eachbiaspointin anl-V curve simula-
tion. For steady-statd-V curve simulations,SQUADS useslinear extrapolationfrom
u*(x) attheprevioustwo biaspoints2 Transient-V curve tracingis onecontinuoussim-
ulation, sothefinal potentialprofile u*(x) at onebiaspointis usedto computeuO atthe
next. In particular whenthe biasis incrementedn a transientsimulation,the potential
profile is incremented linearly across the entindate(see Section 7.1).

The combinationof the WFTE andPE, whendiscretizedor numericalsolution,con-
stitutesa non-linearsystemof equationsThe self-consisteng iteration methodsoffer a
meansof solving this non-linearsystem(which cant be solved directly) by iteratively
solving a setof linear equationgwhich can be solved directly). The following two sec-
tions detail the remainderof the numericalimplementatiorof four self-consistengitera-
tion methoddor the WFTE - PE system Becausdhe mathematic®f the steady-statand
transientapproachesf eachmethod(Gummelor Newton) are similar, the two Gummel
approachearedescribedogetherin Section6.3,andthetwo Newton approaches Sec-
tion 6.4. However, tracingthe self-consistenbperatingpointsalongthe l-V curve, which
taskhasbeenchosenfor this iteration methodcomparisonjs very differentfor the tran-
sientandsteady-stat@approachesThe steady-statapproachesry to locatethe self-con-
sistentoperatingpointin asfew iterationsaspossible while thetransientapproacheseek
to follow the actualtime-dependemperationof the device until it evolvesto steady-state.
Therefore whenrunningsimulationsthe corversepairingis moreappropriatesoin Sec-
tion 6.5 the two steady-statenethodsare consideredogetherfollowed by the two tran-
sient methods.

6.3 Gummel (Plug-in) Approach

The Gummel (a.k.a. plug-in) approach[11] to solving the WFTE - PE systemis
almostuniversallyusedto addself-consistencto the WFTE. This is dueto the simplicity
of the Gummelapproachsincethe two equationsare solved independently12], andthe

3. At thefirst biaspoint, linearbandbendingis used,andat the seconda linear potentialis added
to u*(x) at the first bias point.
4. Again, linear band bending is used to initialize the potential profile at the first bias point.
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PE is numericallymuchsimplerto implementandsolve thanthe WFTE. For the steady-
stateGummelmethod|[2, 3], the steady-stat&/FTE andthe PE areiteratively andalter-
natelysolved, plugging-inoneequations solutionasinput for the other Whenthe Wigner
functionandpotentialstopchanging(within specifiedcorvergencecriteria), the self-con-
sistentoperatingpoint hasbeenreached For the transientGummelmethod[1, 13] the
only mathematicatlifferencess thatthetransienWFTE is used sothateachiterationis a
time step.Thatis, onealternatelytime-stepgshe WFTE andupdateshe potentialusingthe
PE until steady-stat@perationis reachedagain, within specifiedcorvergencecriteria).
The transientGummeliteration is initiated by solving the WFTE oncein steady-state
mode.

Now considerwhetherthe direct or Newton form of the PE (i.e., zero or non-zero
dc/0du termin (6.12))shouldbe usedfor the steady-statandtransientGummeliteration
methods.Test simulationsshaved that a steady-stat&Gummel iteration often diverges
(consecutie Wignerfunctionandu(x) solutionsoscillatewildly) unlesssomecorrectve
feedbackis suppliedthrougha non-zerodc/ du. Thus,the Newton PE mustbe usedfor
the steady-stat&ummelmethod.In generalthereis no exact, closed-formexpressiorfor
dc/du for a quantumsystem.This is why the WFTE is solved - it accountdor quantum
effects suchastunnelingandreflection,along with non-equilibriumcarriertransport,to
relatethe enegy bandsto carrier concentrationSo, an approximateform for dc/ou is
soughtthatis easyto computebut still producesself-consistengcorvergence.To thisend,
SQUADS usesthe classical,equilibrium expressionfor dc/du. Any justificationfor the
choiceof dc/du mustbe basedon thetransportequationIn this case the boundarycon-
ditions on the WFTE supplycarriersto the device accordingto the classicalrelationship,
eventhoughquantumprocesseandnon-equilibriumtransporwill distortthis relationship
as the distancefrom the contactsincreasesAlso, scattering(usually includedin the
WFTE in self-consistent simulation) tends to produce the classical result.

The standardapproach(cf. [3]) in deriving dc/du is to assumesquilibrium, classical

Maxwell-Boltzmann statistics:

c(u) = Neexp[(u—uy)/(kgT)] , (6.13)
oc _ c(u)
3 kB_T' (6.14)

Underthis assumptionthe carrierdensityc;, ata given positionx; dependsonly on the
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potentialu; at the same point. Thus, the discrete form of (6.14) is:
E = ié- (6.15)
ou;,  kgT ™!
In otherwords,the dc/du termin (6.12)only modifiesthe maindiagonalelementsn the
coeficient matrix of Figure 6.2. Using (6.15) as the feedbackterm in the Newton PE
results in relatiely slov but reliable comergence to the self-consistent operating point.
Note that the boundaryconditionsin (5.6a)and (5.6b) for the WFTE are basedon
Fermi-Dirac statistics,not Maxwell-Boltzmannstatistics. Test simulationsshaved that
using Fermi-Diracstatisticsto derive dc/du cansignificantlyacceleratehe convergence
speedf thesteady-stat&ummelmethod SQUADS useshe Joyce-Dixonapproximation
[14] to relatec andu accordingto Fermi-Diracstatistics.To determinedc/ du, we write

u(c), derive du/ dc, and irvert. Thus:

r=c/Ng, (6.16)
U—uy = kBT[In(r) " amrm}, (6.17)
m=1
ou _ dudr _ 1 8m m1] 1
- kBT[r +m; Ty }Nc , (6.18)

o0 it (6.19)

Althoughthe dc/du termin (6.19) is more complicatedthanthatin (6.15),it still only
modifies the main diagonal elements in thevddm PE codicient matrix of Figure 6.2.
Test simulationsalso shaved that using Joyce-Dixontermsabo/e m = 3 doesnot
improve corvergencespeedIn fact,in casesvherer; » 1 for oneor morepositionnodes
X;, includinghigherordertermsmayrenderthe steady-stat&ummelmethodnon-cowver-
gent.Therefore SQUADS usesathird-orderJoyce-Dixonapproximatiorby default. If the
iteratesPin arenot corverging towardso, the iterationdropsbackto Maxwell-Boltzmann
statisticgzeroth-ordetdoyce-Dixonapproximationuntil progresgowardscorvergences
maintainedfor several iterations. The algorithm by which the Joyce-Dixon order is
dynamically chosento acceleratecornvergenceof the steady-stat&Gummel methodin
SQUADS is now rathercomplicated peingbasedmore on experiencethantheory Only
the standard(i.e., Maxwell-Boltzmann)form of dc/du hasbeenusedin previous steady-
stateGummeliterationsof the WFTE - PE system.Section6.5.5shaws thatthe acceler-
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atedcornvergencealgorithmdescribedabove greatly decreasethe computationakcost of
the steady-state Gummel iteration method.

In contrasto the steady-stat&ummelmethod the transientGummelmethodseekgo
follow the exactevolution of thedevice. Sincethereis no closedform for dc/du in agen-
eral quantumsystem,andbecausehe approximationgypically used(suchasthoseused
with the steady-stat€&summelmethod)are only heuristicallycorrect,usingthemin the
transientGummelmethodis morelikely to createphysicsthanto modelit. To avoid this,
thedirect PE (dc/0u = 0) mustbe used.For the transientGummelmethod,then,each
iteration startswith the exact potentialprofile for the carrier densityat the currenttime
point, the systemis evolved onetime stepwith thetransienWFTE, andthenthe potential
is adjustedor thenew (but only slightly different)carrierdensity Theresultsof particular
transient and steady-state Gummel simulations are presented in Section 6.5.

6.4 Full Newton Approach

With the Gummelapproacho solvingthe WFTE - PE system two independen(i.e.,
uncoupledxsetsof linearequationsarealternatelysolved,onedervedfrom the WFTE and
resultingin an updatedwWigner function, andthe secondderived from PE and producing
an updatedpotential. With the full Newton formulation[15], a combined(i.e., coupled)
WFTE - PE linear systemis solved to producesimultaneousipdatesof boththe Wigner
functionandpotential. The advantageof the full Newton approachs thatchangesn one
solutiondirectly affect the outcomeof the other sothe correctve feedbackhathadto be
approximatedn the steady-statésummelmethodis inherentin the Newton formulation.
This tendsto producemuchfastercorvergencewith a steady-stat&ewton methodthan
with the steady-stat&summelmethod.Lik e the transientGummelmethod,the transient
Newton methodseekdo follow the exactevolution of the quantunsystemsoit evolvesto
the steady-stateperatingpoint only asquickly asareal device would. However, thetran-
sientNewton methodshouldbe moreaccuratdahanthetransientGummelmethod though
by hav much is not yet clear

Useof the Newton formulationfor quantumself-consisteng[16] requiresthe defini-
tion of aWFTE functionW(F), analogouso the PEfunctiondefinedin (6.7).For this pur-
pose, simply use (5.29):

W(F)=(T+K+P+S)[F]+(4/A)f (6.20)

ij,n:
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The Nevton formulation for the WFTE - PE system s8vhe follaving system:
(n)

a_\N G_VV (n+1) (n)

9F du [51 _ _[W(F)} | (6.21)
oP op| [OU P(u)

oF du

wherethe left-mostmatrix is the Jacobiarand P is the Poissorfunctiondefinedin (6.7).
After each solution of (6.21), the unkmos are updated as:

F(n+l) — F(n)+B(6F)(n+1) , (6.22a)

™ =y g au)™Y (6.22b)

As with the Gummeliterationmethodscorvergencetowardsthe steady-stateself-consis-
tent operatingpoint with the Newton iterationmethodsis determinedoy monitoringthe
progress of the Poisson functidﬂ%n)(u) and update?)u(n) iterates tavards 0.

Theupdatescalingfactorsa andp in (6.22a)and(6.22b)areusedonly for the steady-
stateNewton method BecausehetransientNewton methodattemptgo exactly follow the
transientoperationof the device, one must not modify the updatesthat are computed.
Even for the steady-stat®&Newton method,theseupdatefactorsare ideally unity, though
they canbe reducedto somefraction whenthe iteratesare not corverging. Frenslg [4]
useda = 0.5 and 3 = 0.1. However, for the simulationsreportedherein,in the few
casesvhenthe steady-stat®&lewton methodcould not locatethe self-consistenbperating
point, reducinga and 3 did not help,andin fact usually madecorvergencelesslikely.
Thus,the simulationsin this work alwaysuseda = (3 = 1. Insteadwherecorvergence
was not occurringwith the steady-stat&ewton method,SQUADS usesthe steady-state
Gummelmethoduntil the iteration begins corverging again. Finally, sincethe Newton
updatein (6.22a)requiresa Wigner function to updatefrom, both steady-statandtran-
sientNewton simulationsbegin with a singlesteady-stat&ummelsolutionof the WFTE.
Initialization of the potential profile & discussed in Section 6.2.

Thefull Newton equation(6.21)mustbediscretizedor numericalsolution.In discrete
form (6.21) is:
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i ()
i, ] Ty (n+1) (n)
OFj o Quy | |3F 51 T W (R) (6.23)
oP. oP. du, Pi(u)
oF;. i au;

Expressmnsﬁorw andP; wereglvemn Section6.2. The Jacobiarblockshave yet
to be determined Actually, the Jacoblarblock for W/ 0F is identicalto the coeficient
matrix usedfor the WFTE solutionof a Gummeliteration,althoughthe unknavnsin the
Newton formulationaredF; ; , insteadof F; ; .. Theonly differencebetweernthe Gum-
mel WFTE coeficient matrix andthe Newton 0W/ dF Jacobiarblockis thattermswhich
becomeboundaryconditionswith the Gummelformulationarezerowith the Newton for-
mulation,sincedF s zero.Thus,theseermsdo notappeain theright-hand-sidevector
as in the Gummel methods.

The dP/0du Jacobiarblock is alsoslightly differentthanthe PE coeficientsusedin
the Gummelformulation.In particular with the Newton formulation,thereis no needto
approximatethe effect of the changein potentialon the carrier concentrationthrough
dc/0u. This relationshipis taken care of exactly through the off-diagonal Jacobian
blocks. ThedP/du block is therefore the same as that used for the direct PE:

P 1+a)d
WI'_( a)

i+, =20+ (1-a)0 4 ;- (6.24)
The more interestingJacobianblocks in this caseare the off-diagonalones,if only
becausesxpressiondor thesehave (to our knowledge) never beenpublished,although
Frenslg hasusedthe steady-stat&ewton methodto solve the WFTE - PE system([4].
The 0W/0u block is somavhat complicateddueto the convolutedway in which the u;
enterinto the computationof the non-localpotential,asshowvn in (5.40). Note from the

relationship between the band edgiend the potential ergy u in (6.3) that

ou, U, (6.25)
After some dbrt [10], thedW/ du Jacobian block is:
aW - n
, 2(i - )(J —| )rr}
_
- kh Z f; sm[ (6.26a)

| J =1
(1<i'=i|<N/2). (6.26b)
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The Jacobiarblock for 9P/ df is muchsimpler Recallingfrom (6.4) how carriercon-
centrationc is calculated,and using the definition of the discretePoissonfunction in
(6.11):

P, B qZAX

I 28N,

5 i (6.27)

Combiningall of theseresults Figure6.3 givesanexampleof the structureandsizeof
thediscretefull Newton equatiorfor N, = 7, N, = 6. SincethedW/ 0 f Jacobiarblockis
identicalin the Gummeland Newton formulations,and becausehis block is by far the
largestin the Jacobiamatrix, onemight expectthatsolvingthe WFTE - PE systemby the
two approacheshouldrequireroughly the samestorageand CPU time. This is not at all
the case,especiallyin SQUADS, wherethe storageand solution of the discreteWFTE
(andthusthedW/df Jacobiarblock) have beenhighly optimized.The resultis that the
Newton formulationrequirestypically twice the storageandfive timesasmuchCPUtime
perloop asthe Gummelformulation. Performancelataare presentedn the next section
for all self-consistenciteration methods along with simulation results.

6.5 Results and Discussion

6.5.1 Simulated Device and Rarameters

Simulationsin this chapter(and Chapters/ and8) usethe RTD device structureand
simulationparametersf JenserandBuot [9] asatestcase.The simulatedRTD, depicted
in Figure6.4 atequilibrium,is composeaf a5 nmundopedGaAsquantumwell between
3 nm undopedAl sGa, 7As tunnelbarriersand 3 nm undopedGaAs spacerayers.The
GaAscontactlayersare19 nm each giving atotal device width of L = 55 nm. Theelec-
tron effective massis assumedonstantat 0.066/m,, andthe permittwvity is alsotakenas
constantat 12.%,. Finally, thesesimulationsassumedN, = 86, N, = 72, A, = 1 fs,
andt = 525fs [17] atT = 77 K.

6.5.2 Convergence Criteria

The choiceof corvergencecriteria for the WFTE - PE iteration presentsa dilemma:
too looseof criteria andthe predictedself-consistenbperatingpoint is not trustworthy;
tootight andthenumberof iterationsrequiredfor corvergencemayrisedramatically This
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Figure 6.3: Full-Newton WFTE-PE matrix equation
The Jacobiammatrix block sizesand non-zerocoeficient structureare shovn for

N,=7,N, = 6.
work errson the sideof too muchcomputatiorratherthantoo little: corvergencecriteria
were relatvely strict.

For steady-statsimulationsthe propercornvergencecriterion is simply to verify that
the (direct) Poisson equation is satisfied to a higjnede These simulations required that:

P.(u) <10 eV (0<i<Ny. (6.28)
This convergencecriteria, althoughnecessaryis not sufiicientin all casesTo assurethat
consecutie solutionsare not oscillatory andfor steady-stat®&ewton simulationswhere

P(u) is alwaysvery small(if updateconstantx is unity), it is alsonecessaryo requirethat
the potential update atwapoint be ery small:

du, < 10 %eV (0<i<N,). (6.29)
Theserelatively strict convergencecriteriaarefeasiblefor the steady-statéerationmeth-

odsbecauseorvergenceendsto beveryfast.Someresearcher8] have usedcriterialike

(6.29) astheir only indicationof self-consisteng but this is not sufficient. It is possible,
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Figure 6.4: GaAs RTD used in self-consistency simulations

Shaown arethe equilibriumself-consistentonductiorband,Fermilevels,anddop-
ing. The 0.3 eV Al 5Ga, 7As tunnelbarriersare 3 nm thick, andthe GaAsquan-
tum well width is 5 nm. The centerl7 nm of the device (including 3 nm outside
each tunnel barrier) are undoped.

especially with an approximateiteration method such as the steady-stateGummel
approachfor the potentialupdateso be small without actually having reachedhe self-
consistent solution.

The corvergencecriteriain (6.28)and(6.29) arealsoenforcedfor the transientitera-
tion simulationsin this work, but they areinadequatdo guarantedhat the steady-state,
self-consistenbperatingooint hasbeenreachedThe du criterionis not especiallyreveal-
ing in atransientsimulationbecausef the approximatgroportionalityof du to thetime
step,At. [A small time stepgiveslittle time for carriersto move, resultingin a corre-
spondinglysmall changein the potential.] Also, becausdransientsimulationstend to
oscillate aroundthe steady-stat@peratingpoint as they relax towardsit, satisfyingthe
P(u) criteriondoesnotguarante¢hata simulationhasreachedteady-stateA moredefin-
itive corvergencecriterion for transientsimulations,alsousedby JenserandBuot [5], is
basedon the factthatthe discretecurrentdensityfor the WFTE is definedsuchthatit is
position-independerat steady-stategsdiscussedn [10]. Thus,aWFTE transientsimula-
tion canbe saidto have reachedsteady-statevhenthevariationin currentdensitydJ over
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thewidth of thedevice dropsbelon somerelatively smallvalue.In thiswork, currentden-
sitieswereon the orderof 10° A/cm?, sothe final transientsimulationcorvergencecrite-
rion is:

8J=(J ) < 1000A/cm” . (6.30)

max_‘]min
This criterionis lessstrict than one might prefer but tighteningit resultsin excessvely
long simulationtimes. When (6.30) is satisfiedin a transientsimulation,a steady-state
simulationusingthefinal potentialprofile usuallydiffersfrom the actualsteady-stateur-
rentdensityby lessthan 10A/cm” . Thereforewhenit is necessaryo verify controversial
transientsimulationresultsin this work, transientsimulationswill be run in which all

three comergence criteria are geral orders of magnitude tighter

6.5.3 Steady-State Iteration Method Simulations

Onepurposeof this chapteris to examinewhenthe (physically-basedjransienttera-
tion methodsarerequiredto accuratelyreproducehe operationof an RTD, andwhenthe
computationallymore efficient steady-statdteration methodsmay be used. The test
device for this work wasselectedbecausef the very interestingl-V curve simulatedby
Jenserand Buot [5], who usedthe transientGummelmethodto implementself-consis-
teng. Their simulationsproducedanl-V curve similarin shapeto the experimentalkcurve
in Figure6.1 (althoughfor adifferentRTD). In fact,they evenobsened persistenturrent
oscillationsfor all biasesn theplateauwegion of thel-V curwve, concludingthat[5] “intrin-
sic oscillationshave adominantinfluenceon the plateaulile structureandhysteresisn the
I-V characteristics.Subsequentvork by BuotandRajagopa[18, 19] describedhe phys-
ics behind this beléor.

Basedon theresultsobtainedby JenserandBuot, it wasnot clearthatthe steady-state
GummelandNewton iterationmethodsimulationswould cornverge in the plateauregion,
sincepersistenbscillationsindicatethat no stable,self-consistenbperatingpoint exists.
Althoughunstablesquilibrium pointsshouldexist in this region, an otherwiseconvergent
steady-statéerationmethodcould be renderechon-comwvergent.In fact, boththe acceler-
atedGummelandthe Newton simulationswere unableto corverge at somechallenging
pointsin the plateau.However, by automaticallyusing the standardGummeliteration
methodin thesecasesthe steady-statéerationmethodddid find self-consistenbperating
pointsover the entiresimulatedbiasrange.Theresultingl-V curve (Figure6.5) wasvery
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similar to thatof JenserandBuot (alsoshavn), andidenticalfor thetwo steady-statéer-
ationmethodsThehysteresigoopin thel-V curve requiredthe simulationof boththeup-
trace (0.0 V to 0.4 V) and thedao-trace (0.4 V to 0.0 V).

7 — T L I S
L i ' — Self-Consistent |
o [nearlotental "\ - Jensen and Buot|

Current Density (10° Alcm?)

0.0 0.1 0.2 0.3 0.4
Applied Bias (V)

Figure 6.5: Steady-state simulated RD I-V cur ve

Both Gummel and Newton steady-stateself-consisteng iteration methodsare
shavn. Jenserand Buot'’s up-trace[5] (wheredifferent)anda non-self-consistent
(linearpotential)l-V curve areshavn for comparison[Permissiorto reprintdata
given by K. L. Jensen.]

It seem<ontradictorythatthe steady-statéerationmethodsound steady-stateper-
ating pointsin the plateau(0.24V to 0.31V ontheup-traceand0.25V to 0.24V onthe
down-trace),while the transientsimulation of Jensenand Buot did not. One possible
explanationis that theseoscillations,althoughpersistentare not perpetual.Jensernand
Buot’s conclusionthat oscillationsarerequiredfor the plateauto occurseemto rule this
out. If the oscillationsare perpetualthe simultaneousVFTE and PE solutionsfound by
the steady-statéteration methodsmust be unstableequilibrium operatingpoints. Thus,
given ary impulseor even numericalnoise,a systempreparedaccordingto the steady-
statesolutionwill begin to oscillatein atransientsimulation.Determiningwhetheroneor
both of theseexplanationsare correctcan only be accomplishedvith transientiteration
simulations, which are described in the faling section.

Beforemoving onto transiensimulationspneconclusioncanalreadybe dravn based
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on the RTD I-V curvesin Figure6.5. Also shavn in Figure 6.5 is a non-self-consistent
simulated-V curve for the RTD of Figure6.4. This simulationassumed linear potential
dropacrosgheundopedcentral)regionof theRTD, andthereforedid notrequiresolution
of thePE,andonly asingleWFTE solutionperbiaspoint. Comparinghesesimulated-V
curveswith the experimentalonein Figure6.1 (for a differentRTD structure),t is clear
that althoughthe linear potential simulationwas able to predict a negative differential
resistanceegion, thatis aboutthelimit of its usefulnessOn the otherhand,the similarity
betweerthe simulatedself-consistent-V curve the experimentalcurve clearly shaovs that
enforcingself-consisteng is necessaryo reproducesomeof the salientphysics of real
RTDs. The openquestionat this point is whetherthe computationallyexpensve transient
iteration methods can addyafurther detail.

6.5.4 Transient Iteration Method Simulations

To compareself-consisteng iteration methods,and now to investicate the natureof
the plateauoperatingpoints,the transientGummeliterationmethodwasusedto simulate
the I-V curve of the RTD in Figure 6.4 over the samebiasrangeasfor the steady-state
simulations A maximumof 4,000iterations(4 ps) perbiaspointwasallowed. If thetran-
sientsimulationdid not corvergein thistime (e.g., dueto sustainedscillations),the sim-
ulation moved to the next bias point aryway. Surprisingly although the current
oscillationsobsered by Jenserand Buot did occurin the plateauregion, the simulation
cornvergedfor all biaspointsexceptthefirst threein the plateau(0.24V, 0.25V, and0.26
V). Further theresultingl-V curve (exceptfor thosethreepoints) wasindistinguishable
from the steady-stateurve, asonewould expect (assuminghe corvergencecriteria are
strict enough).

The oscillationsin the plateauregion were progressiely more persistentat lower
biasesWhereaonly 1,300iterationswererequiredto reachconvergenceat 0.31V, fully
3,800iterationswererequiredat 0.27V. The 0.26V biaspoint wasapparentlyon course
to convergenceat 4,000iterations.Indeed,further evolution resultedin full corvergence
after a total of 7,008iterations.To demonstrateéheseoscillations,Figure 6.6 shawvs the
completeplot of collectorcurrentversustime at 0.26V on the up-trace Both the oscilla-
tion amplitudeandthe corvergencecriteriadecreasesery regularly over the courseof the
simulation, with a decay constant of 0.2/pst &ample, for the oscillation amplitude:
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A(t) = 0.8x10°e O/ 1PI pjcm2 | (6.31)
Although the ultimate fatesof the remainingpoints,0.24V and0.25V on both curve
traces,wereinconclusve after 4,000iterations,extrapolationfrom the resultsandtrends

for the other plateaupoints suggestedhat their oscillationswould simply be even more
persistent, bt not perpetual.
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Figure 6.6: Damped oscillatory current in quasi-stable plateau egion

Shawn is the simulatedtransientcollectorcurrentas RTD evolvesto steady-state
after switching from 0.25 V to 0.26, 8having that the RD is stable at this bias.

The expectationthatthetransientRTD simulationwould eventuallyreachsteady-state
for 0.24V and0.25V turnedout to be incorrect.Furtherevolution (in eithercurve-trace
direction)ledto oscillationsof constanamplitudeby about8,000iterationsatbothbiases.
For example Figure6.7 shavsthetransientcurrentat 0.24V ontheup-trace Thesesimu-
lationswere allowed to run for several thousandmoreiterationsto make certainthatthe
oscillationswere not slowvly decreasingashadbeenexpected.Dataon the final oscilla-
tions at these twpoints (independent of the trace direction) avergin Table 6.1.

One additionaltestwas employed to assurethat the 0.24V and0.25V bias points
wereunstable As suggestedn the previous section transientGummelsimulationswere
run startingfrom the fully-convergedsteady-stat&ummelsolutionat 0.24V and0.25V.
Now the expectationwas that the simulationswould diverge (i.e., oscillation amplitude
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Figure 6.7: Unstable operation in NDR egion of plateau

Simulatediransientcollectorcurrentafter switchingfrom 0.23V to 0.24V, show-

ing sustained oscillations.

Table 6.1: Oscillation statistics br unstable operation

Collectorcurrentfinal oscillationdata(after 10 ps) at appliedbiasesof 0.24V and
0.25V. Currentdensityfrom the steady-stateimulationss appendedor compari-

son.
Oscillation Rirrameter 024V | 0.25V
Amplitude (18 A/cm?) 1.98 | 1.08
Period (ps) 0413 0.374
Frequeng (THz) 2.42 2.67
Time-average (18 Alcm?) 418 | 4.06
Steady-state current (18/cm?) 450 | 4.10

wouldincrease)This wasindeedtheresult. The collectorcurrentversustime for the 0.24
V simulationis shavn in Figure6.8. The resultfor 0.25V wassimilar. Divergencewas
veryregular, with adecayconstanof -0.4/psat0.24V and-0.2/psat0.25V. For the oscil-

lation amplitude at 0.24:V
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A®D) = 6316 P9 prcm2 | (6.32)
Of course the oscillationamplitudewill be boundedjust asit wasin Figure6.7. These
resultsprove thatthis RTD is inherentlyunstableat thesebiasesTo modelthis behaior,
BuotandJenserdescribeanequivalentcircuit modelfor the RTD [20] thatreproduceshe
bounded instability depicted in Figures 6.7 and 6.8.
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Figure 6.8: Unstable RTD diverging from steady-state

Simulatedtransientcollector currentstartingfrom a fully-converged steady-state
Gummeliteration simulationat 0.24V, shaving thatthe RTD is unstableat this
bias.

The resultsat 0.24V and 0.25V call into questionthe conclusionabore that the
remaindeof the plateaus stable.The corvergencecriterionin (6.30)is perhapsot strict
enoughto justify this conclusionln particular it leavesopenthe possibilitythatthe RTD
might oscillateperpetuallywith anamplitudeof lessthan 1000A/cm”. To verify thatthe
upperportion (0.26V - 0.31V) of the plateauis stable ,simulationswererun at the lower
end(0.26V), middle (0.29V), andtop (0.31V) of this region with four ordersof magni-
tudestrictercorvergencecriteria. Mostimportantly the currentvariationAJ wasrequired
to belessthan 0.1A/cm® for convergence Throughouthesesimulationstheoscillations
continuedto decayregularly at all three bias points, reachingcorvergenceat 27,906,
10,424,and7,522iterationsrespectrely. To illustrate,Figure6.9 shavs a plot of the cur-
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rent \ariation ersus time for the 0.26 V simulation.
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Figure 6.9: Curr ent variation vs. time for marginally-stable operation

Currentvariationversustime after switchingfrom 0.25V to 0.26V. AJ is thecur-
rentvariationandAJ, is the convergencecriterion of 0.1A/cm? . The simulation
cornvergesregularly, shaving thatthe RTD is stableat this bias. The spikesin the
curve are due to the decaying oscillations.

Basedontheabove transiensimulationsthe plateaun thesimulatedRTD’s |-V curve
is composeaf two parts:anunstablaegion (0.24V - 0.25V) in whichthe RTD oscillates
forever, anda stableregion (0.26V - 0.31V) wherepersistenpscillationseventuallydie
out. Actually, theseregionsaresimply the resultof a monotonicincreasen the exponen-
tial decayconstan{see(6.31)and(6.32)]from -0.4/psat 0.24V, throughO at about0.255
V, andup to about0.67/psat 0.31V. The unstableregion agreeswith JenserandBuot's
resultsshaving perpetualoscillationsin the plateau,while the stableregion contradicts
their conclusionthattheseoscillationspersistthroughoutthe plateauandarerequiredfor
the plateauto occur In fact,theseoscillationshase only a minor effect on the valueof the
[-V curwe in the unstableregion of the plateau(seeTable6.1), andno effect at all else-
where.Furtheranalysisof JenserandBuot’s work [5] suggestshattheirincorrectconclu-
sions resultedfrom the prematureterminationof transientsimulations,the use of an
accelerated caoergence technique, or both.

The above discussionof transientself-consisteng simulationsdid not mentionthe
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transientNewton iterationmethod.In fact, only partialI-V curve traces(5 - 10 pointsin

either direction and some plateauregion points) were run using this iteration method.
Thesesimulationsshoved that the RTD evolved almostidentically with the transient
Newton methodas with the transientGummelmethod.For example,Figure 6.10 com-

paresthe collectorcurrentfrom the I-V curve simulationsat 0.06V for the two transient
iterationmethodsAlthoughthetransientNewton methodsometimesornvergedafew iter-

ationsfastey for the biaspoint shovn in Figure6.10,the transientGummeland Newton

methods coverged in &actly the same number of iterations (629).
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Figure 6.10: Comparison of transient Gummel and Newton esults

Simulatedcollector currentfor transientGummeland Newton iteration method
simulationsafter switchingfrom 0.05V to 0.06V. This indicatesthatthe Gummel

approachs effectively asaccurateat the Newton approactfor the chosersimula-
tion parameters.

From theseobsenations,it wasapparenthat performinga full I-V curve tracewith
the transientNewton methodwould provide no additionalinformation. Thus,althoughin
theory the transientNewton approachis more accuratethan the transient Gummel
approachfor the relatively smalltime stepusedhere,the improvementin accurag was
foundto be equallysmall. The transientNewton I-V curve simulationwasalsonot com-

pletedbecauseét would have requiredan unreasonablamountof CPUtime, asdiscussed
in the following section.
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6.5.5 Computational Efficiency

The simulationsin Sections6.5.3 and 6.5.4 shaved that essentiallyidentical I-V
curvesareproducedor the RTD in Figure6.4 by all four self-consistengiterationmeth-
ods.It is reasonablén sucha caseto usethe mostefficientiterationmethod.Thus,therel-
ative efficienciesof the iteration methodsis anotherimportantpoint of comparisonAs
onecansurmisefrom the foregoing discussionsthe computationatostsof the four itera-
tion methodsarevastly disparateThe numberof WFTE solvesandtotal CPU time used
by eachof theiterationmethoddor the 2-tracel-V curveis summarizedn Table6.2.Data
for the non-self-consistergimulationshovn in Figure 6.5 is also given for comparison.
Also includedaredatafor the standardsteady-stat&ummelimplementationseeSection

6.3), for comparison to the accelerated implementation used indhis w

Table 6.2: Computational cost of self-consistency methods

Numberof WFTE solvesandtotal CPU time requiredfor 2-tracel-V curve simu-

lation for eachself-consisteng iterationmethod.Datais given for both the stan-
dard and acceleratedteady-stat&summelapproachesThe steady-statdNewton

simulationrequiredseveral Gummelloopsin somedifficult cases.The transient
Newton data is estimated. CPU times are for a DEC Alpha 3000/300 LX.

Simulation pe WFTE Sohes | CPU time

(Iteration Method) (i.e., Iterations) | (hours)
Linear (non-self-consistent) 84 0.28
Steady-state Gummel (std) 4,300 14.3
Steady-state Gummel (acc) 1,450 5.0
Steady-state Neton 410N + 140G 7.2
Transient Gummel 96,500 330
Transient Ne/ton ~96,500 ~1,650

Somenotesregardingthe datain Table6.2 arein order The currentwassimulatedat
0.01V biasincrementsn bothdirectionsover therange0.0to 0.4V, giving a total of 82
bias points plus the equilibrium solution neededfor scatteringcalculations.The 140
steady-stat&ummeliterationsdoneduringthe courseof the steady-stat®lewton simula-
tion werearesultof the Newton methods inability in somecasego locatethe self-consis-
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tent operatingpoint asit enteredor exited the plateauregion. The transientsimulations
used100fs biasslewing (ratherthan changingthe appliedbiasin a singletime step)to

mitigatethe“shock” of biaschangesndthusto minimize corvergencetime. Thetransient
simulationsfurtherassumehatthe four oscillatingoperatingpoints(0.24V and0.25V in

bothtracedirections)wereterminatedat 8,000iterations,while all otherbiaspointswere
runto full convergence . Sincea completetransientNewton |-V curve simulationwasnot

conductedthedatain Table6.2for this iterationmethodareestimatesbut shouldbe very
close, based on thegarments at the end of the pi®us section.

Notethatthe simulationsfor this work werecarriedout on several platforms.The I-V
curvesfor which datais reportedn Table6.2wereproducednindependenprocessorsf
anSGI ChallengeXL computerandon DEC Alpha 3000/300LXworkstationsTheseplat-
formswereroughlyequwvalentin performancetequiringaboutl2 CPUsecondperGum-
mel loop and60 secondger Newton loop. A Cray C-90 supercomputewasusedfor the
longer single-biasinvestigations(e.g., the detailedinvesticationsat 0.24V and0.25V).
The Cray required only 1.05 CPU seconds per Gummel loop.

Severalfactorsdetermingherelatve computationatostsof the self-consistengitera-
tion methods.Consideringjust the steady-stat&summelsimulations,the importanceof
usingthe acceleratedornvergenceimplementation(seeSection6.3) is clear In fact, the
CPUtime adwantageof using Fermi-Diracstatisticsis often even moredramaticthanthe
roughly 3:1 ratio shavn in Table 6.2. Outsidethe plateauregion, the averagenumberof
iterationsrequiredfor convergenceto the self-consistensolutionwas41 usingthe stan-
dardapproachbput only 7 usingthe accelerate@dpproachHowever, for all iterationmeth-
ods, mostof the iterationstook placein the challengingplateauregion of the -V curve®
For the acceleratedsummel simulation, locating operatingpoints in the plateauoften
requireddroppingbackto themorereliablestandarcapproachTheresultwasonlya2.2:1
adwantagein CPU time over the standardapproachn the plateauregion. With its faster
cornvergence the advantageof the acceleratedsummelimplementatiorincreasesascon-
vergence criteria become more strict.

A moregeneralfactorinfluencingthe relatve computationatostsof the self-consis-
teng iterationmethodss the muchgreaterCPU time requiredfor a Newton loop thana
Gummelloop. In thiswork, theratiowas5:1. In spiteof this, thefull steady-stat®&lewton

5. One result of this &s that the up-tracevedys took more CPU time than thendotrace.
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simulationrequiredonly 44% more CPU time thanthe acceleratedteady-stat&Summel
simulation,andonly half thetime of the standardsummelsimulation.This recoupby the
steady-stat&lewton methodwasa resultof yet anotherfactorin the efficiency equation:
the Newton methods more sophisticatedsolution updatealgorithm (see Section6.4),
meaningthat fewer iterationswererequiredfor corvergence In spiteof the strict corver-
gencecriteriaused,asidefrom the plateauregion, almostall biaspointsrequiredonly 3
steady-state Neton iterations to meet these crite‘?iAgain, the &ster comergence of the
steady-staté&lewton approachimprovesits favorability in comparisorto the steady-state
Gummel approach as cmgence criteria become more strict.

By far the mostsignificantfactorin the computationakost equationis whetherthe
iterationmethodusesthe steady-stater transientapproacho finding the self-consistent
operatingpoint. The mathematicablescriptionsandthusthe CPU time per iteration, of
the steady-stat@andtransientmethodsarevery similar for eachformulation(Gummelor
Newton). However, Table6.2 shavs thatthe transientiterationmethodsrequireroughly 2
ordersof magnitudemore iterations(on average)than the steady-statenethodsto con-
verge to the self-consistenbperatingpoint. The reasornfor the hugedifferenceis thatthe
transientiterationmethodsattemptto follow the exactevolution of the device asit relaxes
towardssteady-stataftera biaschangesothey musttake aslong (in simulationtime) as
a real device would to reachsteady-stateBecauseof the extreme computationakcost of
thetransientiterationmethod,to completethe transientGummelsimulationin anaccept-
ableamountof realtime, several sectionsof eachtracewereexecutedconcurrentlyusing
a steady-stat&summel-comerged solution for the initial condition (except for the two
points on each trace which did not cemgye).

6.5.6 Discussion

This sectiondiscusseshe strengthsandweaknessesn termsof efficiency, accurag,
and robustnesspf the four self-consisteng iteration methodsconsideredn this work.
From previous sectionsthe obvious strengthof the steady-statenethodsis their relative
computationakfficiengy. And ashasalsobeenstated,the main strengthof the transient
methodsis their direct physical basis,andtheir resulting“exact” adherenceo the time-

6. Therelatively few numberof iterationsreguiredby bothsteady-statéerationmethodsvasmade
possible by the initialization algorithm for’, as discussed in Section 6.2.
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dependenbperationof the device being simulated. Theseare clearly complementary
strengthsso that both the steady-stat@and transientapproachesave importantuses.in
particular a steady-statéerationmethodis recommendetbr wide-rangingnitial investi-
gations(e.g,, to tracethe I-V curwe), therebygaining the insight necessaryo narrav the
focusof amoredetailedinvestigationwheretransienteffectsareinherent(e.g.,switching)
or suspected(e.g., oscillations). Strangely the literature is roughly equally divided
betweenuseof transientand steady-stat&Summelapproachesyith apparentlyno group
simultaneouslyusing the information and advantagesprovided by both. Hopefully this
work will help to end that unnecessarckiswvity.

If a main strengthof the steady-statenethodsis their relative efficiency, their main
short-comingat leastin somecasesis accurag. Theinability of the steady-statéeration
methodgo shaw thetransienbscillationspredictedoy thetransientterationmethodsvas
to be expected:only transientsimulationscanmodeltime-dependengffects.Much more
of aconcernwasthefactthatthe steady-statenethodsofferedno concreteindicationthat
an unstableoperatingcondition existed, and thus that a transientsimulation should be
used.For the simulationsin this work, if oscillationshadnt beenexpectedin the plateau,
onecouldeasilyhave assumedhatthe steady-stateimulationstold the entirestory about
this RTD’s I-V curve. Admittedly, the actuall-V curve wasonly slightly differentat two
points, lut the plysics underlying those small tifences \as quite important.

Another short-comingof the steady-statéteration methodsis that corvergenceto a
simultaneousolutionof the steady-stat§/FTE andthe PE cannot be guaranteedThere
are several potential causesof this lack of “robustness”or reliability. First, there are
almostcertainly “pathologic” operatingconditionsfor somequantumdeviceswherethe
steady-statenethodswill beunableto corverge.Evenif adeviceis stableata givenbias,
the operatingpoint may not befoundif the previousWFTE andPE solutionsarefar avay
from it. Incrementinghe biasacrossa bistableoperatingooint, of which therearethreein
Figure6.5,is theusualculprit here.Bistableoperatingoointswere,in fact,problematidor
both the steady-stat®&lewton methodandthe (accelerated¥teady-statésummelmethod.
However, SQUADS detectsnon-cowergent behaior during steady-stateself-consistent
simulationsandautomaticallyswitchestemporarily)to the standardandmorerobustbut
slower) steady-stat&ummelapproachin this way, potentialdivergenceproblemsof the
steady-state iteration methods were completetyded in this verk.
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Justasblind faith in theresultsof steady-statself-consistensimulationss not advis-
able,sotoo is completerelianceon transientself-consistensimulations Admittedly, the
basictransientmethodsarealwaysadequateén termsof reliability andaccurag (i.e., abil-
ity to correctlyreproducedevice physics).However, their extremecomputationatosthas
someharshconsequence3hefirst is thatonecannot afford to undertale transientsimu-
lationssuchasthosepresentedn this work without a goodreason(anda very fastcom-
puter).The problemwith this is thatoftenthereis no concretereasora priori for running
a simulation- only a vaguenotion of how the device might behae. Certainlyit is cur-
rently completelyunfeasibleto run multiple week-longtransientself-consistent-V curve
simulationsto examinethe effectsof varying simulationor device parameterdn contrast,
thedecisionto run the samesteady-statsimulations(in afew hourseach)hardly meritsa
second thought.

The oppositeside of the tendeng for doing too few transientself-consistensimula-
tions is trying to do too mary. A goodreasonto limit relianceon transientsimulation
where appropriateis that inadequatecomputingresourcesnvite unnecessargompro-
misesto be madein theimplementatiorof the simulatoror in the executionof the simula-
tion. For example,fewer bias points or time stepsmay be simulatedthan necessarythe
time stepor cornvergencecriteria may be larger than accurag dictates,and so on. One
compromisemadein this work thatseemgustified (asdiscussedn Section6.5.4)wasthe
useof the transientGummelmethodinsteadof the theoreticallymore accurateNewton
method.On the otherhand,the choiceof slew ratein this work, basedsolelyon achieving
fastconvergenceratherthanmodelingreality, is not so easilyexcused.In fact, investica-
tionsusingalower slew rate[21] shav thattransientcurrentpredictiondik e thatin Figure
6.6 maybeatrlittle resemblancé whatareal RTD would do undertest.However, in acir-
cuit of RTD-like devices,100fs biasslening maybereasonableSincegeneratinghe |-V
curve wasthetest-casdor this work, the detailsof the evolution to steady-stateould be
ignoredhere.In generalany compromisesn implementatioror executionshouldbe con-
sideredcarefully, sothatthey do not conspireto wealenthe direct physicallink whichis
the main adwantageof the transientiteration methodsover the steady-stat@pproaches.
The bestdefenseagainstthesecompromisess to focuscomputingresource®n a limited
set of transient simulations that argpected to addalue to the steady-state results.

The amgumentsabore have adwocatedusing the various self-consisteng iteration
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methodsin a hierarchicalmanner An efficient steady-statepproachshouldbe usedto
investicatea broadrangeof operatingconditions,andto narrav the scopefor moreexact-
ing (and expensve) transientsimulations.To implementthis approach,one must find
cluesin steady-statsimulationsthatindicatedevice operatingconditionsfor which tran-
sientsimulationmight be warranted(i.e., wheresustainedsignificant,or interestingtran-
sient effects might occur). Some of theseclues are obvious. A negative differential
resistancaegion is a known causeof oscillations,whetherintrinsic to the device or a
result of the device interactingwith the (simulatedor real) measuremenapparatusor
externalcircuit. Also, arny operatingpoint at which the steady-statsimulationhassignifi-
cantdifficulty cornverging shouldraisea red flag. Obviously, if the steady-statéeration
methodcompletelyfails to corverge at a particularbias point, a transientsimulationis
necessaryo determinedevice operation.Of course only a transientiterationmethodcan
be usedfor inherentlytransientself-consistensimulations,suchas switching, small-sig-
nal, or lage-signal inestigations.

Finally, the relevanceof the discussiorand conclusionsn this sectionto the simula-
tion of corventionalelectronicdeviceswill be assessedCertainly the goalsof corven-
tional device simulationareidentical:to achieve reliably accuratesimulationsat the least
computationatost.Further therelative costsof thevariousiterationmethodgGummelor
Newton, steady-stater transient)areessentialljthe same whetherthey areusedto solve
the WFTE for quantumdevice simulationor, for example,athree-dimensionarift-diffu-
sionequationfor corventionaldevice simulation.Thus,in corventionaldevice simulation,
steady-statenethodswill be lesscostly thantransientmethodsso a combinationof the
two shouldbe usedto maximizethe utility of availablecomputingresourcesHowever, the
conclusionthat the steady-stat&summelmethodis preferredfor its efficiency and ade-
guatereliability over the Newton methodfor quantumdevice simulationis not sharedn
cornventionaldevice simulation.As discussedn [22], whenthe interactionbetweenthe
two carriertypesis strong(with high concentration®f both carriersin a given region,
leading to recombination,generation,scattering,and chage interactions),the Newton
methodis essentiafor locatingthe self-consistenbperatingpoint. As long asit is accu-
rateto characterize quantumdevice asa singleenegy band(or multiple non-interacting
bands) simulatingquantumdeviceswill be simplerin this sensehantheir classicalkcoun-
terparts.
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6.5.7 Other lteration Methods

As a final note,the Newton and Gummelmethodspresentedibove are certainly not
theonly possiblewaysto solve the WFTE - PE systemandtherebyimplementself-consis-
tengy, althoughthey are perhapsthe most basic. Many variationson the Gummeland
Newton methodsare possible[22], and othernon-linearsystemsolving approachesnay
be used.For example,Janseret al.[23] usedthe conjucate-gradien{CG) methodto com-
putetheself-consistent-V curve for anRTD. Accordingto theiranalysisthe CG method
is aboutanorderof magnituddasterthanthetransientGummelapproachmakingit about
anorderof magnitudeslower thanthe steady-stat&ummelandNewton iterationmethods
describedherein.However, the CG methodhasthe distinct advantageof a muchsmaller
memoryfootprint. This would be useful for WFM simulationswhich are otherwisetoo
largefor availablehardware.Dueto the CG methods limitation to steady-statsimulation,
its lower speedhanthe steady-statenethodamplementedn SQUADS, andthe factthat
memoryusagedor solvingthe WFTE - PEsystemhasbeenhighly optimizedin SQUADS,
the CG method has not been implemented iSQS.

6.6 Self-Consistency and the TMM

6.6.1 Intr oduction

Up to this point, this chapterhasdescribedhe implementatiorandsimulationresults
of self-consisteng in the Wigner function methodof quantumdevice simulation. Self-
consisteng canalsobeimplementedn thetransfermatrix method.The mainrequirement
for implementingself-consistengis theability to calculatethe carrierdensityprofile from
thequantumcalculation.In the TMM, the carrierdensityis computedasa sumover all of
the wavefunctionsfor electron (or hole) beamsfrom each contact of the device, as
describedn Section4.3.4.This sectiondescribesn more detail how self-consistengis
implementedor TMM simulationsandit alsopresentshefirst self-consistenTMM sim-
ulations of this dissertation.

The main differencebetweenthe WFM andthe TMM in termsof self-consistengis
relatedto the natureof their respectre statefunctions.The Wigner functionis an aggre-
gatestatefunction,containingall of theinformationaboutcarriersin the systemata given
time. In particulay the carrierdensityis calculateddirectly from the Wignerfunction, This
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malkes the use of the Newton iteration methodpossible,since the off-diagonal Newton
blocksarebasednfinding suchadirectrelationshipln contrastthereis notasinglestate
functionin the TMM, but ratheronewavefunctionfor eachenegy beam(typically 1000-
10,000)incidentfrom eithercontact.Duringa TMM calculation,onecalculatesysesand
discardghe amplitudedor eachwavefunction,sincestoringamplitudedor all wavefunc-
tions at every positionnodewould take away the main adwantageof the TMM: computa-
tional efficiengy. But unlessall wavefunctionamplitudesareunknovnsin a simultaneous
systemof equationsa Newton iterationapproacho implementingself-consistengin the
TMM is impossible.However, a Gummeliterationfor self-consisteng is still possible,
wherethe Schrédingerequationis solved as usual,andthe Poissonequationis updated
afterwards.Sincethe TMM is inherentlytime-independeng transientGummelapproach

is also not possible, lemg only the steady-state Gummel approach.

6.6.2 Implementation in SQUADS

The steady-stat&Gummel approachto enforcing self-consisteng has beenusedin
TMM simulationby mary researcherf24-29] over the pastdecadeandmore.The steady-
state Gummel approachfor the WFM is well describedin Section6.3. This section
describeshefew changesn theimplementatiorfor the TMM. Actually, thereis only one
significantdifferencethe calculationof the carrierdensityasinput for the solutionof the
Poissonequation.Of course,the WFM calculatesthe carrier density profile from the
Wigner function asdescribedn Section6.2. The standardTMM approactcalculateghe
carrier density profile as described in Section 4.3.4.

ThestandardTMM calculationdoesnot allow theinclusionof scatteringHowever, in
most real devices, scatteringplays an importantrole in producingthe self-consistent
enegy bandsand resultingdevice operation,aswill be illustratedin Section6.6.3and
Chapter8. Fortunately it is possibleto approximatelyincorporatescatteringn self-con-
sistent TMM simulations.The “trick” is to usethe classical,equilibrium relationship
(6.13) to calculatethe carrier profile from the enegy band profile. More precisely the
classicalcarrierdensitycalculationis usedin the contactregionsup to thetunnelbarriers,
andzerocarrierdensityis assumedn theremaining“active” device region. The classical
carrier density inherentlyincludesscattering.Using this carrier density profile requires
only minor modificationsin settingup the tri-diagonalPoissonequationmatrix andRHS
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vector of Figure 6.2 (mainly, ignoring the carrier density/feedbackerms for position
nodescorrespondingo the active region). This approachfor including scatteringn self-

consistenTMM simulationsgivesbetteraccurag in casesvherescatterings high (e.g.,

high temperature)but it excludessomequantumeffects,andit incorporatesievice-spe-
cific code.

6.6.3 Results and Discussion

For comparisorto the WFM simulationsin Section6.5,the TMM simulationsin this
sectionusethe sameRTD device structure(seeFigure6.5). Figure6.11shovs the TMM
simulated-V curvefor this RTD for threecasesnon-self-consister{tinearpotentialdrop
acrosxenterl7 nmof RTD, hereafteicalledTMMO), self-consistentvith standardrMM
carrierprofile computationhereaftercalled TMM1), andself-consistentisingthe classi-
cal carrier density in the contacgrens (hereafter called TMM2).

Severalpointsarenotevorthy in Figure6.11.First,justasin the WFM simulation(see
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Figure 6.11: Self-consistent TMM I-V curve simulation of RTD

Shavn alongwith the standardTMM simulation(dasheccurwe) arethe non-self-
consistenfTMM resultfor a linear potentialdrop in the active region (thin solid
curwe) andthe self-consistenTMM simulationusingthe classicalcarrierdensity
to implementself-consisteng (thick solid curve). The standardTMM simulation
(with quantumcarrier densityand no scattering)oreaksfrom expectedoperation
after resonance, where current increases roughly dgtarfof 10.
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Figure 6.5), enforcing self-consisteng moves the peakand valley conditionsto higher
biasesThisis dueto thequantumwell statenot beingpulleddown (w.r.t. theemitterband
minimum) as quickly with increasingappliedbiasin the self-consistentasesincea sig-
nificant portion of the appliedbiasis acrossthe collector depletionlayer. In fact, both
TMMO and TMM1 gave virtually the samepeakandvalley appliedbiasesasthe analo-
gousWFM simulations.However, currentsare a factorof 2 - 3 lower in the TMM |-V
curvesthanin theWFM I-V curves(afactorof 4 whenthe WFM doesnt includescatter-
ing). Testsimulationsshaw thatthis lastobsenation canbe tracedmainly to inaccuracies
in the WFM simulation, as discussed in Section 5.5.7.

Also notethatthe interestingRTD behaior (I-V plateau,hysteresisand bistability)
seenin the self-consistenWFM -V curve arenot seenhere,evenin the self-consistent
TMML1. Thebehaior in TMM1 is morein line with expectationsasdiscussedn Chapter
8. However, the TMM2 simulation(i.e., usingthe quantumcalculationof carrierdensity)
hasits own interestingbehaior. Before the peak(resonancefondition,the TMM1 and
TMM2 follow roughlythe samebehaior, andthe self-consistenénegy bandsandcarrier
density profiles areery similar as indicated by Figure 6.12.

However, in TMM2, whenthe quantumwell stateis pulled belov the emitter band
minimum(i.e., atappliedbiasegyreaterthan0.21V), the RTD sufferssomekind of break-
down. Thatis, currentincrease®y aboutafactorof 10, ratherthandecreasingdpy this fac-
tor, asin theothertwo TMM simulations Thecauseof this currentriseis indicatedin Fig-
ure 6.13,which shaws the carrierdensityandenegy bandprofilesfor TMM2 at 0.22V
appliedbias (i.e., just after resonance)Becausethe standardTMM simulationdoesnt
include scattering,it is difficult to form the strong accumulationlayer in the emitter
requiredto accommodatdarge biasesin the normal way (i.e., with an electric field
betweenthe accumulatioranddepletionlayers).The only way for the biasto be accom-
modatedis by depletingthe emitterand chaging the emitter contact,which situationis
indicated in Figure 6.13.

Both TMM1 and TMM2 have dravbacks. TMML1 ignoresall quantumeffectsin the
calculationof the carrierprofile. As aresult, TMM1 cannot, for example,simulateintrin-
sic bistability due to chage storagein the quantumwell. On the other hand, TMM2
includesno scatteringmakingit susceptibldo erroneousesultsat high biasesA simple
compromiseis to usea classicalcarrier density calculationin the contactregionsanda
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Figure 6.12: Self-consistent TMM-simulated RTD at peak current

At 0.21V appliedbias, both the standardquantum)and classicalcarrier density
profilesare shavn, aswell asthe enegy bandprofile from the quantumcalcula-
tion. In spite of the marked differencein carrierdensityin the quantumwell, the
enepgy bandsfor thetwo carrierdensitiesarevery similar. [Enegy bandsfor clas-
sical C(x) simulation are not siva.]

guantumcalculationin the “active” (barrierand quantumwell) region (seeFigure6.12).
This hybrid carrier density model, hereaftercalled TMM3, is also implementedin
SQUADS,’ and hasbeenimplementedy atleastoneothergroup[24]. Figure6.14shons
aplot of theTMM3 I-V curve simulationof the RTD usedabove. Notethatbistability due
to chage storagein the quantumwell at resonances predictedby this simulation.Also
shawvn in Figure6.14is thel-V curve from Figure6.11usingthe classicalchage density
model. Thetwo |-V curvesdiffer accordingto the amountof active region chage in the
hybrid case (acte region chage is talken to be zero in the classical model simulation).
Othermodelsfor the carrierdensityin a self-consistenTMM simulationarecertainly
possible put the lack of anaccurataneando includescatterings probablythe mostseri-
ouslimitation in self-consistenTMM simulation.Note thatif scatteringwerenggligible
in an RTD, andthe contactswere accuratelymodeledasideal ohmic contactsto metal

7. Dueto the sharedcodestructureof SQUADS, both the classicaland hybrid classical-quantum
carrierdensitycalculationsanbe usedin self-consistentVFM simulationsaswell. However, since
the WFM includesscatteringn a moreaccuratevay, thereasorfor usingthis capabilityin general
is not olwious, in contrast to their manifest usefulness in TMM simulations.
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Figure 6.13: Self-consistent TMM-simulated RID after peak current

Whenthe quantumwell statedropsbelow the emitterbandminimum, the TMM
simulationusingthe quantumcarrier densitycalculationgives unplysical beha-
ior, indicated by a strongly chaged emitter contact. Since scatteringis not
included,it is not possibleto form an accumulationayer in the emitter Instead,
the applied bias is accomodated by a depleted emitter argedhamitter contact.

electrodesthe unexpectedenepgy bandprofile in Figure6.13would occurexperimentally
producingthevery high currentoperatiorsimulatedn TMM2. However, thisbehaior has
not beenobsened experimentally suggestingagain thatincluding scatterings important
for accurate RD simulation.

6.7 Summary

This chapter reviewed the theory and numerical implementationof four basic
approacheto implementingself-consistengin the Wignerfunctionapproacto quantum
device simulation. Theseapproachesnclude steady-stateand transientGummel, and
steady-statandtransientNewton. This is the first time thatall of theseapproachesave
been describedin a single mathematicalframevork and notation. In the processof
describingthe numericalimplementation®f theseiteration methods expressiongor the
off-diagonalJacobianblocksin the Newton formulation were given, apparentlyfor the
first time. Also, an acceleratedornvergencealgorithmwasdescribedor the steady-state
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Figure 6.14: Self-consistent |-V cuve for RTD with hybrid carrier ddensity

This TMM simulationusesthe classicalcarrierdensityC(x) in the contactregions
of the RTD andthe quantumvaluein the active region. The resultingl-V curve
shaws bistability and hysteresisdueto significantenegy bandadjustmentsvhen
thequantumwell chagesor dischagesin transitionbetweermpeakandvalley oper-
ation. This I-V curwe divergesfrom thatusingthe classicalC(x) accordingto the
amount of quantum well chge.

Gummelapproachwhich makesit the mostefficient meansof generatinghe self-consis-
tent I-V cune for an RD.

The strengthsandweaknessesf the variousself-consisteng iteration methodswere
alsoreviewed. A large part of that analysisconcernedelative computationakosts.The
computationakfficiengy of the steady-statenethodsmakesthemideal for wide-ranging
initial investigations,suchasfull I-V curve traces.There are undeniabledifficulties in
using the steady-stateteration methods,suchas lack of robustnessn the Newton and
acceleratedcsummelmethodsandthe relatively slow convergenceof the standardsum-
mel approachTheseproblemsmay have discouragedhe useof steady-statapproaches
in the past.This work hasdemonstratedhown theseproblemscanbe avoided,andit has
shavn the excellent resultsand efficienciesthat the steady-stateteration methodscan
achieve.

This work shavedthatevenif a steady-stat#erationmethodconvergesto a simulta-
neoussolutionof the steady-stat®/FTE andPE, thereis no guarante¢hatthisis a stable
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operatingpoint. Transientterationmethodsareinherentlymoreaccurateandreliable,and
are requiredto treattime-dependensituations(suchas unstableoscillations).However,

steady-statanethodsare just as importantin practice in the investigation of quantum
device physics.Efficient steady-statsimulationscanbe usedto determinehe basicoper-
ationof thedevice (e.g,, I-V curwe, possibleunstableregions),allowing oneto narrav the
scopeof (expensve) transientsimulations.Thosetransientsimulationswhich are done
canthenbeimplementedandexecutedwithout seriouscompromisesothatthey will cor-

rectly model deice plysics and addalue to the steady-state results.

Finally, theimplementatiorof self-consistengin thetransfermatrix methodof quan-
tum device simulationwas describedand demonstratedDue to the natureof the TMM,
only the steady-stat&summeliteration approachis suitablefor enforcing self-=consis-
teng in this caselmplementinghis self-consistengiterationin the TMM is almostiden-
tical to thatin the WFM, the mainexceptionbeingthe calculationof the carrierdensity In
fact, several different chage density modelsare implementedfor self-consistenTMM
simulationsin SQUADS. The standardnodeldoesnot include scatteringandcalculates
carrierdensityin theusualTMM mannerin contrastthe classicaimodelincludesscatter-
ing in the electrodesyhile the hybrid classical/quanturmodelalsoincludesthe TMM-
calculatedcarrier densityin the active region of the device. A significantresultwasthe
conclusionthatscatterings requiredto produceaccurateself-consistenTMM simulation
results.
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Chapter 7

Applied Bias Slew Rate

Quantumelectronicdevices have beenproposedas a possiblesuccessoto corven-
tional electronicdevices in part becausehe inherently small size of quantumdevices
makesit possiblefor themto operateatvery high speedsThetransienWFM capabilityin
SQUADS canbe usedto investicate the transientoperationand speedpotentialof quan-
tum devices.Unfortunately a typical transientWFM simulationmight requirethousands
of time-steppedolutionsof the WFTE. Theresultis eithera very highcomputationatost
or compromisesn accurag (e.g., dueto usinglongertime steps)in an effort to reduce
computatiortime. This chaptelinvestigatesatechniqueor transienMWFM simulationthat
improves both accurag and efficiency: using a finite appliedbias slew-rate (the rate at
which the appliedbiasis changedwith respecto time). Exceptfor the investigationsin
Chapter6, all transientWignerfunctionsimulationsof quantumdevicesto datehave used
instantaneoughangesn the applied bias. Such switching could never be achiesed in
physical systemsThis investigation found that instantaneouswitching producessignifi-
cantly inaccurate quantumwdee simulations.

To introducethis slew rateinvestigation, Section7.1 providesanoverview of the phys-
ics of transientbiaschangesn electronicdevice simulation.Section7.2 thenpresentshe
investication of whetherandto what extent quantumdevice operationand WFM simula-
tion cost are &¢cted by wariations in applied bias slerate.

205
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7.1 Physics of Tansient Bias Changes

Before discussingslew ratesdirectly, the physicsof transientbias switchingin elec-
tronic device simulationwill be consideredn somedetail [1]. In a transientsimulation,
appliedbiaschangesarecompletedduringatime step(i.e., betweerconsecutie solutions
of the system).Changingthe appliedbiasacrossa device requiresa currentpulsein the
external circuit, essentially‘communicating”the new biasto the device. If the applied
biasis changedoo quickly for free carriersin the device to respondo this currentpulse,
the bias changeis effectively instantaneousandthe external currentsimply chagesthe
contactsproducinganelectrostatidield acrosshe device. In otherwords,the device acts
like acapacitorFor aone-dimensiondicapacitor’of areaA, width L, andpermittivity €,
the external current density,,, necessary to cause altage changaV in timeAt is

5 = lea_ 8Q _CAV _eAV
ext - A AAt  AAt LAt

Jeyt OCcursentirely within the time stepAt. Following a bias change free carrierswill

(7.1)

respondover time to the electricfield asthey redistrikute, enter andleave the device to
accommodate the changed applied bias.

To maintainphysical correctnessSQUADS implementghe above describedehaior
in self-consistentiransientsimulations.That is, becausdime stepsare typically on the
orderof 1 fs, appliedbias changesf any magnitudeduring a time stepare effectively
instantaneoug@ndthereforenitially appeamlselectrostatidieldsacrosghe entiredevice.
SQUADS computesand prints the averageexternal currentJ,, requiredto producethe
specifiedbiaschangen a singletime step,althoughthis currentdoesnot appeaitn ary of
the simulatedinternal device currents.Enforcing self-consisteng through the Poisson
equationnaturallycausesree carriersin the device to respondappropriatelyover time to
theelectricfield betweerthe device contactsNotethatslening the appliedbiasis accom-
plishedsimply by makingmary small, “instantaneousbias changesiuring consecutie
small time stepst Given the above descriptionof how transientbias changesshouldbe
implementedn a device simulator the investigationin Section7.2 demonstratethe sig-
nificance of the choice of applied biasvgleate in transient Wner function simulations.

1. In this dissertation, “instantaneous” means “single time step”.
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7.2 Effect of Slew Rate \ariation

7.2.1 Simulated Device and Operation Summary

Resonantunnelingdiodes(RTDs) are an excellent quantumdevice simulationtest-
bed,for reasongliscussedn Section2.3.4,andwill beusedin this slew rateinvestigation.
In particular the RTD usedin Chapter6 (seeFigure6.4)is again usedherebecaus®f the
strongtransienteffects it displays? Figure 7.1 (a refinementof Figure 6.5) shavs the
steady-stateself-consistent-V curve for this RTD assimulatedby SQUADS. Transient
simulationsin Section6.5.4shavedthatthis RTD is stableat all pointson this -V curve
exceptin the plateau(0.239V - 0.313V on the up-traceand0.254V - 0.239V on the
down-trace).Wherethe two tracescoincidein the plateau(0.239V - 0.254V), perpetual
high-frequenyg (~2.5 THz) currentoscillationsoccur In the remainderof the plateauon
the up-trace the RTD is only maminally stable(it approachesteady-statén a weakly-
dampedoscillatoryfashion).Sincethe mostinterestingtransientphenomenaccurin the
plateauregion of the -V curwe, transientsimulationsof this region offer a very effective
means of analyzing thefe€ts and importance of slerate \ariation.

All transientsimulationsin this work usedthe Cayley transientoperator(seeSection
5.3.3.5)with a1 fs time step.The Gummeliterationmethod(seeSection6.3) wasusedto
implementself-consisteng For I-V curve simulationsoperatingpointsweretaken every
10 mV. Theecorvergencecriteria(seeSection6.5.2)usedto determinevhensteady-state
had effectively beenreachedafter appliedbias changesvere: potentialchangelessthan
10° eV, Poissorequationsatisfiedto lessthan 10° eV, andcurrentvariationacrosshe
device of less than 1000 A/dm

7.2.2 Instantaneous Bias Switching

To determinehe effectsof slew rateon simulationresults,a transient-V curve simu-
lation was conductedusingthe standardapproachof instantaneoubiasswitching. Thus,
startingfrom a steady-statsolutionat onebias, the appliedbiaswaschangedo the next
biaspointin asingletime step,andthe systemwasallowedto evolve to steady-stateAfter
eachbiasswitch, alarge currentpulseof about1.5x10° Alcm? peakamplitudeandabout

2. Obviously, the usefulinvestigation of a transientsimulationtechniquejn this caseappliedbias
slewing, requires a dece echibiting significant transient ffcts.
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Figure 7.1: Self-consistent, steady-state FD |-V cur ve

Effectsshavn includenegative differentialresistancehysteresishistability, anda
plateaun thel-V curve.TheRTD is unstablgoscillatesgperpetually)n the plateau
between0.239V and 0.254V, andit is mamginally stable(oscillateswith slow
damping) in the remainder of the plateau.

50fs durationoccurred.The amplitudeof this currentpulseoftenexceededoththe start-
ing and endingcurrents.For example,Figure 7.2 shavs the transientposition-aeraged
currentandthe collectorcontactcurrentin the RTD afterinstantaneouswitchingfrom 0
V to 10 mV.2 Note thatthe peakcurrentis 7-8 timesthe final steady-stat@alue.During
the down-trace,the currentpulsewas negative, but with essentiallythe sameamplitude
and duration.Basedon the consisteng of the currentpulsein amplitudeand duration
throughoutthe |-V curve trace(exceptat bistablepoints),simplecomputationg2] deter-
minedthat the pulseresultedfrom chaging of the accumulatiorand depletionlayersto
accommodate the 10 mV change in applied bias between bias points.

Theorigin of thecurrentpulsedescribedibore hasbeenthe sourceof someconsterna-
tion in the past.For example,Tsuchiyaetal. [3] attemptedo explainthecurrentpulsein a
transientWigner function simulationafter a bias switch acrossthe negative differential

resistancéNDR) region of thel-V curwe in termsof the dischaging of the quantumwell

3. Hereafterall currentswill be position-aeragedvalues,sincethis is the currentinducedin the
external circuit.
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Figure 7.2: Transient current after instantaneous 10 mV bias change

The position-aeragedcurrent (plain curve) and collector contactcurrent(circle
curwe) are shavn after an instantaneousias changefrom 0.0V to 10 mV. Note
that the peak of the current pulse is 7-8 times the fadakv

andthe propertiesof the electrodegemitterandcollectorlayers).Similarly, Kluksdahlet
al. [4] suggestethat“The overshoofprobablyarisesfrom arapiddischage of thetrapped
chagein thepotentialwell”. Simplecalculationd2] shav thatthequantumwell chagein
thesecasesvasmuchtoo smallto producethe obsered currentpulse,while therequired
changein accumulatioranddepletionchage wasaboutright. Useof a finite slew ratein
theseinstancegor switchingthe biasoutsidethe NDR region) would have shaovn thatthe
currentpulsewas largely dueto the chaging of the accumulatiorand depletionlayers.
Thus,instantaneoubiasswitchingin transientWignerfunction simulationsmay obscure
device operation to thexgent that incorrect conclusions areiret

Much worsethanthe internalcurrentpulsefrom a practicalstandpoinis the external
circuit currentJ, requiredto changethe biasby 10 mV in a singletime step(although

4. Notethatin theearlierwork of Frenslg [5], non-self-consistentransienWignerfunctionsimu-

lationsalsoshaveda currentpulseafterswitchingan RTD acrosgshe NDR region. However, in this

caseFrenslg’s conclusionthat the pulsewas dueto the chaging or dischaging of the quantum
well wascorrect.SinceFrenslg did not enforceself-consisteng therewould be no accumulation
and depletion chges.
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Joyt does not appearin ary simulation results). Using (7.1), with L = 55 nm,
€ = 12.%,,AV = 10mV, andAt = 1 fs, theexternalcurrentdensityis J,,, = 2.1x10°
Alcm? for this RTD. Thisis at leastthreetimeslargerthanary currentthe externalcircuit
mustsupplyfor steady-statelevice operationanywherein the simulatedbiasrange(see
Figure7.1). In summarythe useof instantaneoubiasswitchingin self-consistenguan-
tum device simulation producesa huge current pulse within the device, and it would
requirean even larger currentspike from the driving source.Neither of theserepresent

practical quantum d#ce behaior in real measurement or circuitvronments.

7.2.3 Realistic Slew Rates

The above simulationsshowv that instantaneou$ias switching in transientWigner
function simulationspresentsa huge“shock” to the quantumdevice, resultingin a large
internalcurrentpulseanddampedoscillationsthereafterasshovn in Figure7.2. To more
accuratelymodelthe operationof real guantumdevicesandcircuits, a finite appliedbias
slew rate must be used.Basedon the simulationresultsabose, RTD-type devices can
respondand changestatein about100 fs, so 100 fs bias slewing seemsappropriatefor
studyinghow an RTD might operatan a circuit of its peers A secondransient-V curve
simulationwasthereforeconductedwith a slew rateof 10 mV/100fs (100 V/ns). As an
example,Figure7.3 shawvs thetransientcurrentfor the sleved switchfrom 0 V to 10 myV,
alongwith the sameplot for instantaneouswitching. Note that the accumulation/deple-
tion chaging currentpulse(which musthave the sameintegral over time, or total chage
transfer)of Jp, = 4x10" Alcm? is much lesssevere with slewved switching. Also, (7.1)

givesan externalcurrentof only J._., = 2.1x10" Alcm?. Neitherof thesearelarge com-

ext
paredto normaloperatingcurrentsof the device, which confirmsthatthis slew ratecould
reasonably occur in a quantum circuit.

Theuseof 100V/ns slewved switchingin transientWignerfunctionsimulationswhile
improving the accurag of the simulation,hadthe ancillary benefitof reducingits very
high computationaktost. The shockof instantaneoubias switchingrequireda relatvely
long transientsimulationbeforethe cornvergencecriteria were satisfied(i.e., steady-state
was reached) Slewed switching lessenedhe shock, so that, althoughreachingthe next
biastook longer total time to steady-statevasmuchless.For example,for theO0 V to 10

mV switching simulationshowvn in Figure 7.3, steady-statevas reachedn 330 fs with
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Figure 7.3: Transient current after slewed 10 mV bias change

Transientcurrentafter switchingfrom 0.0V to 10 mV. The plain curve shavs the
transientturrentwhenthe biasis switchedinstantaneouslythe circle-cune showvs
the samewhenthe biasis slevedfrom 0.0V upto 10 mV over 100fs. Note that
the slewed switching simulationreachessteady-stateignificantly fasterthanthe
instantaneous switching simulation.

slewing, versus550 fs without. On average,corvergencewas reachedabout20% faster
with slewed switching, evenin the critical plateauregion (wherethousandsratherthan
hundreds,of femtosecondswvere required for corvergence).Needlessto say a 20%
improvementin computatiortime is very significantin a several-hundredhoursimulation
task®

The 100V/ns slew ratewaschoserto modelanRTD drivenby anequallyfastdevice.
If simulationresultsareto be comparedo RTD measurementsy a device tester aneven
lower slew rateis appropriate Fastoperationabmplifiers(which might sene asthe front
endfor a device tester)arecapableof perhaps2000V/us slew rates[6]. Takingl V/ns as
potentiallyfeasiblevalue,thisis a factorof 100 lower thanthe slew rateusedabove, and
would require10ps(10,000time steps)to changeheappliedbiasby 10 mV. Thequestion
is, Is it necessaryo go to sucha hugeexpensein orderto simulateexperimentaldevice

5. Note thatif transienteffectsare not specificallyof interest,the more computationallyefficient
steady-state simulation methods can be used, as discussed in Chapter 6.
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testconditions(e.g., to testsimulatoraccurag)? In otherwords, given the instantaneous
switching and 100 V/ns slewing simulationresults,can lower slew rate effects be esti-
matedby extrapolationor even neglected(i.e., steady-stat@perationassumed)?n this
casethe answeris no. Simulationresultsin the following sectionindicatethatwhenthe
detailsof this device’s operationare being investicgated,thereare casesvhereevena 1

V/ns slav rate is too high.

7.2.4 Intrinsic Oscillations

As statedearlier the mostinterestingtransienteffectsfor the chosernRTD occurredin
theplateauregion of its I-V curve. The effectsof slew ratevariationin this region of oper-
ation were thereforeinvestigatedin moredetail. In tracingthe I-V curwe in the plateau,
both instantaneouand 100 V/ns slewed switchinginitiated oscillationsthat persistedor
thousandf femtosecondgat 1 fs per time step). Theseoscillationswere so persistent
thatJenserandBuot[7] concludedhatthe RTD oscillatedperpetuallyat all biasesn the
plateau,andthat theseoscillationswere necessaryor the plateaus existence.However,
Section6.5.4shoved thatthis RTD is only truly unstablein the plateaubetween0.24V
and0.25V.% Above this rangein the plateautheoscillationseventuallydecayedo steady-
state For example,Figure7.5shavs thecurrentafterinstantaneouswitchingfrom 0.26V
to 0.27V. Sincethe RTD is stable(albeitmamginally so) at appliedbiasesabore 0.254V,
theseoscillationswereapparentlyinitiated by the abruptbiaschangesA 1 V/ns slew rate
(10,000time stepsper 10 mV) simulationfrom 0.26V to 0.27V wasconductedo verify
this. Theresultis shavn in Figure7.5. Eventhis simulationshavs very small oscillations
afterthe (abrupt)startandendof slewing. Presumablyevenlower slew rateswould avoid
oscillationsentirely Thus,onceagainthe useof aninfinite slew rate(by JenserandBuot)
hasbeena culprit in producingsimulationresultswhich led to invalid conclusionsabout
device operation.

A furthersetof simulationssoughtto determinethe effect of slewing the appliedbias
smoothlythroughthe unstableregion of operation.This might occurin the simulationof a
device with an unstableregion thatis smallerthanthe chosenbiasstep.In this casethe
existenceof oscillationswould probablybe missedentirely Transientsimulationsstarting
at0.23V andslewing thebiascontinuouslyto 0.26V senedto investigatethis possibility.

6. Further simulations maekl the unstable ggon more precisely at between 0.239 V and 0.254 V



7.2. Effect of Slew Rate Variation 213

S T B A BN B

B o
&) o

o
o

Current Density (10° Alcm?)

00 05 10 15 20 25 3.0 35
Time (ps)

Figure 7.4: Damped oscillations after abrupt switching in plateau

Transientcurrentafter instantaneouswitchingfrom 0.26V to 0.27V in the pIa—
teau. Although the differencebetweerinitial andfinal currentis lessthan 2x10"
Alcm?, the oscillationamplitudestartsat 10 timesthis value. The oscillationsare
initiated by the abrupt switching
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Figure 7.5: Nearly smooth transition with slewed switching in plateau

Transientcurrentduringandatfter 10 psslewing from 0.26V to 0.27V in thepla-
teau(slew rate: 1 V/ns). Although small oscillationsoccur even at this low slew
rate, the oscillation amplitude is less than 1/100th of that in Figure 7.4.
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Theresultsareshovn in Figure7.6. At 1 V/ns (10,000time stepsper 10 mV), the device
slewed throughthe unstableregion too quickly for oscillationsto begin. The resultswas
the sameat 0.5 V/ns, (20,000time stepsper 10 mV). Finally, at 0.2 V/ns (50,000time
stepsper 10 mV), the RTD wasableto achiese the conditionsnecessaryor oscillations
(see Chapter8). The oscillations persistedduring the continuousslewing, albeit with
decreasingmplitude until shortlyafterthe unstableegion wasexited. Theseresultsindi-
catearelatively very slow responsdime for a device which is otherwisesofast. Theles-

sonis thateventhe useof arelatively low slew ratemaystill allow somedevice physicsto

be missed.
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Figure 7.6: Slewing acioss an unstable egion of RTD operation

Traceof unstableregion of I-V curve. Continualslening at 1 V/ns (or 10 ps/10
mV) and0.5V/ns (or 20 ps/10mV) aretoo fastto allow the RTD to begin oscillat-
ing beforeit leavesthe unstableregion at 0.254V. Continualslewing at 0.2 V/ns
(or 50 ps/10mV) is slow enough.Only the peaksof the oscillationareshawvn, so
that the other cues are not obscured.

Sincesimulationresultsin the plateauregion of the I-V curve dependstronglyon the
slew rateused,it is again importantto considerwhat might happenn anactualcircuit or
testervironment.Device analyzergsuchasthe HP 4145)tracean |-V curve by sweeping
theappliedbiasin a step-wiséashion,sothata new biasis establisheda delaytime (typ-
ically afew milliseconds)elapsego allow the device to settleto steady-stateandthe cur-
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rentis measuredT hus,with anideal device tester oscillationswould definitelybe seenn
the unstableregion (assumingat leastone bias point fell there), since there would be
plenty of time for the device to evolve to the unstableconditions.In the maginally stable
region, sincethe slew rate would be lessthan 1 V/ns and slewing would startand stop
moresmoothly no oscillationswould occurafter0.254V. However, device testersarenot
ideal.Externalinductanceandcapacitancén the measuringapparatusouldeasilychange
amaminally-stableRTD into anunstableone,causingthe RTD to oscillateeverywheren
the plateau.Basedon the 100 V/ns simulationresults,this RTD would certainlyoscillate
throughout the plateau in adt-changing RD circuit.

7.2.5 Bistable Regions

Bistable regions poseyet anotherhazardfor instantaneousias switching. When a
transientsimulationis usedto tracethe steady-staté-V curve (e.g., to searchfor latent
transienteffects),for this RTD, instantaneouswitching producedthe samel-V curwve as
the steady-statesimulation and the sleved-switching,transientsimulation. However, it
was not difficult to devise a transientsimulationthat did not follow the steady-staté-V
curve. For example,atransiensimulationstartingfrom steady-statat 0.23V andswitch-
ing instantaneouslynto the bistableregion at 0.26 V, ratherthancorverging to the “cor-
rect” higher current state,corverged to the lower current state.In contrast,the same
simulationwith a10 V/ns slew ratecorvergedto thehighercurrentstate Theseresultsare
shavn in Figure7.7. The standardslew ratein this work of 100V/ns wasalsotoo fastto
convergeto theupperl-V curvetrace.ln generalthe shockof instantaneougr evenfast,
bias switching may causea device to “leap the rails” onto anothertracein a bistableor
multi-stableregion of operation.lt shouldbe notedthat switchingto the “wrong” state
might be a useful function (e.g., to achiere a higher effective NDR value or producea
multi-statedevice). By varying the slew ratein simulations,it is possibleto investicate
how fast the deice must be switched in order to produce this type wicdeoperation.

7.2.6 Bias Slewing in Non-Quantum Deice Simulation

Virtually all of this slew rate investication appliesequally well to the simulation of
corventional(i.e., non-quantumplectronicdevices. For example,transientbias changes
in corventionaldevice simulationare accomplishedn the samesingle-time-stepincre-
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Figure 7.7: Switching or slewing into bistable egion of operation

Transientcurrent after switching from 0.23 V to 0.26 V. The instantaneously
switchedsimulation(plain curve) corvergedto the lower bistablevalue,while the
10V/ns slevedsimulation(circle-cune) corvergedto theuppervalue. This shavs
that slev rate \ariation can profoundly &dct device function.

mentalmannerdescribedn Section7.1. Thetime stepusedin corventionaldevice simu-
lations may be ordersof magnitudelarger than that usedin a typical quantumdevice
simulation,but the biaschangeper time stepmay alsobe larger. Further asindicatedin

this chapter the appropriateslen ratedependson the inherentspeedof the device being
simulated theintendedapplication,andthe desiredfunction. Thus,the critical slew rates
wherecorventionaldevice function may changewill be muchlower thanthosefoundin

this chapter for quantum dees.

7.3 Summary

This work hasdemonstratethe importanceof usinga finite appliedbiasslew rate(as
opposedo instantaneouswitching)to betterapproximatesxperimentalquantumdevice
conditions,andthus producemore accurateransientWigner function simulationresults.
In fact,the properslew ratefor anyelectronicdevice simulationdepend®n device speed,
intendedapplicationconditions,anddesireddevice function. Severalinstancesverehigh-
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lighted wherethe useof instantaneouswitching hasled to incorrectconclusionsabout

guantumdevice operation As a addedbenefit,it wasshavn thatthe useof slevedswitch-

ing can also reduce the high computational demands of transient WFM simulation.
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Chapter 8

RTD Device Plysics Investigation

In Chapters and7, the simulationtestdevice wasa resonantunnelingdiode (RTD)
exhibiting several interestingbehaiors, including a plateauin the negative differential
resistancaegion of the I-V curve, hysteresisand intrinsic high-frequeng oscillations.
While thesephenomenavere describedtheir physical causesverenot determinedThis
chapteffinally presents detailedinvestigationof the physicsbehindthesebehaiors. This
investication incorporatesand addsto the resultsof Chapterss and7, producinga fairly
comprehensie demonstratiorof the capabilitiesof SQUADS for analyzinga quantum
device from man different vievpoints until its behaour is fully understood.

This simulationinvestigationof RTD physicsbeginsin Section8.1with a summaryof
severalremainingcontroversiesaboutaspect®f RTD operationThe RTD physicsinvesti-
gationin this chaptemwill have implicationsfor eachof theseopenquestionsSection8.2
then analyzesthe steady-stat@perationof this RTD, using both the TMM and WFM
capabilitiesof SQUADS. The most important steady-statesffects are the plateauand
bistability in the NDR region of the I-V curve. Section8.3 continuesthe investigation,
with anin-depthlook at the transientoperationof the RTD, including an analysisof the
unstableoperationin partof the plateau.Basedon this investigation, Section8.4 signifi-
cantly revises the interpretationof simulationsof this RTD by previous researchers.
Finally, Section8.4alsodiscussetheremainingdiscrepanciebetweerexperimentaRTD

measurements and the simulation results for thi3.R
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8.1 RTD Controversies

Resonantunnelingdiodes[1-3] have undegoneintenseinvestigation, both experi-
mentalandtheoretical over the pastdecadeandmore,dueto their potentialcircuit appli-
cations[2, 4] and their statusas the prototype quantumelectronicdevice. Even as a
detailedunderstandingf theoperationof RTDs hasdeveloped severalcontroversieshave
persistedincludingthe causeof anobseredplateaun the negative differentialresistance
(NDR) region of the current-wltage (I-V) curve, whetherintrinsic bistability has been
obsered andhow it manifeststhe causeof RTD oscillations,the natureof the tunneling
process(sequentialor resonant),and the correct lumped-parameteequivalent circuit
modelfor anRTD. Althoughsomeconsensublasdevelopedon mostof thesessuesaddi-
tional investication through accurate numerical simulation ®DR is needed.

In 1991,JenserandBuot (JB) [5] publishedthe very interestingresultsof someambi-
tious transientwWigner function-baseaiumericalsimulationsof an RTD (hereaftercalled
the JB RTD), including both self-consisteng andscatteringln [5] and subsequentheo-
reticalanalysisof thesesimulationresultsby Buotetal. [6 -11], agooddealof insightwas
developedinto several of the RTD controversiesmentionedaborve. Unfortunately more
detailedandcomprehensie investigationswould have beenprohibitively expensve at that
time (expensve Cray supercomputetime wasrequired)[12]. With the rapid adwvancein
the power of computerworkstationsjt hasrecentlybecomefeasibleto revisit the Wigner
function simulationof the JB RTD in greaterdetail. The investigation of RTD physicsin
this chapteraccomplisheshis by usingthe JB RTD for a casestudy Basedon thesesimu-
lation results, the current understandingof the operation physics of this device are
extendedandrevisedwherenecessaryl he remainderof this sectionsummarizeshe his-
tory andcurrentstateof the RTD controversies,andindicateshow the simulationresults
of JB and subsequent analysis by Buot et al. impacted these debates.

The device physicsunderlyingthe plateauin the NDR region of I-V curve measure-
mentsof RTDs hasbeena sourceof controversyfor over a decadeThe plateauis often
accompaniedby hysteresis/bistabilityand high-frequeng oscillations.For example,Fig-
ure 6.1 shavs a measureRTD I-V curve whereall of theseeffectswere obsered [13].
Two opposingexplanationswere given for the plateau.Someresearcher§l4-25] advo-
catedextrinsically-inducedoscillationscausedby reactve elementsin the external bias
circuit (in concertwith intrinsic NDR and capacitancegs the sole cause.Othersmain-
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tainedthat purelyintrinsic RTD operation suchasintrinsic bistability dueto chage stor-
agein the quantumwell [26-29], or discretestatesn the emitteraccumulatiodayer [30],
couldexplainthe plateau Severaltheoreticakalculationsandsimulationsof the RTD [31-
37] seemed to support the “intrinsic” case.

The extrinsic-versus-intrinsigplateaudebateappearedo be well settledwhencircuit
simulations[20, 22, 25] shaved corvincingly thatall of the obsened behaior could be
reproducedvith extrinsically-inducedoscillations.In fact,severalresearcherfl7, 18,21,
28, 33] aguedthatkeepingan RTD from oscillatingin the NDR region, a necessargon-
dition to make the “intrinsic” case,is difficult. Othersimulations[13, 24, 38,] suggested
that producingan RTD that exhibits intrinsic bistability is also difficult. In fact, mary
researcherseekingto demonstraténtrinsic bistability usedasymmetricoarriers[24, 32,
34,35, 39-41],thick undopedayersnearthe emitteror collectorbarrier[39, 41], or asec-
ond quantumwell just beforethe emitterbarrier[42]. Suchstructuresverenot employed
in the mary experimentalmeasurementaherethel-V curve effectswereobsened. Fur-
ther, all unambiguousxamplesof intrinsic bistability producechysteresisn themaincur-
rentpeak,ratherthanproducinga plateauandhysteresisn the NDR region afterthe main
peak. Thesefactsled to the conclusionthat experimentallyobsened I-V curwe effects
associateavith a plateauin the NDR region weredueto, and evidenceof, extrinsically-
inducedoscillations! Theseefforts alsosettledthe debateasto whetherintrinsic bistabil-
ity could be obsered (almostcertainly),andhow it appeargasa hysteresidoop in the
main |-V peak).We alsomentionthatall obsered RTD oscillationswereassumedo be
extrinsic in origin.

In contradictionto the consensus)enserand Buot’s simulations[5] provided some
corvincing evidencefor the“intrinsic” explanationof thel-V plateauvandrelatedphenom-
ena.Their Wignerfunction-basedintrinsic) RTD simulationsshoved an |-V plateauin
the NDR region, hysteresis/bistabilityn the plateauandintrinsic high-frequeng current
oscillationsat ary fixed biasin the plateau.Analysis of thesesimulationsby JB [5] and
Buotetal. [6, 8, 9] describedhe physicsthatwould producethis behaior. In short,they
concludeahatintrinsic bistability and oscillationsconspiredto producethe plateau.The
mechanisntor intrinsic oscillationswas the dynamic and self-consistenbscillation of
chagein the quantumwell andemitter andthe resultingoscillationof the quantumwell

1. The equialent-circuit &planation of these oscillations is/gn in Section 8.4.2.
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stateenegy. Chage accumulationin the quantumwell was responsiblgor the plateau
hysteresig9]. Buot and Rajagopal[9] also gave a possibleexplanationfor an upward-
sloping plateau,which is sometimesobsered experimentally but which is difficult to
explain by intrinsic bistability alone.

Thecontroversy[2, 3, 43-47]of whethertunnelingis mainly sequentia(i.e.,tunneling
mediatedoy scatteringn the quantunmwell) or coheren(i.e., tunnelingthroughthe entire
double-barriestructurewithout scattering)s perhapdesssettledthanthel-V plateauand
bistability issueslt is notevenclearwhethertheanswemalkesary practicaldifferencein
RTD operation[29, 34-36], althoughothersdisagreq?2, 3, 44]. The currentconsensuss
thatboth effectsoccurin parallel,andeithercurrentcomponentandominate depending
on the scatteringrate and device structure[2]. Accurate numericalsimulationwill be
requiredto furtherilluminatethisissue.JB andBuot et al. did not commenton thisissue,
but we will return to it briefly in Section 8.2.

Finally, a relatively recentpoint of controvrersy concerningRTDs is which lumped-
parameterequialent circuit modelis correctfor an oscillating RTD. The corventional
model[13, 16-22,25] assumedhatthe principle sourceof inductancevasextrinsic to the
device (i.e., in the biasingcircuit), resultingin the series-inductancequialentcircuit in
Figure8.1.This modelwasnot seriouslychallengediuntil the numericalsimulationsof JB
[5] shavedintrinsic oscillations requiringaninternalinductancenodel. Two possiblecir-
cuit modelswereanalyzedn the subsequeranalysisof Buotetal. [6, 10, 11]: theseries-
inductancemodel (but with an internal inductance)and the parallel-inductancenodel
(seeFigure8.1). As discussedby Buot et al., thelocationof theinductancéhassignificant
implications for stability analysisand oscillation frequeng of the RTD. Thus, proper
designof RTDs for useasfastoscillatorsandrelatedapplicationswill dependon useof
the correctcircuit model. Basedon the analysisof mary simulationand experimental
results,Buot et al. again went againstcorventionin concludingthat the parallel-induc-
tancemodelmustbe correct.[Note thatGeringetal. [48] andBrown andSollner[49] had
previously proposedRTD modelswith internalinductanceput neithersuggestedhatthe
RTD could self-oscillate.In fact, Brown and Sollner’s negative inductancedid not allow
self-oscillations.]

As statedearliet this chapterdescribesa SQUADS-basednvestigation of the physics
of RTDsin generalandtheabose RTD controversiesin particular usingthe JB RTD asa
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Figure 8.1: Two most common R'D equivalent circuit models

Shavn arethe series-inductancenodelandthe parallel-inductancenodel.G is the
intrinsic conductancébasedon the equilibrium -V curve), andC is the intrinsic
capacitancef the RTD. The seriesresistanceandinductanceare often attributed
to externalcausessuchascontactresistanceindthe measuringapparatusnduc-
tance but in this caseof intrinsic oscillations the causemustbeinternal.Rg canbe
attributedto scatteringandL to the delayin currentasthe QWS chagesor dis-
chages after an applied bias change across the DBS.

testcase.The resultsdiffer from thoseof JB in somesignificantconclusionsbecauset
wasfeasibleto investigatethe operationof the JB RTD in bothmoredetailandmorecom-
prehensiely thatwas possiblepreviously? Becausehe RTD controsersiesare multifac-
eted, ratherthan attemptingto demonstratene position or anotheron theseissuesthe
approachwill beto examinethe simulatedoperationof the JB RTD in suflicient detail to
definitively determindts underlyingphysics.Of coursejn runningadevice simulation(as
opposedto a circuit simulation),all simulatedeffects are necessarilyintrinsic, so only
inferencescan be made abouTR behaior including measurement circuit parasitics.
This work usesbhoththe Wignerfunction[50, 51] andtransfermatrix [52, 53] simula-
tion capabilitiesof SQUADS (seeChapters4 and5). To allow direct comparisorto the
simulationsof JB [5], theidenticaldevice structureandsimulationparametersvereused

2. In fact, one of the resultsof this investigation is a discussionn Section8.4.3of the remaining
inaccuraciesn RTD simulation, particularly simulationsbasedon the Wigner function method
(used by JB and in SGADS).
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(aswasalsodonein Chapters$ and7), andall Wignerfunctionsimulationsn this chapter
includeself-consisteng andscattering.The JB RTD, shavn in Figure 6.4 at equilibrium,
was composedof a 5 nm undoped GaAs quantum well between3 nm undoped
Al Gay 7As tunnel barriersand 3 nm undopedGaAs spacerlayers. The GaAs contact
layerswere19 nm each giving atotal device width of 55 nm. The electroneffective mass
was assumecdconstantat 0.0667/n,, and the permittvity was also taken as constantat
12.%,. The simulationsused86 positionpoints, 72 wavenumbeipoints,a time stepof 1
fs, and an déctive relaxation time of 525 fs [54] at a simulation temperature of 77 K.

8.2 Steady-State H'D Physics

The fundamentabperationcharacteristidor electronicdevicesis the current-wltage
curve, and this will sene as the starting point in our investigation of the JB RTD. A
Wignerfunctionsimulationtracingthe steady-statéV curve of thisRTD is shovn in Fig-
ure 8.2. Beforeinvestigating the physics behindthe moreinterestingfeaturesof this I-V
curve, we first describé’'normal” RTD operationthe majorfeatureof whichis aregion of
negative differentialresistanceThe basiccauseof NDR is indicatedin Figure8.3,which
shavs the enegy bandprofile of the JB RTD at boththe peakandvalley of thel-V curwve.
At appliedbiasesup to andincluding the peakcurrentcondition(0.23V in the JB RTD),
electronsenteringthe RTD at the emitter contactcan tunnelthroughthe double-barrier
structurg(DBS) via thequantumwell state(QWS).As thebiasis increase@bove thepeak
condition, the QWS enegy dropsbelon the emitter band edge,and currentdecreases.
Currentdoesnotdropimmediatelyto its minimumbecausef thefinite width of the QWS
and scattering-assistetinnelinginto the QWS. Neverthelesscurrentshould normally
decreasamonotonicallyfrom peakto valley (0.32V in this RTD), asindicatedby the
dashedcurwe in Figure 8.2. Currentreachesa minimum and eventually increasesagain
becauseas the collector barrieris pulled dowvn with increasingappliedbias, tunneling
throughthe entireDBS (i.e., not via the QWS) increasesThis “normal” RTD behaior is
well described in [2] and eladere.

Quite obviously from Figure 8.2, the JB RTD doesnot behae in the simple manner
describedabore in the NDR region of operation.In fact,it waspreciselybecausef this
interestingbehaior thatwe usedthis RTD asthe testdevice in our recentinvestigations
[55, 56] of implementationssuedn the Wignerfunctionmethodof quantumdevice simu-
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Figure 8.3: RTD energy band profiles at peak and alley operation

Carriersenteringfrom the emittercantunnelthroughthe quantumwell stateatthe
bias for peak current (0.23 V)ubnot at the bias foralley current (0.32 V).
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lation. Insteadof the currentfalling smoothlyfrom peakto valley, a plateaustructure
occursin thel-V curve in the NDR region of operation Apparentlya secondcurrentpath
is operatve here.The plot in Figure 8.4 of the enegy bandprofile of the RTD at0.28V
(the centerof the plateau)indicateswhatthis new currentpathmay be. Herewe seethat
the QWS is indeedwell belav the band minimum at the emitter contact,so electrons
enteringthe RTD at the emitter can not tunnelthroughthe QWS directly. However, an
extendedenegy banddepressiomasdevelopedin the emitterlayer This suggestshatthe
plateaucurrentoccursfrom electronsscatteringnto the emitterdepressiorandthentun-
nelingthroughthe QWS asusual.Sincethe emitterdepressions narrav (10-20nm), the
guantummechanicallyallowed enegy levels (belowv zero)for electronswill be discrete
andwidely separatedjust asin the quantumwell. Thus,this explanationfor the plateau
structuredependn an allowed statein the emitterdepressioreingat roughly the same
enegy asthe QWS sothatcurrentcanflow from the emitterstateto the QWS. Becausef
the interestingphysics involved in this plateaumechanisma fair amountof discussion
below will be devoted to erifying and analyzing it.

It is not straight-forvard to verify the above explanationof the plateauNormally, the
transfermatrix methodof quantumdevice simulationis usedto locatediscreteenegy lev-

=S A A L L B AN
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Figure 8.4: RTD energy bands at center of |-V plateau

Self-consistenénegy bandsat 0.28V indicatethatelectrongnustscatterinto the
discreteenengy statein the emitterdepressiorto tunnelthroughthe quantumwell
state.
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els by finding the enegiesat which the transmissiorof electronshroughthe device is a
maximum.However, for operationof the JB RTD in the plateauthe transmissiorcoefi-
cientin eitherdirectionat the QWS enengy is necessarilyero,sincethereareno emitter
electronsincident at this enegy (becauseghe QWS is below the emitter contactmini-
mum), andall electrondrom the collectorat the QWS enepgy will bereflectedback(see
Figure 8.4). Further the suspectecturrentpath requiresscattering,which hasnot been
incorporatedaccuratelyinto the transfermatrix method.In spiteof thesedifficulties, it is
possibleto probethe enegy bandsin Figure8.4 for resonanenengy stateselov E = 0.
Thetrick is to calculatequantumwavefunctionsfor mono-enegetic electronbeamsnci-
dentfrom (andreflectedbackto) the collectoratarangeof enegies.Thosewavefunctions
which have the higheststanding-vave amplitudesin the emitterdepressiorand quantum
well aresaidto “fit”, or resonatethere.The computationof single-enegy electronwave-
functionsis a simple extensionof the transfermatrix methodof quantumsystemsimula-
tion (see Chapter 4).

By default, SQUADS computesvavefunctionsat enegiesrelative to theincidentcon-
tact minimum. In this case,wavefunctionsare incident from the collector which will
effectively shift the referenceenegy down by the appliedbias. Using the approachdis-
cussedabove, Figure 8.5 shavs the resultingenegy spectrum(normalizedwavefunction
amplitudeversusenenpy) of carriersin the emitterdepressior{solid curve) andquantum
well (dasheccure) for the enegy bandsof the JB RTD biasedat the centerof the plateau
(0.28 V). The first discreteemitter state(DES) enegy is only about5 meV belov the
QWS enegy, which is closeenoughfor themto interact.Note the constructve interfer-
ence at the respeeti resonant engies and destrust interference betweéh.

Note thatthe DES and QWS enepiesareseparatedy only 5 meV whenthe RTD is
biasedat the centerof the plateau,yet the plateauextendsover about75 mV of applied
bias. This requiresthatthe two enepy levels muststay essentially’locked” togethervia
some(as-yetundeterminedimechanisnduring this portion of thel-V curve: ary changes
in enegy of thetwo stateamustbevirtually equal.lf theenegy levelsbecamewidely sep-
aratedtheplateawcurrentpathwould be broken,andcurrentflow would decreasé Figure

8.6 shaws the variation of the two enepgy statesversusappliedbiasin the plateau.As

3. The presentation of these resuleswefined based on similabik by another researcher [57].
4. In fact, this is what happens at the end of the plateau, as discussed later
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Figure 8.5: Energy occupation spectrum in emitter and quantum well

Enegy occupationspectrum(normalizedwavefunctionamplitudeversusenegy)
of carriersin theemitterdepressiorgsolid curve) andquantumwell (dasheccurwe)
for the banddiagramof Figure 8.4. Thefirst emitterenepy level is only about5
meV below the quantumwell state.Constructve interferencas apparennearthe
respectre resonant engies, and destrue interference between.

expectedthetwo enepgy statesdo remainvery close(within 10 meV) throughouthe pla-
teau.Collectingdatafor this plot (from curveslike thatin Figure8.5)is somevhatcompli-
cateddueto the interferenceof the two resonances-lowever, a coupleof generaltrends
are evident: the QWS enepy is nearly constantwhile the DES enegy risesgradually
until atthe endof the plateauthe two areequal.Eachof theseobsenrationsis significant,
as discussed belo
The factthatthe QWS enegy doesnot rise with respecto the collectorbandmini-

mum indicatesthat the enegy bandprofile in the collector and quantumwell doesnot
changeappreciablythroughthe plateau.Therefore,all increasesn appliedbias mustbe
accommodatedby band-bendingn the emitter To checkthis definitively, enegy band
profiles were plotted for consecutre biasesin the plateau,with the collector electrode
groundedandbiasesappliedto the emitter(ratherthanvice versa,asin Figure8.4). The
enepgy bandsin the collector and quantumwell shouldline up very closely and then
divergein theemitter Thisis exactly whatoccurs,asshovn in Figure8.7. Thus,all of the

additionalband-bendingn the plateauis accomplishedy chaging the emitter contact
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Figure 8.6: Emitter and quantum well enermgy levels in plateau

Resonaneneqgy (relatve to the collector bandminimum) versusappliedbiasin
the plateau.The solid curve shaws the enegy of the lowest statein the emitter
depressionwhile the dasheccurve shaws thatin the quantumwell. Both enegies
are relatvely constantrelative to the appliedbias change.However, the emitter
stateenepy risesuntil it reacheghe quantumwell stateenegy at the endof the
plateau.

anddischaging of the emitteritself, sothatthe e-field at the emitterbarrietr andthusthe
enegy band profile in the rest of th@ R, remains unchanged.
Anotherconclusionfrom thefactthatthe quantumwell andcollectorenegy bandpro-
files do not changein the plateauregion is thatthe total chage in the quantumwell and
collectormustremainconstanthroughoutheplateaulf the chageschangedppreciably
thentheelectricfieldsin thedevice would alsobe modified,aswould the potentialprofile.
On the other hand, as mentionedabove, the emitter chage (absolutemagnitude)must
decreas¢o screerthe chaging of the emittercontactfrom therestof the RTD. To check
theseconclusionsFigure 8.8 shavs the displacedchage (differencein chage from equi-
librium) in the emitter quantumwell, andcollectorversusappliedbias.As expectedthe
guantumwell andcollectorchagesareeffectively constantduring the plateau while the
magnitudeof the emitter chage decreasesignificantly Also shavn in Figure 8.8 is the
changein total chagein the RTD. This curve indicatesthatthe RTD doesnot remainnet
chage neutral,reflectingthe chaging of the emitter contactto restorechage neutrality
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Figure 8.7: RTD Energy band profiles in plateau operation

Self-consistenenegy band profile for the plateau(solid curves) and adjacent
biaseqdashecurves).All appliedbiaschangesn theplateauareaccomodatetly

chaging of the emittercontactanddischaging of the emitteritself. The resonant
statesat the centerof the plateau(0.28V) areshawvn in the emitterdepressiorand

guantum well.

The significance of the clged emitter contact iskxamined in Section 8.4.3.

Comparisorof thel-V curvein Figure8.2 andthe quantumwell chagein Figure8.8
suggestshatcurrentflow is proportionalto the quantumwell chage Qow- To understand
why this is true, recall the basic current density equation (ignoring sigemcoons):

J = qgnv (8.1)
whereq is the elementarychage, n is the electrondensity andv is the averageelectron
velocity. Supposeéhat the probability of an electrontunnelingthroughthe collectorbar-
rier, andthuscontritutingto n, is fixed. ThenJ is exactly proportionalto Qow-In typical
RTD operationthe heightof the collectorbarrierabove the QWS enepgy decreasegradu-
ally with increasingapplied bias, so Qow is not exactly proportionalto n over wide
appliedbiasrangesHowever, whenthe JB RTD operatesn the plateauwherethe collec-
tor barrierdoesremainessentiallyunchangedihe proportionalityshouldhold very well.
Further sinceelectricfieldsin the collectorremainunchangedn the plateauthe average
velocity v of the carriersin the collectorshouldremainconstanthroughoutplateauoper-
ation. This suggestshatcurrentshouldbe constanin the plateauandthisis far from the
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case (see Figure 8.2).

Theonly reasonableonclusionfrom the above analysisis that (onceagain) a parallel
currentpathmustbe operating Figure 8.4 shavs whatthis additionalcurrentpathis: tun-
nelingthroughthe entiredouble-barriestructureby carriersin theemitterthatdo notscat-
ter into the DES. Consideringthe plateauenegy banddiagramsin Figure 8.7, as the
appliedbiasincreasesgarriersenteringat the emittercontactwhich do not scattemwill see
both barrier heightsreducedby approximatelyV,—0.23 V (i.e., the differencebetween
the appliedbiasandthe biasat the currentpeak).Sincetunnelingprobability (the trans-
mission coeficient) varies exponentially with barrier height, this non-resonanturrent
componen{from unscattereelectronsn the emitter)shouldincreasesxponentiallyver-
susappliedbias. This expectationis consistentwith the currentincreaseseenin the pla-
teau of Figure 8.2. The pos#i slope of the plateau isag an issue in Section 8.4.3.

The otherobsenationsfrom Figure8.6 arenow investicated:thatthe discreteemitter
stateenegy risesrelative to the collectorenegy bandduringthe plateawntil it equalshe
QWS enegy at the end. The fact that the DES enegy rises makes sense:the emitter
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Figure 8.8: Integrated charge \ersus applied bias in RD

For thetotal, emitter andcollectorchages,only the changefrom the equilibrium
is shavn. In the plateauregion, the quantumwell andcollectorchagesareessen-
tially constantwhile the magnitudeof theemitterchage decreasesignificantlyto
screenthe restof the RTD from the chaged emitter contact.The chage on the
emitter contact can be inferred from the non-zero change in totalechar
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depressiomgetsnarraver andsteepersotheresonangjuantumwavelengthwill beshorter
andtheresonantnenpy is thereforehigher The following agumentshawvs thataslong as
the DESenenpy is belov the QWS eneny, the plateaucurrentpathis maintainedWith the
QWSaboretheDES,if the QWS chagedensityincreasesthe e-fieldin the collectorbar-
rier increasesvhile thatin the emitterbarrierdecreasesothe potentialof the QWSrises
furtheraborethe DES. Thisreduceghecurrentflow from DESto QWS,reducingthe QW
chageandthe QWSenegy. By symmetry asthe QWS chage decreaseghe potentialof
the QWS decreasetwardsthe DESenepy, sothe supplyof electrondrom DESto QWS
increasesas doesthe QWS chage and enegy, andthe cycle repeats.Thus, a negative
feedbackmechanisndueto chage storagein the quantumwell keepsthe QWS slightly
above the DES,andmaintainghe DES-QWScurrentpath.However, if the DESeverrises
above the QWS, we arguethatthe plateaucurrentpathis no longerstable,andthe RTD
switchesto the lower I-V curve. For example,as0.313V is approachean the up-trace,
exact alignmentof the DES and QWS producesmaximumecurrentfrom DES to QWS.
When the DES risesjust slightly above the QWS, the supply of electronsto the QWS
decreasesandthe QWS begins to deplete.The e-field in the collector barrierdecreases
while thatin the emitterbarrierincreasessothe potentialof the QWS dropsfurtherbelow
the DES.This furtherreduceghe supplyof electrongo the QWS. A run-avay conditions
ensues, which ends when thevér I-V cure operating conditions are reached.

Sinceplateauoperationis apparentlysofragile, it shouldnot be difficult to switchthe
RTD out of plateauoperationwithout actually biasing the RTD above 0.313V. This
expectationwasprovencorrectin simulationsdescribedn Chapter7 and[56], wheresim-
ply slewing the biastoo quickly from the peakinto the plateauregion causedhe RTD to
switchto thelower I-V curve. Anotherpoint shouldbe madethatalthoughthe non-reso-
nantcurrent(i.e., currentthat tunnelsthroughthe DBS, not via the DES/QWS)is quite
significantin the plateau,this currentcomponentcontritutes negligibly to the quantum
well chage, becausehe wavelengthsof electronsat theseenegiesdo not “fit” (resonate)
in the quantumwell. Thus, when the resonantcurrentcomponentcan not supportthe
guantumwell chage at the endof the plateau the non-resonantarrierscannot make up
the diference.

Giventheabove descriptionof thetwo simultaneousurrentpathsin this RTD, it may

seemthat thesesimulationscanshedsomelight on the controversy of whethertunneling
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in RTDs is dominantlyresonanor sequentialHowever, in this RTD, the importantscat-

tering which makesthe plateaucurrentpath possibletakes placebefore electronstunnel

throughthe double-barriestructure ratherthanin the quantumwell. Actually, sincescat-

tering in thesesimulationsis constanthroughoutthe device, both electroncurrentpaths
involve component®f bothsequentiahndcoherentunneling.Thus,onceagain, differen-

tiating betweenthe two, evenin simulations,will requiremoreingenuity Nevertheless,
with its ability to include scatteringin a meaningfulway, the Wigner function approach
should be well suited to such awéstigation.

Having done the transfermatrix analysisof the DES and QWS enepgy levels, the
above conclusionsare further verified with a few additionalWigner function simulation
results Notethatthe WignerfunctionW(x, k) givesthedensityof carriersat eachposition
andwavenumbeiin the simulationdomain.Therefore a cross-sectioof the Wignerfunc-
tion at a particularposition givesthe numberof carriersat eachwavenumber(and thus
enegy) atthatposition.Considertwo suchcross-sectionsf theWignerfunctionat0.31V
appliedbias:oneat the collectorcontact(x = 55 nm), andonein the emitterdepression
(x = 18 nm). In the collector contactcross-sectior(Figure 8.9), there should be two
peaksof carriers(besideghe large equilibriumdistribution centerecatk = 0) at positive
velocity (wavenumber) correspondingdo carrierswhich tunneledthroughthe QWS, and
thosewhich tunneleddirectly throughthe DBS from the emitter contact.Wavenumbetis
related to engy by:

K = J2m*E
=Th

~

(8.2)

where m* is the electroneffective mass,E is its kinetic enegy, and h is the reduced
PlanckconstantUsing Figure8.7 andnegglectingscatteringat 0.31V, transmittedcarrier
peaksshouldappearat about0.24eV above the collectorminimumfor the QWS carriers,
andbetweerD.31eV (theemitterminimum)andabout0.4 eV (theemitterFermilevel) for
the direct tunneling carriers. This translatesto wavenumbersof kqyg=0.65nm and
0.74/nm <Ky, <0.84/nm. These alues match the twvpeaks in Figure 8.9 quite well.
In the Wigner function cross-sectionn Figure 8.10, three carrier peaksare evident.
The two outter peaksare dueto carrierstravelling from the emitter contacttowardsthe
emitterbarrier (positive k) andreflectedoff the emitterbarrierbacktowardsthe emitter
contact(negative k). Themiddle peakis dueto carriersin the DES,which shouldbeabout
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Figure 8.9: Wavevector spectrum of carriers at collector contact

Wigner function cross-sectiorat the collector contact(x = 55 nm) at 0.31V

appliedbias.Thelarge peakis the (largely undisturbedequilibrium carrierdistri-

bution, while the two small peaksat positve wavenumber(velocity) accountfor

the RTD current. The peakat k = 0.65/nmis due to electronswhich tunneled
throughthe DES andQWS, while the peakneark = 0.8/nmis dueto carrierstun-
neling directly from the emitter without scattering into the DES.

0.026eV above the bandedgeat x = 18 nm, or k5= 0.21/nm, whichis again area-
sonablematch.Finally, notethatthe DES carriersarelargely not reflected sincethereis
no correspondingarrierpeakat k = -0.21/nm. This is becaus¢he DBS is nearlytrans-
parentat the QWS enegy, so the DES electronstunnel throughthe DBS, ratherthan
reflectingbacklik e the majority of the electronsnotin the DES. Admittedly, becausef
the relatively low numberof wavenumberpointsusedin thesesimulations,the peaksin
bothplotsdiscusse@dbove arenotresohedverywell, eventhoughwe used0.31V biasing
for maximumenegy separationlt is worthy of notethatthe Wignerfunction methodcan
discerndiscreteenegy level effectswithout a highly refinedwavenumbemrid. However,
the relatve accurag of such simulations will be considered in Section 8.4.3.
Oneminorissueremainsin theanalysisof the basicl-V curwve of thisRTD. The phys-
ics of thetransitionat0.313V asgivenaboveis alsodescribedy Goldmanetal. [26], but
thephysicsof thetransitionpointat0.254V wasconsidered mystery Actually, the phys-
ics of the transitionpoint on the down-traceis even simpler As 0.254V is approached
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Figure 8.10: Wavevector spectrum of carriers in emitter depession

Wigner function cross-sectionn the emitter depressionx = 18 nm) at 0.31V
appliedbias. The outter peaksare carriersincidenton the DBS (positve k) and
reflectedfrom the DBS (negative k) which have experiencedminimal inelastic
scattering.-Themiddle peakshawvs electrongn the DES andtravelling towardsthe
DBS. Thereis no reflectedpeakat the DES enegy becausehe DBS is largely
transparenat the QWS enegy, so the DES electronstunnelthrough,ratherthan
reflecting.

from above, the emitter enegy band (without a depression)s not far above the QWS.

Scattering-assistadnnelingallows the (empty) QWSto begin tofill, raisingits potential.

This bringsthe emitterand QWS closertogetheyandboththe scattering-assisteahdres-

onanttunnelingcurrentsincreasdurther. As with the0.313V transition,a run-avay con-

dition ensueghatendswhenthe emitterdepressiordevelopsandthe lower tracereaches
the plateauoperatingconditions.Buot [7] alsodescribedhe bistabletransitionsin some
detail.

To summarizehe steady-statévestigation of the JB RTD in this section the physics
of thel-V plateauandassociatetiysteresicanbedescribedhsasaninteractionof several
phenomenascatteringthe developmentof a potentialdepressionn the emitter thealign-
mentof a discreteemitter statewith the quantumwell state,and chage storagein the
guantumwell. Ontheup-trace asthe QWSdropsbelaw 0 (i.e., theemittercontactenegy
bandminimum) after the peakcondition,the quantumwell begins to deplete.Normally,
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the emitterchage increaseto compensatehut in the plateau,anothermeansof accom-
modatingthe appliedbiascomesnto play: thedevelopmenif anenegy depressiofin the
emitter A discreteemitterstatedevelopsin this emitterdepressionvhich electronsscatter
into, andwhich providesa currentpaththroughthe slightly higherenegy QWS. A nega-
tive feedbackmechanisndueto quantumwell chage keepsthe QWS slightly above the
DES asthe bias increasesThus, currentthroughthe DES-QWS current path remains
essentiallyconstantthroughoutthe plateau.However, currentdueto electronswhich do
not scatterinto the DESincreasesvith biasasthe heightof the DBS decreasedlso with
increasingbias, the DES is slowly pushedup towardsthe QWS. When the two states
cross,the electronsupply from DES to QWS decreasesthe QWS enegy dropsas it
depletesandthe plateauendsabruptly On the down-trace,the QWS s initially empty
and the bias must be decreasedo the point wherethe QWS is just below the emitter
enegy beforeelectrondrom the emitterbeganto scatterinto the QWS, raisingits poten-
tial, and returningthe RTD to plateauoperation.Thus, for the JB RTD, quantumwell
chage is solely responsible for the platealysteresis, as determined by JB [5].

8.3 Transient RTD Physics

Giventhedescriptionin the previous sectionof the basicphysicsof the plateauin the
I-V characteristiof the JB RTD, it is now possibleto menaingfullyinvesticatethe tran-
sientphysicsof the plateau.This beginswith atransientWignerfunctionsimulationtrace
of the -V curve® similar to thatof Jenserand Buot [5], which simulationbroughtatten-
tion to this device and to the WFM simulation method.Like JB’s, thesesimulations
shaved high-frequeng currentoscillationsat fixed biasesthroughoutthe plateauafter
switchingfrom oneappliedbiasto the next. However, for biasesabove 0.25V, the plateau
is actuallystable sincethe oscillationsdecayedandthe device eventuallyreachedsteady-
state while JB concludedhatthe plateauwasunstablehroughoutSection8.4 will return
to thisimportantdiscrepang betweerthesesimulationresultsandthoseof JB. According
to thistransient-V simulation,theJB RTD is unstablan the plateawonly atbiasesf 0.25
V andbelow. For example,Figure8.11shows the currentoscillationsat 0.24V afterthey

have corvergedto a steadywaveformandamplitudeafterabout20 ps. Thesearequite sig-

5. NotethatFigure8.2is a steady-statéV curve, whichtracesthe (stableor unstable)equilibrium
operating point.
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nificant oscillations,with a frequeng of about2.5 THz and an amplitude of 1.8x10°

Alcm?, which is aver 40% of the timeagrage current.
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Figure 8.11: Intrinsic curr ent oscillations of unstable RD

2.5 THz intrinsic currentoscillationsat V, = 0.24V in the narrav-emitter RTD.
The oscillationsresult from the changingrelative positionsof the quasi-bound
states in the emitter depression and the quantum well.

Thetransient-V curve wasidenticalto the steady-stateurve wherethe RTD wassta-
ble. However, in the small rangeof biaseswheretherewere perpetualoscillations(i.e.,
wherethetransientsimulationsdid not corvergeto steady-statethetime-azeragecurrent
wasnot equalto the (unstable)equilibriumvaluefound by the steady-statsimulation.In
suchcasessincethe transientsimulationfollows the actualevolution of the device, and
sinceexperimentstypically measurdime-averagecurrent,the transientl-V curwe is the
physically correctone.Figure8.12shaws a detail view of the unstableregion of the equi-
librium steady-stat@nd the time-averagetransientl-V curves. In following the down-
traceof thetransient-V curve,aseconchysteresidoop notseenin the steady-statsimu-
lation wasdiscovered.Thus,thereare alreadythreefeaturesof the transientoperationof
the JB RTD to investigate: the causeof the oscillations,the physical differencebetween
thelower (unstableandupper(stable)portionsof the plateauandthe causeof the second
hysteresis.

Consideringhefirst issue the discussiorof negative feedbackn the previous section



238 Chapter 8. RTD Device Physics Investigation

2 L B e B S S A

— Steady-State
=+ Transient

»

Current Density (10° A/cm?)
a1
|

T e !

4— -------------------------------------------------------------------------------- —

i
0.24
Applied Bias (V)

0.22 0.23

0.25 0.26

Figure 8.12: Transient hysteresis belev main |-V curr ent peak

Steady-statéequilibrium) andtransient(time-averaged)-V curve detail nearthe
uppertransitionto the plateauThetransient-V curve hasaseconcdysteresidoop
near the main peak of the I-V cerv

suggestshatvariationsin the alignmentof the DESandQWS dueto chage densityvari-
ationsmight producethe plateauoscillations.To investicate further, Figure 8.13 shavs
chage densityand enegy bandprofilesfor the minimum and maximum currentcondi-
tions of Figure8.11. To seechage variationmore clearly, Figure 8.14 shaws integrated
chagein theemitterandquanturmwell versugtime (the collectorchage variationis much
smaller).Thus,during oscillations,the emitterand quantumwell chagesoscillateessen-
tially 180 degreesout of phasewith eachother As describedn Section8.2, asthe quan-
tum well chage increasesthe electricfield in the collectorbarrierincreasesandthatin
theemitterbarrierdecreasesaisingthe potentialof the QWSfurtherabore the DES.The
misalignmentof the DES and QWS lowersthe currentfrom DES to QWS, so that the
QWS dischagesandthe emitterrechages.This lowersthe QWSwith respecto the DES
aguin, andthe cycle repeatsThus,the plateauoscillationsin the JB RTD resultfrom the
self-consisteninterplaybetweerthechagein the quantumwell andthatin theaccumula-
tion region, and the resultingvariationin the alignmentof the discreteenegy statesin
these tw regions.

The analysisabove largely agreeswith the detaileddescriptionof the physicsof pla-
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Figure 8.13: Carrier and energy band profiles during oscillations

Self-consistenénegy bandandelectrondensityduringoscillationsat 0.24V. The
solid curves correspondo the maximumecurrent;the dashedcurvesto the mini-
mum. the quantum well potential onlgries by about 12 meV

teauoscillationsgiven by Buot and Rajagopal8, 9], but differs on oneimportantpoint.
FromFigure8.13,thevariationin alignmentof the QWS andDESis only about10 meV.
Thus,the occurrenceof plateauoscillationsrequiresa discreteenegy statein the emitter
sinceonly a narrov enegy statewould produce with only a smallvariationin the QWS
enegy, a large variationin currentinto the QWS and correspondindarge variation in
guantumwell chage. Buot and Rajagopalusedthe Fermi level, ratherthan the DES
enegy, asthe relevant emitterenegy. The Fermilevel in this device is 86.4 meV above
theemittercontactminimum, makingtheincomingelectrondistribution muchtoo wide to
producethe obsened quantunmwell chage variationwith suchsmallchangesn the QWS
enegy. More importantly Figure 8.4 shaws thatthe emitter Fermilevel is novherenear
the QWS enepgy while this RTD is operatingin the plateau.Evenif Buot andRajagopal
meantto describea quasi-Fermilevel in the emitter depressiontheseoscillationsdefi-
nitely require a discrete emitter state.

The possibility of oscillationsoccurringin an RTD where a discreteemitter state
chagesthe QWSwasfirst predictedoy RiccoandAzbel[57]. However, they did notfore-
seethatthe DES mustremainbelon the QWS for a negative-feedbacknechanisn{in this
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Figure 8.14: Emitter and quantum well charge during oscillations

Total (integrated)chagein the emitterlayer (top) andquantunmwell (bottom)ver-
sustime during oscillationsat 0.24 V bias. Self-consisteng tries to maintaina
constannetchagein thedevice, soadecreasén oneregion causeanincreasan
the otherand vice-ersa.

case,self-consisteng to maintainthis currentpath. They also suggestedhat an RTD

would never reachsteady-statenderthesecircumstancesSimulationsn this section(and
in Chapter6) shaved conclusvely thatthis RTD is stablein the upperportion of the pla-
teau,eventhoughit displaysdampedscillations Explainingwhy the plateaus partly sta-
ble andpartly unstables the second'mystery” concerningransientplateauphysics.The
answeris quite obvious: one of the requirementof unstableoperationof either of the
equvalentcircuitsin Figure 8.1 is thatthe differentialconductanceés mustbe negative.
Theplateawvill only beunstablevherethe RTD exhibits NDR.® Thus,for plateauopera-
tion atbiasesf 0.25V andbelow, the RTD will beunstablewhile abose 0.25V it will be
stable.Sincethe JB RTD is unstablein the NDR portion of the plateaut may seemodd
thatthe RTD is stablein NDR portion of thelower I-V curve on the down-trace(0.31V -

0.255V). Thereasonis, of course thatthe negative feedbackmechanisnof the plateau
(variationin alignmentof the DES andQWS)is not operationakxceptin the plateau.In

6. This statement will be modified slightly in Section 8.4.2.
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fact,thereis essentiallynoresonanthagein the QWSatall, sothe emitterchage,which
is not in a discretestate, has nothing to oscillate out of phasewith.Tthis difference
between NDR rgions will be important in the equalent circuit analysis of Section 8.4.2.

Finally, this sectionconcludeswith ananalysisof the third “mystery” concerninghe
transientoperationof this RTD: the causeof the narrav hysteresidoop justbelow 0.24V
(seeFigure8.12).Sincethereis no hysteresisn the steady-statéV curvein themaincur-
rentpeak,the usualcause®of hysteresignustberuled out here:load-linehysteresisgiuea
seriesresistanceyreaterthanthe RTDs intrinsic NDR [21, 23, 24], and bistability dueto
chage storagdan the quantumwell (seeSection8.1). The causeof this hysteresisnustbe
adynamiceffect. IndeedtheRTD is still oscillatinghereon thetransientdown-trace.Fig-
ure 8.15shaws the position-aeragedcurrentafter the RTD is switchedfrom 0.238V to
0.2375V (theendof the plateauon the transiendown-trace) . Sincethe maximumcurrent
during the oscillationis J = 5.36x10° Alc?, it is clearthatthe RTD is not oscillating
aroundthe equilibriumoperatingpoint (J = 6.0x10° Alcm?) found by the steady-staté:
V trace.Theoscillationssomeha causehe RTD to remainin plateawperation(i.e., with
an emitter depressiorand DES/QWS current path) longer than a non-oscillatingRTD
would. Actually, this I-V curve featurehasbeenshavn in RTD equivalentcircuit simula-
tionsandexperimentalmeasurementgreviously [15, 17,20, 58]. Sollner[15] usedakind
of momentumargumentto explain this form of hysteresis:it is necessaryo bias the
diode nearerthe region of maximumnegative conductancéo begin oscillations...tharto
suppres®scillationsafterthey have begun...” Wallis andTeitsworth [25, 58] usetheterm
“subcritical Hopf bifurcation” for this effect. BuotandRajagopal[59] reportedthe effects
of this asa doublehysteresisn the original JB simulationg5], althoughat thatbias(0.24
V), bothtransient-V tracesdo eventuallyconvergeto the sametime-averagecurrent.This
transientl-V curve simulationis thereforeapparentlythe first to demonstratedynamic
hysteresis definiely in intrinsic RFID simulations.

8.4 Discussion

Sections8.2 and8.3 describedhe steady-statandtransieniphysicsbehindthe opera-
tion of the JB RTD in somedetail. This sectiondiscusseshe significanceof theseresults.
Section8.4.1,pointsout the maindiscrepang betweerthe simulationresultsandconclu-
sionsin this chapterandthoseof JB [5], andexplainsthe reasorfor the incorrectsimula-



242 Chapter 8. RTD Device Physics Investigation

SO [T ]
s Nt
2 I I e B o
o i | . .
= ]
-*54.5_— |
A
=
S 40 Ftt ]
>
@)

N I I S B AR

0 1 2 3 4 5

Time (ps)

Figure 8.15: Oscillating current in lower state of dynamic bistability

Position-&eragecdcurrentafterthe RTD is switchedfrom 0.238V to 0.2375V (the
endof the plateauon thetransientdown-trace).Sincethe maximumcurrentduring
oscillationis J = 5.36x1® A/cm?, the RTD is not oscillating aroundthe equilib-
rium operatingpoint (j = 6.0x10 A/cm2) foundby the steady-statéV trace.This
indicates a dynamic bistability

tion resultsand conclusionsof JB. Section8.4.2 then discusseghe revisions that are
necessaryn otherresearcherséquivalentcircuit analysisbasedon the JB simulations.
Finally, Section8.4.3 attemptsto determinethroughfurther analysisandmoreaccurate
simulations whetherandto what extent the foregoing simulations(andthoseof JB) cor-

rectly model the pysics and operation of reallRs.

8.4.1 Plateau Interpretation Error

As mentionedn Section8.3,themaindiscrepang betweerthetransientWignerfunc-
tion method(WFM) simulationresultsin this chapterandthe nominally identicalonesof
JenserandBuot[5] is thefactthatthe simulationsn this work shavedthe positive differ-
ential resistancgPDR) portion of the plateauto be stable,while JB concludedthat the
entire plateauwas unstable.With their conclusion,JB’s results matchedthree related
experimentalobsenationsvery well: high-frequeng oscillationsthroughouta plateauin
the NDR region, bistability andhysteresisn the plateauandthe endof the plateauwwhere
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the lower I-V curwve returnsto PDR. Subsequenanalysisby Buot et al. [5, 6, 8-11, 60]
concludedthat the JB simulationresultsresoled the plateaucontroversy (see Section
8.1), claiming thatthe I-V plateauandit associatedscillationswere intrinsic in origin.
Indeed the plateaucontroversyappearedo requireexactly sucha resolution:oscillations
to producethe obseredplateauandchage-bistabilityto producethe obsened hysteresis.
As discussedn Section8.1,it is now clearthatextrinsically-inducedoscillationscanpro-
duceall of the obsenred plateaufeatures Further the resultsin Section6.5.4 (and [55])
proved conclusvely thatthe JB RTD operatingn the PDR portion of the plateauis stable
(i.e., doesnotoscillate). Thus,the claimedresolutionof the plateaucontroversyby Buot et
al. mustbeincorrect,sinceit doesnot matchobsenrations(oscillationsthroughouthepla-
teau). Furthervadence aginst the claim of Buot et al. isvgin in Section 8.4.3.
SincethetransientWFM simulationsin Section8.3 werenominallyidenticalto those
of JB, it is instructve to determinewhy JB found the PDR region of the plateauto be
unstable The mostimportancedifferencebetweerthe transientWFM simulationsin this
work andthat of JB wastheir useof an “accelerateccorvergencetechnique”.The idea
behindthis techniqguewasthatif the potentialprofile is not updatedat a giventime step,a
much less expensve (non-self-consistentyVigner function updatecomputationcan be
used.The acceleratecdconvergencetechniquethereforeallowed the potentialto remain
fixedfor upto 50time stepg(i.e., 50 fs) betweerupdatesilt is not difficult to seehow this
might produceoscillationsin a region of operationwhich is mamginally stable.However,
JB apparentlyrecognizedthis problem, and switchedto the “natural time-evolution
approach’(potentialupdatedat eachtime step)in the plateau.Therefore the mostlikely
causeof theirincorrectconclusioraboutplateaustability is thatonly 1600time stepdi.e.,
1600fs) wereallowed per bias point.7 Indeed,from the instantaneouswitching simula-
tions of the JB RTD describedn Chapter6 and[55], the oscillationsdecayedso slowly
afterinstantaneouswitchingin the PDR region of the plateauthatthe RTD did not con-
vergeto steady-staten 1600fs at any biaspointin this region of operation.Corvergence
timesfor instantaneouswitchingrangedfrom over 7500fs at 0.26V down to justunder
2000fs at 0.31V. Thus,terminatingthe transientsimulationprematurelyin the PDR por-
tion of the plateaucausedIB to incorrectly concludethat the RTD was unstablein this

7. Bias pointsin JB’s plateausimulationswere 0.01V apart,with instantaneousias switching
between.
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region of the plateau.

Giventheroot causeof JB’s simulationerror, a few relatedpointsareworth mention-
ing. TransientWFM simulationsareinherentlyCPU intensve, asthey seekto follow the
exactevolution of the quantumdevice beinginvestigated.Eachtime step(typically 1 fs)
requiresthe solution of a huge systemof equationsgassuming‘natural”, or physically-
basedtime evolutionis used) As aresult,boththeacceleratedorvergencetechniqueand
the limitation on time stepsby JB werea practicalresponseo the limited andexpensve
computerresourcesequired.True instability in the NDR region of the plateaumay have
resultedin reducedvigilance in the remainderof the plateau,especiallywhen a fully
unstableplateauwas expected,basedon experimentalobsenations.Indeed,mary Cray
C90supercompute€PU hourswereusedin thetransienfWFM simulationsof Chapteré
to verify that the PDR portion of the plateaasyin &ct, stable.

In theabove discussionthe high computationatostof transienWFM simulationshas
becomean issueonceagain. As discussedn Chapter6, for maximumeffect, a WFM
investication shouldmalke useof the complementaradwantagef both steady-statand
transientsimulationswhereappropriateln particular (efficient) steady-statsimulations
are appropriatefor wide-ranginginitial investigations(e.g.,to tracethe I-V curwe or to
determinethe effects of varying simulation parameters)Theseresultswill provide the
insightnecessaryo narrav the focusof a moredetailed(andexpensve) transientinvesti-
gation to thosecaseswhere dynamiceffects are inherent(e.g., switching) or suspected
(e.g.,oscillations).In this way, the basicoperationof the device is known, andadequate
computeresourcesanbe appliedto afew critical transientsimulations without making
significantcompromisesn implementatioror execution.In this case,notethat although
thetransientl-V tracefor the JB RTD requiredroughly 100 timesasmuchCPUtime as
the steady-statérace,the two I-V curveswere almostidentical, even thoughsignificant
dynamicandbistableeffectsoccurredin the NDR region. This confirmsthe reliability of
thesteady-stat®/FM for investigatingthe basic(i.e., non-transientpperationof quantum
devices,without diminishingtheimportanceof properlyconductedransientWFM simu-
lations, when necessary

As anotherexample,transientWFM simulationsare not generallyrequired,as Buot
andRajagopatlaim [59], to tracel-V curvessimply becausef bistabletransitionpoints.
This is a strongclaim to make without first determiningthe capabilitiesof steady-state
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WFM simulations.Although only transientsimulationscan shav the transitionprocess
this procesds generallynot shavn in anl-V plot. The simulationsof the JB RTD in this
chaptehave demonstratethata properlyimplementedteady-stat®/FM simulation(see
Chapter 6 for self-consistenc implementationchallengesand solutions) can locate
bistabletransitionpointsaccuratelywhentheinitial operatingpointis stable.Finally, even
thoughonly transientsimulationscanmodelthe “exact” evolution of a device, andevenif

computeresourcesvereinfinite andinfinitely fast,steady-statsimulationscanstill pro-
vide informationthat a transientsimulationcannot: the (unstable)equilibrium operating
pointin anunstableregion of operation.The significanceof suchknowvledgewasdemon-
stratedin the determinationin Section8.1 thatthe I-V plateauis largely not a dynamic
phenomenomndin the discovery andanalysisin Section8.3 of anactualdynamicbista-
bility and hysteresis loop in the JBT®.

8.4.2 Equivalent Circuit Analysis

One main investigative thrust basedon the JB simulationswas an extensve RTD
equvalent circuit analysisby Buot et al. [6-9] and Woolard et al. [10, 11] (hereafter
referredto as BW). The determinationin Section8.2 that the plateauis a steady-state
effect will requiresomeof this work to be substantiallyrevised, at leastin relationto the
JB RTD. Basedon the initial conclusionby JB that experimentally-obsemd plateau
effectsandthe JB simulatedplateauwere one andthe same BW drew further analogies
with analysisof RTD measurement3.hey assumedhat, asin the experimentalcase the
plateauwwasnotthe“real” I-V curve, but wasa purely dynamiceffect: thetime-arerageof
anoscillatingcurrent.They assumedhattheintrinsicl-V curve followedthe simpleRTD
behaior describedn Section8.2. Their equivalentcircuit analysiswork thuscenteredn
trying to producethe JB transientsimulationresultsby addingcircuit elementgo a bias-
dependentonductancé&(V) which gave thelineardropl-V curve (seeFigure8.2).Both
the series-inductance model and parallel-inductance model in Figure 8.1 were considered.

Giventheinitial assumptiorthatthe JB RTD wasbehaing like experimentalRTDs,
BW followed a very reasonablequialentcircuit analysis.They useda seriesresistance
R, to shift the lineardrop (i.e., non-self-consistent)V curve out to the “normal” RTD
behaior without plateaueffects (the dashedcurve andlower curve in Figure 8.2). The
intrinsic capacitanceC andan inductancel dueto a quantumwell chaging delay [5]
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were proposedo causethe oscillationsin the NDR region8 The time-averageof these
oscillationswasexpectedo producethe plateau.The mainchallengevasto achiese a pla-
teauwith positive slopein anoscillatingRTD. Admittedly, RLC circuitshave beenshavn

to produceall of the simulatedeffects(oscillationsthroughouta positive-slopeplateauand
hysteresisvith the down-trace),aswe discussedn Section8.1. However, BW werecon-
strainedto usecircuit elementswhich correspondedo the JB simulationresults,a con-
straint which previous circuit analysesdid not have. Several attemptswere made to

explainthe positive slopeandunstableplateauwhich explanationgelied on eithera com-
plicatedinteractionof effects[9] or acomplicatecequialentcircuit with unspecifiechon-
linearelementq10, 11]. SinceBW’s initial assumptioraboutthe correctsteady-statéV

curve was incorrect, these attempts were not completely successful.

Section8.2 shavedthatin the JB RTD simulationsthe lower curve hasnothingto do
with plateauoperation sothe “normal” I-V curve cannot be usedin a circuit elementto
analyzeplateauwperationindeedthe plateaus not purelya dynamiceffect(i.e., theaver-
ageof oscillations) but is afundamentapartof the equilibriumI-V curve (thesolid curve
in Figure8.2).Of coursethetrueequilibriumI-V curve mustbeusedasthe startingpoint
for equialent circuit analysis.The simplestDC equvalent circuit model for this RTD
consistof avariableconductancé&y~(V) which produceshis |-V curvein parallelwith
the RTD’s DC capacitance&-(V), asshavn in Figure8.16.The DC capacitanceersus
biascanbe computedasthedisplacedchage,Q(V), divided by theappliedbias.In Figure
8.16, the positive displacedcollector chage is usedfor Q, since the negative “plate”
includesthreecomponentsn differentlocations:quantumwell, emitter andemittercon-
tact (see Figure 8.8).

Theremaindeof this sectionis outlinedasfollows. First, startingwith the DC equia-
lent circuit modelin Figure8.16,the elementf thetransientequivalentcircuit modelsin
in Section8.1 are describedin more detail. Then equivalent circuit analysisis usedto
explain why the NDR portion of the plateaudisplayssustainedoscillations,while the
NDR portion of the lower curve doesnot. Basedon this analysis,someobsenationsand
conclusionsare madeconcerningthe correcttransientequivalentcircuit modelfrom the
candidatesn Figure8.1. Finally, a slightly modified equialentcircuit modelfor the JB

8. SeeSections8.2 and8.3 for a moredetaileddescriptionof how self-consisteng createsa feed-
back mechanism that produces oscillations in the DB.R
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RTD is made based on the analysis of the operation of TiisiRRthe preious sections.
To begin this equialentcircuit analysisof the JB RTD transientl-V curwe trace,the
origins of the four transientmodel circuit elementsfor the two RTD equwalent circuit
modelsin Figure8.1will be describedn moredetail. ExtendingFigure8.16,the equilib-
rium I-V curve V(1) is now acrossthe seriescombinationof R, andG(V). Therefore,
G(V) is computed from theyipothetical I-V cure
V() = Vpe() IR, (8.3)
which essentiallyskews the equilibrium I-V curve towards lower voltages.The series
resistanceR, andinductancel areoften attributedto externalcausesbut sinceintrinsic
device simulationsdo notincludeary externaleffects,R; andL musthave internalcauses
in this work. For simplicity andcomparisorto thework of BuotandJenserj6], afixed R
is usedhere.As mentionedabore, inductancel is usuallyattributedto thedelayin current
asthe QWS chagesatfter an appliedbias changeacrossthe DBS [9, 48, 49]. However,
evenwhenthequantumwell chageis negligible, enforcingself-consistencautomatically
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Figure 8.16: DC equivalent circuit for simulated RTD

Thebias-dependentsistancés basedon theequilibriumI-V curve, andthebias-

dependentapacitancés the equilibriumdisplacedcollectorchage divided by the
applied bias.



248 Chapter 8. RTD Device Physics Investigation

resultsin anLC “ringing” effect, asthe device oscillatesarounda new equilibriumaftera
quick biaschangeFinally, C is thedynamiccapacitancef the RTD, whichis, in general,
not equal to the DC capacitance, as discussed by Buot and Jensen [6].
Evenbeforechoosingspecificvaluesfor, R, L, andC, stability criteriawill allow the
correctcircuit model(parallelor seriesnductance}o beidentified,basedn circuit stabil-
ity agumentslin generalWoolardet al. [11] notedthattwo enegy storageelementgin
this caseL andC) arerequiredfor circuit oscillationsof ary kind. Self-oscillationsunder
DC biasfurtherrequireanelementexhibiting NDR, while R, senesto damposcillations.
One condition gien by Buot and Jensen [6] for sustained oscillation of each circuit is:
Series-inductanc&®,C < L|G/, (8.4)

Parallel-inductanceR,.C > L|G|. (8.5)

As statedin Section8.3, notethata negative differentialresistances is requiredto make
either RTD circuit modelin Figure 8.1 unstable(i.e., to initiate osciallationsat a given
operating point?.

Now considerthedifferencen stability of thetwo NDR regionsof thel-V curve from
anequvalentcircuit viewpoint.10 Thedeterminatiorof the correctRTD equialentcircuit
hingesonthefactthatbothL and|G| (thelocal slopeof thel-V curwe) aresmallerin the
lower NDR region. It is clearfrom Figure 8.2 thatthe slopeof thel-V curwe is greaterat
the beginning of the plateauthanin thelower NDR region, so |G| is certainlysmallerin
thelower NDR region. Two independenargumentsalsoshav thattheinductancel in the
lower NDR regionis smaller First, Section8.3foundthatthe essentiatlifferencebetween
the plateauand lower I-V curwe is that quantumwell chage is nggligible in the lower
curve, effectively eliminatingtheinductive delaydueto quantumwell chaging. Secondit
is apparenthatthe remaininginductancedueto self-consisteng (i.e., the self-consistent
interplayof chage densityandenegy bands)s significantlysmaller basedon oscillation
frequeng, which generallyincreasesvith decreasingnductanceln the NDR portion of
the plateauthe (sustainedpscillationfrequeng is about2.5 THz, while outsidethe pla-
teauthe (damped)oscillationfrequeng is roughly 10 THz. With both L and |G| smaller
in thelower NDR region, (8.4) would tendto becomanvalid (no oscillations) while (8.5)

9. However, if the circuit is alreadyoscillating,it may continueto do so near an NDR region if
externalcircuit elementsallow the appliedbiasacrossG(V) to bein the NDR region over at least
part of the oscillationycle.

10. The plgsics of this behaor was described in Section 8.3.
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would be more strongly satisfied(oscillationswould occur). Since oscillationsdo not
occurin thelower NDR region, (8.4) andthe series-inductancBTD circuit modelmustbe
correctin this case.This resultis contraryto thatof Buot andJenserj6], who concluded
that the parallel-inductance modehsvcorrect.

Having chosenan RTD circuit model,the taskreturnsto choosingreasonablequva-
lent circuit elements Admittedly; it is perhapdutile to attemptto accuratelymodelthe
complex physics occurringin the JB RTD (as seenin the transientWFM simulations)
using a simple lumped-parameteequialent circuit. However, the grossfeaturesof the
WFM simulationsare not too difficult to reproduceln contrastto the rathercomplicated
circuit elementsproposedoy Woolard et al. [10, 11], a simple series-inductanceircuit
modelwith constantR;, L, andC will producethe basicbehaior predictedby the tran-
sientWFM simulations Circuit simulationsusingHSPICEandthe RTD equialentcircuit
modelshowvn in Figure8.17 wereusedto demonstratéhis. The device areawasassumed
to be 1 pm?, to keepcurrentsin the reasonableangeof a few milliamps. Thesecircuit
simulationsalso usedC = 5 fF (the approximateaverageDC capacitanceseeFigure
8.16),while R; =5 Q andL = 600fH werechosento approximatelymatchcircuit and
WFM simulations(especiallyoscillationfrequeny andamplitude,andthe width of RTD
instability). The NDR elementG(V) wascomputeddirectly from the DC I-V curve using
(8.3), sothe DC I-V curwe tracewas exactly as simulatedby the WFM. The transition
from highto low currentwasaccomplishedby switchingoneG(V) elemenutandsimul-
taneouslyswitchingthe otherin at the correctbias(0.314V on the up-trace;0.254V on
the davn-trace).

A completetransient-V up-trace(usingcontinuousbiasslewing at 10 mV/ps)for the
circuit in Figure8.17is showvn in Figure8.18.Note thatonly the NDR region of the pla-
teauis unstable asexpected Figure8.19 shavs moredetailedsimulationsof this simple
RTD circuit model (Figure 8.17)in the unstableregion, including transientbias slewing
(at1 mV/ps)in bothdirections.Note the dynamicbistability in bothdirections,dueto the
factthatoscillationsstartedaterin onedirectionthanthey endedin the other, for reasons
discussedn Section8.3. It wasunnecessarto changethe inductanceo keepthe circuit
from oscillatingin the lower NDR region - the decreasen negative differentialconduc-
tance vas suficient.

Simulationsof the parallel-inductanceircuit (createdoy connectingC asshavn by
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Figure 8.17: RTD equivalent circuit used in HSPICE simulations

RTD series-inductancequialentcircuit modelusedin HSPICEsimulations.The
device areais takenas1 pm?. The averageDC capacitancevasusedfor C, while
Rs andL werechoserto approximatelymatchcircuit simulationsto WFM simula-
tions (frequeng andbiasrangeof oscillations).S, and Sy switch in and out the
two I-V curves (upperandlower) at the properappliedbias (0.314V on the up-
trace;0.254V onthedown-trace).Oneswitchclosesasthe otheropensTheparal-
lel-inductancemodelusedby JB is formedby simply moving the capacitortermi-
nal to the other side of the indugtas shan by the dashed line.

the dashed-linen Figure 8.17) were also attempted Although DC simulationsgave the
correctl-V curwe, transientHSPICEsimulationswere unableto corvergein eitherNDR
region. As aresult,it wasnot possibleto meaningfullyinvesticatethe behaior of the par-
allel-inductancenodel.Returningto the series-inductancenodel,a moreelaborateequi-
alent circuit model could be developedin an attemptto more accuratelymatch WFM
simulationsof theJB RTD. However, asdiscussedh thenext sectionthis effort is perhaps
not worthwhile, sincethe WFM simulationresultsthemseles may be substantiallyinac-

curate.

8.4.3 Simulation Accuracy

This chapterhasshavn that the connectionis merely visceralbetweenthe transient
Wigner function simulationsof the JB RTD andexperimentalRTD measurementshow-
ing oscillationsresultingin a plateaun the NDR region of operation Further these/WFM
simulationresultsseemquite suspiciousconsideringhatthe effectspredictedn the RTD
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Figure 8.18: HSPICE simulated I-V curve trace

Transientl-V curve (continuousbias slewving at 10 mV/ps) for the series-induc-
tanceRTD circuit modelshowvn in Figure8.17.0nly the NDR portion of the pla-
teauis unstable Elsevhere,the transientl-V curve follows the DC I-V curve. At
the bistabletransition, switching from the high to low curve causesa brief and
highly damped oscillation.

simulationshave apparentlynot beenobsenred experimentally In particular in the main
currentpeakwhereintrinsic bistability dueto chage storagan the quantumwell mightbe
expectedexperimentally the JB RTD insteadshaved a hysteresidoop dueto unstable
oscillations. And in the NDR region whereexperimentakesultsoftenshov anl-V plateau
and hysteresisdue to unstableoscillations,the JB RTD simulationsinsteadpredicteda
plateawdueto a potentialdepressiomnddiscreteenegy statein theemitter andhysteresis
due to intrinsic bistability

The questionconsideredn this sectionis whetherthe effectspredictedby the Wigner
function simulationsshouldoccurin measurementsf the JB RTD, or whetherthey are
simply artifactsof inaccuratesimulationsIf theeffectsarereal,thenthey canundoubtedly
beusedin quantumfunctionaldevices.If they arenot, thenmoreattentionshouldbe paid
in the future to improving and verifying the accurag of WFM simulationresults.This
sectionattemptsto asseghe accurag andreliability of the foregoing WFM simulation
resultsby executingmore accurate(and correspondinglymore expensve) Wigner func-
tion simulations.The determinatiorwill hingeonwhetherandto whatdegreethesesimu-
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Figure 8.19: Detail of HSPICE I-V curve shaving dynamic bistability

Transient-V curve (continuousbiassleving at 1 mV/ps)for the series-inductance
RTD circuit modelshowvn in Figure8.17.The unstableportion of thel-V curweis
detailed,including both the up-traceand down-trace.In eachtrace, oscillations
startedlater thanthey endedon the oppositetrace,resultingin dynamicbistabili-
ties. Themaximumandminimumof theoscillationsfor bothtraceswvereabout8.1
mA and 2.5 mA, respectrely. The oscillationfrequeny was 2.5 THz, asin the
WFM simulations.

lation results diier from the preious ones.

The most olbvious possiblesourceof inaccurag of the WFM simulationsabove is
indicatedby the high electricfield at the emittercontactduring plateauoperation A high
e-field at a contactindicates(in additionto a chaged contact)that the simulationresults
will not beindependenof the simulationregion boundarylocation. To accuratelymodel
experimentaldeviceswhich arewider, a wider simulationwidth shouldbe used.Evenfor
RTDs which are this narrav, non-equilibriumboundaryconditions(e.qg., drifted Fermi-
Dirac) boundaryconditions[61] shouldbe usedto improve simulationaccurag. Most
experimentalRTDs are mary timesthe 55 nm simulationwidth usedby JB andin this
work, sothe previous simulationresultsmay saylittle aboutthe operationof mostexperi-
mental RTDs. In particular sincethe emitter contacte-field was significantfor plateau
operation the interestingphysics (which all occurredin the plateau)could be entirely a
resultof choosingtoo smallof simulationwidth. To determinethis, steady-statandtran-
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sientWFM simulationswere run with a wider emitterto determinethe effect of emitter
width on simulatedRTD operation.To prevent ary effect from position grid spacing
changesthe grid spacingwas maintainedby simply increasingthe numberof position
points in the simulation.

In short,the emitterwidth did indeedhave a significantinfluenceon the |-V plateau.
For example,Figure8.20shaws the equilibrium -V curve for a 63 nm emitterlayer The
narrav (19 nm) emitterl-V curve is shavn for comparisonClearly, usinga narrav emit-
ter forcesthe RTD into plateauoperationat lower biasesandmoreabruptly andprolongs
plateawperationto higherbiasesascomparedo thewide emitterRTD. Neverthelessthe
I-V plateaustill occursin thewide emitterRTD. Examinationof othersimulationresults
shaved that the plateauis causedn the samemanney anddisplaysall of the samefea-
tures,asin the narrav emitter RTD. Figure 8.21 shaws the enegy bandprofile for the
wide emitterRTD operatingn theplateauat0.28V. Notethattheemittercontacte-fieldis
small, as intended.This indicatesthat the formation of an emitter depressiorand the
resultingl-V plateauare not simply the result of inaccurateboundaryconditionsin the
narrov emitter R'D simulations.

The wide-emitterRTD alsoself-oscillatesn the plateau.For example,at 0.27V, the
final oscillation amplitudewas almost10° A/lcm? aroundan averagevalue of 4.4x1®
Alcm?, andat a frequeng of just under2.5 THz. Otherwide-emittersimulationsshaved
thattheeffect of emitterwidth changesvasminimal, evenin plateauoperationfor emitter
widths above about50 nm (versusl9 nmin our previous simulations not includingthe 3
nm buffer layer).As expected the emitterwidth madelittle differencefor RTD operation
outsidethel-V plateausincethe emittercontacte-fieldwaslow here,evenin the narrov-
emitterRTD. For the samereasonjncreasinghe collectorwidth madenggligible differ-
ence in the equilibrium 1-V cuevunder ay conditions.

Figure 8.20 also shaws that hysteresisand bistability still occurin the wide emitter
RTD, but notethat the hysteresisno longerhasthe visceralconnectionto the plateauof
experimental-V tracesln particular the up-tracetransitionpoint no longeroccurswhere
the lower |-V curve returnsto PDR, in contrastto experiments Also the transitionfrom
lower to uppertraceis direct,sinceit occursatbiasedelow the plateauln fact,exceptfor
thesmallplateauthehysteresisiow appearsnuchmorelik e experimentabbsenationsof
intrinsic bistability, wherethe hysteresidoop appearsn themain |-V peak.This suggests
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Figure 8.20: Steady-state |-V cuwe for wide-emitter RTD

Wide (63 nm) emitter equilibrium I-V curve. The narrov (19 nm) emitter I-V
curve is shavn for comparisonUsing a narrav emitter causeshe RTD to begin
plateauoperationat lower biasesand more abruptly and prolongsit to higher
biases thanthe wide emitter RTD. However, the I-V plateaustill occursin the
wide emitterRTD, andis causedn thesamemannerasin thenarrav emitterRTD.

thatfurtherimprovementsn the accurag of the simulationmay remove the plateau(and
the associate@mitter depressiorand oscillations)entirely. This would bring the WFM
simulationresultsinto parity with experimentakesults:hysteresisiueto intrinsic bistabil-
ity appear@sanl-V loopin themaincurrentpeak,andary plateauwwould bedueto exter-
nally-induced oscillations. The WFM simulations would then support the existing
consensus in thesélR operation contneersies, as discussed in Section 8.1.
Oneotherobvious sourceof concernrelatingto the accurag of WFM simulationsis
the needto usea relatvely smallnumberN, of wavenumbemrid points.As reportedby
Frenslg [50], memoryusagan WFM simulationss proportionalto NXNﬁ, andcomputa-
tion increasesvith NXNi, whereN, is thenumberof positionpoints.Thus,while transfer
matrix methodsimulationstypically usethousandsf enegy values,it is very costly to
use even 100 wavenumberpointsin WFM simulations.However, as computingpower
increasesit will befeasibleto refinethe enegy (wavenumberspectrunmof WFM simula-
tions, even with the inherentlycostly transientsimulations.Someambitioussteady-state
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Figure 8.21: Energy band profile for wide emitter RTD in plateau

Wide emitter enegy band profile during plateauoperationat 0.28 V. Also indi-
catedarethe positionsof the DES and QWS (found using transfermatrix analy-
sis).Note thatthe emittercontacte-fieldis small,asintended.This shawvs thatthe
formationof anemitterdepressiorandtheresultingl-V plateauvarenotsimply the
result of inaccurate boundary conditions in the nammitter R'D simulations.

simulationshave beenreportedby Gullapalli et al. [62] usingN, = 200 andN, = 144.
However, the JB RTD hasnotbeeninvestigatedin this muchdetail,andno transienWFM
simulationsapproachinghis magnitudehave beenreportedto date.Suchlarge simula-
tions remainin the future of WFM researchA final andlessobvious reasorthatthe JB
andsimilar WFM simulationsmaybeinaccuratevasdiscussedh Section5.5.7:the possi-
bility that the standard implementation of the discrete WFTE may be inaccurate.
Basedon the wide emitter simulationresults,it appearghat much of the interesting
behaior of the JB RTD may be an artifactof inaccurate NFM simulations.The obvious
guestionis whetherthis would renderworthlessthe resultsof previoussectionsaswell as
work by otherresearcherbasedon the JB simulations.Theanswerassereral parts.The
firstis thattheseWFM simulationswerevery usefulin the studyof WFM simulation.In
fact,moreis usuallylearnedfrom imperfectionthanfrom perfection.Of coursejn recog-
nizing the WFM simulationerrorsusinghindsight,thereis no intentionto suggesthatJB
shouldhave useddifferent simulationparameter®r device size, sincethey were at the

limits of available computingpower with their pioneeringwork. JB producedthe first
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credibletransientWFM simulationsincluding both self-consisteng and scattering.Fur-
ther, previous sectionsgave an analysisof the JB simulationresults,not experimental
results,soin this sensethe simulationparametersvere necessaryandthe analysiswas
entirely accurate.

The secondpart of the questionof whethersimulationsof the JB RTD to datehave
beenworth while focusesn thenarravestimplicationsof thesesimulations whetherthey
producedanaccuratedescriptionof the operationof the JB RTD itself. While mostof the
I-V curweis qualitatively correct,the NDR portion,in which mostof theinteresting‘phys-
ics” occurredandaroundwhich mostsubsequentvestigationsfocusedwasincorrectto
some dgree. In this sense, the simulation resulissiHzeen sonvehat misleading.

However, thethird partof the questions whetherthesenvestigationshave beenworth
while for the study of quantumdevicesin general.Herethe answeris yes.The JB RTD
may not exhibit theseinterestingbehaviors experimentally but a similar device which did
have a potentialdepressiorn the emitterwould. Indeed experimentaRTD measurements
shawving effects dueto emitter potentialwells and resultingdiscreteemitter stateshave
beenclaimedor demonstratedi26, 30, 42, 63], althoughthe structuresare usually spe-
cially designedor theseresults,unlike thevery corventionalJB RTD. All of thephenom-
enadescribedquantumandotherwise jncluding tunneling,interferencescattering self-
consisteny, carrier transport,etc.) were self-consistentand thus reasonablydescribea
guantumsystemtot he accurag ofthe model. Thereforemost of the analysisof the JB
simulations(in this work andin that of others)remainsrelevant to the investigation of
guantum deices in general, although not all of it is nedat to the JB IRD specifically

Thediscussiorof this sectionshavs thatevenaftermorethana decadeof active devel-
opment,producingaccurateWWFM simulationsis still very difficult. More caremustbe
takenin thefutureto checkthe accurag of WFM simulationresultsbeforeusingthemto
drawv conclusionsaboutexperimentalobsenations.Due to this difficulty, it is not surpris-
ing that,in asunwey of over 40 papersdy numerougroups(includingour own) describing
Wigner function simulationsof RTDs, only a single paper[64] shaved experimentall-V
measurementsf the samedevice. The reasonfor the quantitatve disconnectbetween
experimentand Wigner function simulationis simply that the typically large disparity
betweertheresults whetherdueto inaccuratesimulationsor poordevice quality, hasgen-
erally made such comparisonsuseless.However, qualitatve agreementcontinuesto
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improve greatly As a result, Wigner function simulationis alreadya usefultool for the
investication of quantumdevices, asthis chapterhasdemonstratedn general,dynamic
carriertransport scattering self-consisteng quantumconfinementandopenboundaries
areall importantfeaturesf real RTDs andotherquantumdevices,andthe WFM cando a
goodjob modelingthese n fact,all of theseeffectswerein play in the simulatedplateau

operation of the JBRD.

8.4.4 RTD Physics Controversies

Beforeconcludingthe RTD operationcontroversiesthatstartedthis work will now be
consideredn light of theforegoing simulationsananalysis.The wide-emittersimulations
in the previous sectionhave changedsomeof the conclusionsegardingtheseissuesUntil
that point, it appearedhat neitherof the two main explanationsfor the plateau extrinsic
oscillationsor intrinsic bistability, were correct.Instead,a third possibility describedn
Section8.1, currentflow througha discreteemitterstate wasshavn to be the causeof the
I-V plateauBasedon the moreaccuratesimulationsandlack of experimentalcorrobora-
tion, the plateaumay eventually be shavn to be an artifact of inaccurateWFM simula-
tions. Thus, the consensugxplanationof the plateau,extrinsically-inducedoscillations,
hasnot beenwealenedby JB RTD simulations,contraryto previous claims. Therelated
controversy concerningthe origin of obsered oscillationsin the |-V plateauis resolhed
similarly (asfar asthe JB RTD simulationsare concerned)without anintrinsic plateau,
RTD oscillations must bexérinsically-induced, rather than purely intrinsic.

Althoughthe simulatedoperationof the JB RTD in the plateaudoesinvolve two cur-
rentpaths,oneof which requiresscatteringSection8.2 concludedhattheseWFM simu-
lations can not speakto the resonant-grsus-sequentidlnnelingcontrosersy However,
thesesimulationsdo have repercussiongor the othertwo RTD operationcontroversies
discussedThefirst concernedhe correctRTD equialentcircuit model. The conclusion
in Section8.4.2wasthat the consensusiew was again supportedthatthe series-induc-
tancemodelis correctfor the JB RTD. Notethattheseresultswerebasedon the behavior
of theJBRTD in thel-V plateault is unclearwhich circuit modelwould be supportedf
the plateaudoesnot occurin moreaccuratéVFM simulations.Thefinal controversydis-
cussedwas whetherand how RTDs demonstratantrinsic bistability. Once again, more
accurate(i.e., wide-emitter) WFM simulationsindicatedthat the consensuss correct:
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intrinsic bistability manifestsasa hysteresidoop in themainl-V peak,notasa hysteresis
loop in the NDR rgion, as shwn in prezious JB R'D simulations.

8.5 Summary

This chapterhasrevisited the very intriguing transientwWigner function methodsimu-
lationsof aresonantunnelingdiodepublishedabout5 yearsagoby JenserandBuot. The
advancemenbf available computingpower in the interim madeit possiblefor this more
detailedyet more comprehensk investigation of the JB RTD. The simulationresultsin
this chapterdiffer from thoseof JB on somekey points.First, steady-stat&/FM simula-
tionsshavedthatthel-V curve plateauwhichwaspreviously ascribedo dynamiceffects,
is actuallyan equilibrium phenomenonDetailedanalysisof both WFM andTMM simu-
lation resultsrevealedthe origin of the plateauandrelatedeffects.In short,duringplateau
operationtwo parallelcurrentpathsare operating.Along the first currentpath, electrons
scatterinto a discretequantumstatein a potentialdepressiornhatdevelopsin the emitter
andthentunnelthroughthe resonantstatein the quantumwell. Becauseof the emitter
depressionthe heightof the tunnelbarriersis greatlyreducedor electronsvhich do not
scatterinto the depressionThe secondcurrent path is due to electronswhich tunnel
directly throughthe lowereddoublebarrierstructure lt is this secondcurrentpaththatis
responsibldor the positive slopeof the plateauin thesesimulations,a featurewhich has
been the focus of some speculation and analysis for both th€[RmRI similar deices.

TransientWignerfunctionsimulationsof the JB RTD in this work alsodifferedin sev-
eral respectswith previous results.First, the |-V plateauwas shavn to be only partly
unstablewhile previousresultsconcludedhatit wasunstablehroughoutln fact,because
the plateauwas an equilibrium feature,only the NDR portion of the plateaucould be
unstable,while the PDR portion (the majority) must ultimately be stable. Previous
description®of the causeof the plateauoscillationswerelargely confirmed:self-consistent
interactionof the chagein theemitterandquantumwell, resultingin out-of-phasescilla-
tionsof thesechages.Onenew discorery wasthata discreteenegy statein the emitteris
requiredto producethe oscillationsandthe abruptterminationof the plateau.lt wasthe
oscillationin alignmentof the discretestatesn the emitterandquantumwell that modu-
lated the current.Finally, the discorery was madeof a secondalbeit smaller hysteresis
loop below themaincurrentpeakonthel-V curve. While the mainhysteresidoop (below
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theplateau)s notadynamicbistability, contraryto previousconclusionsthis seconcdhys-
teresisloop is dynamic, since only the transientsimulations(with oscillating current)
shaved this feature.

The main differencebetweenthis work and previous work of JB wasthe respectie
conclusionsaboutthe stability of the plateau.The probablereasorfor the errorby JB was
foundto beinadequatedterationsof thetransientsimulation,sothatthe RTD did not have
time to reachsteady-stategndthusappearedo be unstableThisincorrectconclusiornwas
very attractve, sinceit matchedperfectly the symptomsof experimentally-obserd I-V
plateaus Given the high computationakostof WFM simulationsthe bestway to avoid
sucherrorsis to usethe complimentaryadvantageof both steady-statandtransientsim-
ulationsfor besteffect. In the simulationsdescribedhere,steady-statsimulationresults
uncovered the physics behind the plateau,while transientsimulationswere neededto
detall its stability characteristics.

The appropriateequivalentcircuit modelfor the JB RTD wasalsoinvestigated.Only
the series-inductanceircuit modelcould matchthe behaior of the JB RTD in the NDR
region of operation By contrastprevious analysisof JB RTD simulationshadconcluded
thata parallel-inductancenodelwascorrect.Basedon the determinatiorthatthe plateau
is anequilibrium effect, andthatit is only unstablein the NDR portion, the valuesof the
circuit elementsnecessaryo reproducethe essentiafeaturesof the transientl-V curve
traceweresignificantlysimplifiedcomparedo previousanalysis A slightly moredetailed
equialent circuit model was also proposedwhich explicitly includedthe two current
paths disceered in the steady-state simulations.

This work concludedthat the simulatedbehaior of the JB RTD, althoughviscerally
similar to experimentalresults,wasof a fundamentallydifferentorigin. In particular the
NDR region effectsseenin theseWFM simulationswerecausedy a potentialdepression
in the emitter ratherthanhigh-frequeng oscillations.Sincethe emitterdepressions not
seenexperimentallyin simpleRTDs suchasthatinvestigatedherein,theaccurag of these
WFM simulationswas called into question.Three possiblesourcesfor this inaccurag
wereidentified: the simulatedRTD was narraver thanexperimentaldevices,resultingin
suspiciousboundaryconditions; too few wavenumberpoints were usedto accurately
resole phenomenan the enegy dimension;andthe implementatiorof the WFM (used

by all researchert date)may be inaccurateAll of thesepotentialsourcesof inaccurayg
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reflectanattemptto mitigatetheinherentlyhigh costof WFM simulations.The latter two
itemsremainto beinvesticgatedin futurework. However, simulationsusinga wide emitter
layerwith the JB RTD weredescribedThis wasintendedio make the equilibriumbound-
ary conditionsmore self-consistenfi.e., have a low e-field at the contact).This brought
the RTD simulationsn muchcloseragreementvith experiment For example theequilib-
rium plateau(not seenin experiment)nearlydisappearedSimilarly, the intrinsic bistabil-
ity loop thenappearedhearlyasit doesexperimentally- asa bistability loop beneattthe
main current peak.

In spiteof theremaininginnacuraciesn Wignerfunctionsimulationsthis chapterhas
demonstratethatthe WFM canproduceandself-consistentlynodelall of thephenomena
that occurin real quantumdevices. Theseinclude dynamiccarrier transport,scattering,
self-consisteng quantumconfinementtunneling,and openboundariesNo otherquan-
tum device simulationmethodyet devisedhasshawn this rangeof capabilities.Unfortu-
nately this work alsodemonstratethatalthoughWFM simulationof RTDs hasadwanced
swiftly over the pastdecadeijt is still experiencinggrowing painsasthe amountof com-
puting resourcesequiredto produceaccurateresultswith it becomesapparentClearly,
researchergourselesincluded)needto make morecertainin the future thattheir WFM
simulationsaccuratelymodelreal systemseforedraving conclusionsaboutthe physics
or operationof real systemsHowever, notethat the wide-emittersimulationssupported,
either implicitly or explicitly, each of the fairly well establishedconsensusviews
(describedatthe beginning of the chapter)onthe RTD operationcontroversiesjn contrast
to previous work. By this measurealone,this work andthis quantumdevice simulation
tool have madea significantcontribution to advancingthe accurag of quantumdevice
analysis through simulation.
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Chapter 9

Conclusion

This chaptersummarizeshe contentsof this dissertation(Section9.1), lists the spe-
cific contributionsof thiswork to thefield of quantumdevice simulation(Section9.2),and
makesrecommendation®r futurework in thisfield (Section9.3).Finally, alist of recom-
mendedechniquess givenfor the successfuandefficient developmentof large software
projects such as SGADS (Section 9.4).

9.1 Summary

As cornventionalelectronicdevicesshrinkandtheir enegy dissipationdecreaseghese
devicesarebeincreasinglyantagonizedy quantumeffects.Whentheseeffectsno longer
permitfurtherscalingof corventionalelectronicdeviceswhile maintainingreliableopera-
tion, the only solutionwill beto usequantumeffectsto controlthe operationof electronic
devices. Quantumelectronicsis the conceptof producinguseful computing(analogor
digital signalprocessingyvith quantumdevices.If it achievesits goals,quantumelectron-
ics will producenot only quantumscaledevices, but also integration levels, computing
efficiencies,and systemfunctionality well beyond that of ULSI. Of the three possible
approachegconceptual,computational,experimental)to pursuingquantumelectronics
researchthis work took the computationalapproachand this dissertationdescribedan
effort to developa numericalsimulationtool calledSQUADS for modelingquantumelec-
tronic devices. This approachleveragesthe advancing power of computersto provide
more eficient investigation than eperiment, and more detail than theory
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To determinethe quantumdevice characteristicthat SQUADS musthandle,it was
necessaryo have a conceptualinderstandingf quantumelectronicsfrom relevantquan-
tum phenomenato complete quantum computing systemsand likely computation
approachesAt the smallestscale,the optical analogyto quantumwave systemsmplies
thatthe phenomenastructuresanddevice functionsof quantumelectronicsat the small-
estscalewill be similar to thoseof optical systemsAt the large scale,analysisof the
requirement®f digital computingsystemsconcludedhat far-from-equilibriumquantum
devicesshav the mostpromisefor quantumelectronicsn the nearterm. In general far-
from-equilibrium quantum devices are unipolatr heterojunction-basedsupport high
biasesjncludescatteringandarevery high speedDueto its simplicity andstrongquan-
tum effects, and the availability of experimentalresults,the resonanttunneling diode
(RTD) waschosenasthe prototypequantumdevice for testingthe accurag andcapabili-
ties of SQUADS.

Given these quantumdevice characteristicsthe optimal formulation of quantum
mechanicsvaschoserfor the developmentof SQUADS. This formulationmustalsopro-
vide aninternalview of device operation,be suitablefor both steady-stat@and transient
simulation,be independenbf any particulardevice or materialsystemandbefeasibleto
executeon existing hardware.Basedon theserequirementsthe Wigner function method
(WFM) of quantumdevice simulationwaschoserasthe primarybasisfor SQUADS. The
simulatorwas limited to 1-D quantumdevice simulationdue to limitations of existing
computinghardware. Sincethe WFM is a computationallyexpensve andits accuray is
unknavn, the more establishedransfermatrix method(TMM) wasalsoimplementedn
SQUADS to provide an efficient checkon WFM results.SQUADS was designedo be
flexible andeasily extensible,enablingthe efficient investigation of both quantumdevice
simulatiort and quantum dkce operation.

The TMM is well-suitedto efficient simulationof steady-statguantumdevice opera-
tion, suchastracingthel-V curve. The TMM calculatesurrentflow througha quantum
systemby addingthe transmissiorof mary independentmono-enegetic electronbeams
over adistribution of incidentenepiesrepresentetly theboundaryconditions.Thecalcu-
lation of the transmissiorcoeficientis facilitatedby division of the positiondomaininto

1. Notethatbecaus¢he TMM is well-establishedndcannot handlescatteringor transientsimula-
tions, most of quantursimulatorresearch as applied to westication of the WFM.
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mary smallregions.Eachregion andinterfacethenhasa simpletransfermatrix, asdeter-
minedby solutionof the Schrédingerequation Extensionsof the TMM in SQUADS for
the calculationof the wavefunction,enegy spectrumcarrierdensityprofile, and Wigner
functionwerealsodescribedWithin its limitations (no scatteringor transientsimulation),
the TMM proved to be aery reliable basis for quantumwee simulation.

When scatteringor transienteffects are to be investigatedin quantumdevices, the
WFM is required.The WFM solvesthe Wigner functiontransportequation(WFTE) at a
discreteset of pointsto predictthe evolution of the Wigner function f (X, k, t), which
describeghe action of chage carriersin the quantumdevice. The discretizationof the
WFTE hasmary complicationsandalternatve implementationsall correctlyhandledby
SQUADS. The resultingcomputationrequiresthe solution of typically 5000to 50,000
simultaneougquationssoit is essentiato reduceextraneousmemoryusageandcompu-
tationasmuchasmuchaspossible SQUADS usesoptimizedmatrix storageandcompu-
tationschemesThe WFM simulationof a Gaussiarwave pacletin free spacewhich also
hasan analyticsolution,allowed the accurag andcostof variousdiscretizationschemes
for the WFTE to be comparedThe discrepang betweenWFM andTMM simulationsof
anRTD wasratherlarge,presumabhdueto inaccurag in thestandardVFM implementa-
tion. Clearly, the WFM is still in a developmentphase althoughit cangive qualitatve
results about quantumdevice operation.The remainderof this work describedthree
WFM-based imestications of RDs and the WFM itself.

Thefirst investication examinedthe implementatiorof self-consistengin the WEM.
Enforcing self-consisteng requiresan iterative solution of the WFTE and the Poisson
equation(PE)to achiere a simultaneousolutionto both equationsFour self-consisteng
iterationmethodsareimplementedn SQUADS: steady-stat@andtransientGummel,and
steady-statandtransienﬂ\lewton.2 The Gummelapproacheslternatelysolve the WFTE
and PE, while the Newton approachesolve the two equationssimultaneouslyDue to
their computationakfficiengy, the steady-statenethodsarerecommendedor wide-rang-
ing initial investigations,suchas |-V curve traces.For transientoperation,or to verify
device operationin critical regions, expensve transientsimulationsare required. The
expenseof the Newton approachess not worth the smalladditionalaccurag they afford.

2. Most other quantumdevice simulatorsimplementonly a single self-consisteng iteration
approach, to simplify the programmejob, rather than to maximize usefulness of the simulator
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The properselectionof corvergencecriteria (i.e., whento terminatethe iteration)is also
important.Theimplementatiorof self-consistengin the TMM is muchsimpler sincethe
TMM can only use the steady-state Gummel iteration method.

The secondnvestigation studiedthe effect on device function of usingafinite applied
biasslew ratein transientself-consisten®WFM simulationsof anRTD. The corventional
approaclof instantaneouslghangingthe appliedbiasin simulationscausesugecurrent
pulsesbothwithin the RTD andin the externalbiasingcircuit. Usinglower slew rates the
currentpulseamplitudesdecreasedo moretolerablevalues,andthe internal pulsewas
thenshawn to be dueto chaging of the depletionandaccumulatiorlayersto accommo-
datethe new appliedbias. Otherinstancesvhere RTD function dependedn slew rate
weredemonstrated-or example,fastslewing initiated oscillationsin a marginally stable
region of operationwhile low slew ratesdid not. Also, very low slew rateswerenecessary
to producesomemodesof RTD operation.Finally, the slew rate could determinewhich
statean RTD endedup in whenswitchedinto a bistableregion of operation.Thus, slev
rate does affect device function, and should be chosenin simulationsbasedon the
intended application for the dee.

Thefinal SQUADS investicationwasanin-depthstudyof the very intriguing physics
of the RTD that was usedin the two investigationssummarizedabore. The interesting
effectsincludeda plateauin the negative differentialresistanceof the I-V curve, hystere-
sis, and high-frequeng oscillations.Basedon the visceralsimilarity betweenthesephe-
nomenaand experimental obsenations, other researchersconcluded that they had
reproducedhe experimentaleffects.On the basisof this conclusionthey broke with the
establishedconsensusiew on several controversiesaboutthe natureof RTD operation.
The investicationin this work shaved conclusvely thatthe simulatedRTD physicswas
not of the sameorigin astheapparentlysimilar experimentakeffects.In fact,furtherinves-
tigation indicatedthat more accurate VFM simulationswould probablysupportthe con-
sensusview on eachof the controversial issues.Although the WFEM appeargo require
further refinementsthis investigation shaved that SQUADS canprovide a rich array of
information from which to dra in the study of quantum diee plysics.

9.2 Contributions

This sectionlists the principle contritutionsof thiswork. Roughlyin theorderthey are
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presented in this dissertation, these coutrdms include:

» Oneof themostcomprehensie conceptuateviews andanalyse®f thetheoryof
quantum electronics to date, including discussions of

* the array of wailable quantum &cts and basic quantumwilee structures,

* the types of quantum diees (quasi-equilibrium anéifrom-equilibrium),

* the architectures that may be utilized (cellular automaton or quantum filter),

* the probable nature of computing with quantum electronic circuits, and

* the ultimate future of quantum electronics in true quantum computers.

» An analysis of quantum diee simulation approaches, including discussions of

* the goalsof quantumdevice simulationandits relation to theoreticaland
experimental quantum g&e research,

* the lessons learned from a@mtional electronic dece simulation, and

* the strengthsand weaknessesf all significantquantumdevice simulation
approaches in use and proposed.

* Most importantly the developmentof a numericalsimulationcalled SQUADS
(StanfordQUANtum Device Simulator)tool for modeling1-D quantumdevices.
Important features of SQADS include:

* Highly functional: TMM andWFM simulationapproacheareimplemented.
Self-consisteng scattering(WFM), steady-stat@analysis transientanalysis
(WFM), and Gaussianave paclet simulations (WFM) are allailable.

» Extensible:Modular structuremakes enhancementand alternatve imple-
mentationseasilyaddedAlso, generaknhancement® SQUADS areimme-
diately available, if appropriate, to both the TMM and WFM.

« Efficient: agreatdealof effort wasappliedto theeffort of producingaccurate
simulations with a minimum of computation.

 Portable:Compiledand executedwithout modificationon at leastten plat-
forms, ranging from a 386 PC to a Cray C-90 supercomputer

 Publication-quality graphical output, including line and acef plots.

* TMM simulation contrilutions:

* Mostcomprehensie mathematicatlerivationanddescriptionof the TMM to
date, including discussions (apparently for the first time) of

* how to take advantageof contactflat-bandregionsfor improved compu-
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tational eficiengy,
» how quantum turning points must be treated forusitbfrMM simulation,
» when numericaleerflov may occur and va to protect aginst it,
* handling classically neutralg®sns, and
« correctly handling classically-forbiddencbntacts.
* Alternative transmissionmatrix computationalgorithmswere found to be
significantly more dicient for some TMM simulation tasks.
» Using a piece-wisdinear (asopposedo piece-wiseconstant)potentialwas
foundto have threetimesthe computationatost,with little accurag benefit.
* The useof a position-dependergffective masswas shavn to significantly
alter quantum dece simulation results.
» Calculationof the enegy spectrumof carriersandthe Wignerfunctionwere
added to the standard TMM simulator capabilities.
* WFM simulation contrilaitions:
* Mostcomprehensie mathematicatlerivationanddescriptionof the WFM to
date, including
» implementatiorof numeroudliscretizatioroptionsfor the diffusionterm
and three for the drift term of the WFTE,
« five alternatre implementations for transient simulations,
» a Gaussian ave paclet simulation capabilityand
» efficient storageandsolutionschemedor solving the compute-intense
WFTE.
» Optimaldiscretizationapproache$or the diffusionandtransienttermswere
determined, both for 8€iency and accurac
* Inaccuray in the standardmplementationof the WFM was demonstrated,
and possible solutions to this short-coming were proposed.
» Self-consisteng contrikutions:
* Implementedhe four basicself-consistengiterationmethodsor the WFM,
allowing direct comparison of accusa@ficiengy, and rolistness.
» Demonstratedhe complementaryroles of steady-stateand transientself-
consisteny iteration approaches.
» Described the Neton iteration method for the WFTE.
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 Derived andimplementech modified steady-statéummeliterationmethod

that achiges muchdister comergence that the standard Gummel approach.

Implementeda sophisticatedsteady-stateself-consisteng iteration algo-
rithm, which is both dicient and robst.

Describedhecessarandsufiicient criteriato gaugecorvergencein self-con-
sisteng simulations.

Demonstratedthat corverged steady-stateself-consistenc simulationsis

only anequilibriumoperating point, and may be stable or unstable.

Implementedasanalternatve to Gummelself-consisteng a quasi-classical
self-consistengalgorithm (to imitate scattering) for the TMM.
* Slew rate contriltions:

» Shaved that the corventionalapproachof usinginstantaneouswitchingin
transientWFM simulationshasled to substantiallyinaccuratesimulationsof
quantum deices and resulting incorrect conclusions abowutadeoperation.

» Shavedthatuseof differentappliedbiasslew ratesin quantumdevice simu-
lation candramaticallychangedevice function:the slew rateusedin simula-
tions should match that of the intendedide application.

» Conductedthe most detailedsimulationinvestigation to dateof RTD physics.
Some results included:

» Shavedtherich physicsthat RTDs are capableof, andthe depthof simula-
tion investicationthatmaybeneededo uncover all significantaspect®f this
physics.

» Shavedthatan RTD having a discreteemitter statecan produceinteresting
andusefuloperationjncludingaplateaun the NDR region, unstableoscilla-
tions, bistability and lysteresis.

» Uncoveredandcorrectecerrorsin previousinterpretatiorof RTD simulation
results and>»gerimental measurements.

» Achievedimproved agreemenbetweersimulationandexperimentfor a par-
ticularly interestingRTD, with which improvement,the simulationseffec-
tively support the consensusconclusions on several RTD physics
controversies, in contrast to preus analysis of simulations of thigB.

» DemonstratethatthestandardVFM implementatiorusedfor overtenyears
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still requires accuracimprovements.

» Demonstrated dynamig/bkteresis in RD simulations for the first time.

» Shavedtheimportanceof including self-consistengcandscatteringn simu-
lationsto demonstratsomevery interestingand potentiallyusefulmodesof
RTD operation.

» For accuratesimulations,shaved the significanceof using a simulation
region which naturally accommodates the entire applied bias.

9.3 Recommendations ér Futur e Work

As the contributions above indicate, this work encompassea significantadvancein

the field of quantumdevice simulation.However, this work alsodemonstratethat there

are still mary significantquestionsto answey investigationsto pursue,and advancesto

make in this endea&or. Most of the resultingrecommendationfor future work centeron

the WFM of quantumdevice simulation,sincethis approachwasshown to have the most

potentialfor accurag andcapabilities Thefollowing capabilitiesshouldbe addedo, and
investicated with, the WFM:

 ImproveddiscreteWFTE implementationOneof the contritutionsof this work

wasa determinatiorthat the standardVFM implementationusedby all WFM
researchert date)apparentlyhasafundamentaflaw, resultingin compromised
accurag. Othermethodsof implementingthe discreteWFTE shouldbeinvesti-
gatedin an attemptto clarify andavoid this flaw. Mains and Haddad[1] have
proposed one such implementation.

Higher N, simulations. TMM simulationstypically requireabout1000 enegy
pointsto achieve acceptabl@ccurag. In contrasttypical WFM simulationsonly
usel00wavenumberpoints(relatedto enegy). Further asingleenegy valuein
a TMM simulationincorporatesoth forward-travelling (positive wavenumber)
and backward-travelling (negative wavenumber)wavefunctions.Thus, accurate
WFM simulations may requird, = 200C wavenumber points.

Interfaceto a classicaldevice simulator Although quantumdevicesarea long-
term prospectunderstandingiuantumeffectsin corventionalelectronicdevices
is becomingincreasingmportantasthesedevicesaredowvn-scaled Becausehe

WFM usesclassicaboundaryconditions,it caninterfaceto non-quantundevice
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simulators.This would allow quantumregions of a corventionaldevice to be
simulatedwith a quantumsimulator with the remainderbeingtreatedwith the
cornventionaldevice simulator Suchmulti-modalsimulationhasbeenusedwith
other guantumsimulationapproache$2, 3], but this essentiallyrequiresthat a
computationallyexpensve Monte Carlo approachoe usedfor the classicalpor-
tion of the simulation.

* Interbandinteractions.SomeTMM simulatorshave addedinterbandcoupling
[4-9] including a limited scatteringmodel [10], only one WFM simulator[11]
has attemptedto include theseeffects. The importanceof including interband
couplingfor the accuratesimulationof mary tunnelingdeviceshasbeenwidely
demonstrated4, 7, 12, 13]. Interactingbandswould make multi-band WFM
simulationsmuchmorecostly, but a suitablere-orderingof the unknavnsin the
WFTE matrix equationshouldmake the computationfeasibleon existing hard-
ware.

* Bipolar and optical capability By far the mostwidely usedquantumeffectsin
electronicstoday are optoelectronidn nature,in devices suchasthe quantum
well laser diode. Adding a bipolar capability (oppositely-chaged carriers,
recombination/generationand optical effects (photogeneration/absorption)
would enablethe simulation of theseimportantoptoelectronicdevices. Some
proposedand demonstratedesonanttunneling transistorsare bipolar devices,
andwould alsobeaccessibleéo simulationwith the bipolarcapability Evenwith
a 1-D simulator a quasi-three-terminatapability could be producedby main-
taining by the potentialat aninternaldevice nodewith theintroductionor deple-
tion of the requisite number of carriers.

» Detailedenegy bands.Quantumdevice simulatorsalmostuniversallyusepara-
bolic enegy bands(effective massindependenof enegy).2 This is not very
accuratein farfrom-equilibrium quantumdevices, where chage carriersmay
acceleratdo several hundredmeV above the enegy bandminimum. It should
not be difficult to implementmoreaccurateenegy bandsin the WFM [11], and
some TMM simulators [5, 7] and other quantumide simulators
[14, 15] already hee this feature.

3. In E-M wave systems, this euld be equialent to a dispersionless material.
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» Dynamic boundary conditions. Quantum devices will eventually be small

enoughandhave low enoughscatteringthatclassicaboundaryconditionssuch
as thoseusedin the WFM are not appropriate.Carrierswill maintain some
phase-coherencmto the contact,and into the next device. This meansthat
neighboringdeviceswill have a more complicatedand dynamiceffect on each
other These déct could be studied using dynamic boundary conditions.
Greatervariety in quantumdevice investigations. Investications to date with
WFM-basedquantumdevice simulators,ncludingthosein this work, have cen-
teredon the GaAsRTD. Besidesa lack of time in this relatvely nenv endeaor,
this narrav focussuggests lack of imaginationin the field of quantumdevice
simulation. The devices which may make quantumelectronicsa successare
almostcertainlynot evenbe known at this point. Thus,a wider arrayof devices,
material systems,and simulation parametersshould be investigated with the
WFM in an efort to discoer more promising quantum\dees.

2-D and3-D simulation.Fen gquantumdevicescanbeaccuratelynodeledas1-D
structures,so implementing multi-dimensional WFM simulation is essential.
SomeSchrddingeequationquantumdevice simulatorsalreadyprovide 2-D [16-
19]and3-D [20, 21] modeling.Unfortunatelyit is unlikely thatdirect2-D or 3-
D WFM simulationwill befeasiblein thenearfuture,sincetherequiredcomput-
ing power would beimmenseasdiscussedn Section5.2.1.However, the WFM
couldbe usedfor onedimensionandanotherquantumor classicalapproactor
the other(s).Another option is to use the WFM-basedMonte-Carloapproach
[22], which should be feasibleon existing hardware in 2-D or 3-D. Finally,
approximatequantumcorrectionsto classicalsimulatorscould be effective for
some quantum gdcts.

Thefollowing capabilitieshave beeninvestigatedto somedegreein at leastoneother
WFM simulator but should be implemented in the WFM simulator in8@S:

* Position-dependergffective mass.TMM simulationsin Section4.5.3 shaved

that using a position-dependengffective masssignificantly affects quantum
device simulation results. Therefore,accurateWFM simulationsrequire the
inclusionof a position-dependerdffective massaswell. Severalresearcherfl,
23, 24] hae described he this may be accomplished.
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* Small-signalWFM simulations.Adding his capability to the existing steady-
state and transientWFM capabilitieswould make SQUADS a fully general
guantumdevice simulator Frenslg [25] hasdemonstrated WFM-basedsmall-
signal capability

Quantumdevice simulationresearcthio datehasbeenratherdisomganizedanduncoor-
dinated.In particular thereis no software packagehatprovidesa base-lineof functional-
ity which researchergsanuseand enhancefor example,as PISCES[26] doesfor 2-D
cornventionaldevice simulation).Instead every researcheammustessentiallyimplement
the samebase-linefunctionality before the enhancementsf interestcan be added.Of
course this new functionality is not availableto arnyone else,sincethe variousquantum
device simulationtoolshave independently-elvedstructuresandinterfacesThus,afinal
andmoregenerakrecommendatiofor future guantumdevice simulationwork is to create
agenerallyavailable,highly functional,highly usable androbustquantumdevice simula-
tion package.In additionto alleviating the problemsdescribedabove, this would also
greatlyincreaseahe numberof researchero whom quantumdevice simulationwould be
availableasaresearcthool. NotethatSQUADS is currentlybeingevaluatedasa candidate

for this “base-line” quantum de&e simulation tool.

9.4 Recommendations ér Software Development

Finally, for thoseattemptingto createa large software packagedike SQUADS, this
sectioncontainsa few suggestionglearnedduringthe developmentof SQUADS) for cod-
ing large software projects,in the interestof maintainingprogrammesanity (andproduc-
ing increasinglyfunctional code). Thesepoints may also be of useto thosetrying to
decipher code in SQADS (for example, for the purpose of adding enhancements).

General issues:

» Choiceof programminganguageFor numericalsimulationtools, speedf exe-
cutionis akey issue asaretheavailability of programingiools, portability of the
sourcecodeto multiple computingplatforms(i.e., level of languagestandardiza-
tion, andwidespreadxistenceof compilers) widespreadise(in caseotherswill
look ator work onthe code),andability to structurethe codein separatsubrou-
tinesandfiles. Basedon theseconsiderationshe C programminganguagevas
chosen for SQADS, and GCC is used as the compiler on most platforms.
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 Platformindependencd-or a large programmingproject, it is unlikely thatthe

entire programmingand executionof the projectwill be conducedon a single
computingplatform. Efforts shouldbe takento make surethe projecthasmini-
mal platform-dependenceSQUADS has beenrun under OS/2, Ultrix, Irix,
OSF1,Sun0OS4 Solaris,SystemVr4 Unicos(Cray). To copewith the necessary
differences between platforms (usually different function library files),
SQUADS hasa run scriptwhich determineghe operatingsystemon the current
platform,modify acopy of the malkefile for this platform,compileSQUADS in a
directory for that OS, andkecute.

Before writing ag code:

» Have at leastone generationfull backupof working sourcefiles. Refreshthe

backup only after major changes/adeen fully tested.

» Alwayshave a working executable Therewill alwaysbe occasiongo runit on

short notice, whether for demonstration or to get last-minute results.

» For mathematicallyjcomplec functions,do not begin codinguntil the theoretical

derivation is complete.

When writing and delgging code:

» Useahierarchicaktructureln otherwords,divide andconquerUsereasonably-

sizedsubroutinesand multiple files to breaka problemdown into small parts,
each of which can be completely understood as a whole.

Documentnewn codeas soonas possible.Although non-olvious code sections
shouldbe commentedvithin the sourcefile, the mostimportantcodedocumen-
tation is the interface (header)files. Thesefiles are all someongincluding the
programmershouldhave to readto understandvhatthe associategubroutines
do. A header file is incomplete if someone must look at the actual code.
Upgradegracefully Don’'t make all plannedchangesat once. Make enhance-
mentsin smallstepsvhen&er possible andverify properprogramfunctionafter
each step.

Use appropriatetools to make programmingtaskseasier For example,during
SQUADS development,grep was usedto find all occurrencesof a variable
whosenameor definition was aboutto change diff wasusedto find all differ-

encesbetweenan old (working, backup)sourcefile anda newv (non-working)
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one,an executionprofiler wasusedto tunecritical sectionscodefor efficiengy,
and a debgger vas used to quickly locatathl run-time errors.

* Implementnew functionality without destrging working code.Add featuresin
separatssubroutinesratherthandirectly modifying existing code.Alternatively,
keepa copy of previous (working) lines,subroutinesor files, for comparisorthe
(almost ivariably) non-verking ones after modifications.

When running the program:

» Automate busy work. For example, much of SQUADS’ execution script was
describedcabove. Otherautomationscriptscreatethe directorystructureusedby
SQUADS, packandunpackall SQUADS files for transportto other machines,
cleanout old objectfiles or simulationresults rotatesurfaceplot files, filter plot
file data,convert plot files betweenvariousformats,or scanall library files for
neededunctions.In generaltry to automatearnything that mustbe donemore
than twice.

» Userinterface.If possible,adda GUI (graphicaluserinterface)only after the
code(or atleastthe input to the program)is essentiallyjunchangingandonly if
the GUI is fasterand more straightforvard to usethana text interface.For the
programmerthe GUI represents&n additionallevel of compleity to be main-
tainedandupgradedwith the remainderof the code.Therefore it mustbe very
easy to upgrade, or it wilventually be abandoned for xténterface.
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