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Abstract

An accurateunderstandingof quantumwave effectsin electronicdevicesis important

for several reasons.In the short term, this understandingwill enablethe suppressionof

theseincreasinglysignificantparasiticeffectsin ever-smallerconventionaldevices.In the

mediumterm,this understandingwill enablethecontrolof theseeffects,possiblyextend-

ing down-scalingcloser to the quantumrealm with hybrid conventional-quantumelec-

tronic devices. In the longer term, an understandingof quantumelectroniceffects is

necessaryfor the possibledevelopmentof a true quantumdevice technology, with the

potentialfor muchgreaterfunctionalityperunit cost,size,andpower. To build thisunder-

standing,a numericalquantumdevice simulator called SQUADS (StanfordQUAntum

Device Simulator)wasdeveloped.This dissertationdescribesthe implementation,capa-

bilities, and some illustrative simulation results of SQUADS.

Thedesignof SQUADS wasdirectedby two goals:thestudyof quantumdeviceoper-

ation,andthestudyof quantumdevice simulation.In pursuingthesegoals,a comprehen-

sive 1-dimensionalsimulationtool wasdevelopedfor modelingquantum-effect electronic

systemsof arbitrarystructure.Two independentformulationsof quantummechanicswere

implementedin SQUADS. The first is the widely-employed transfer-matrix methodof

quantumsystemsimulation,which providesa sourceof quick initial simulationresults,

andis especiallyusefulin detailingtheenergy spectrumof carriersin thedevice.Thesec-

ondmethodusestheWigner function formulationof quantummechanics,which is more

computationallyintensive, but which allows a moreintuitive andcompletedescriptionof

realquantumelectronicsystems,especiallyincludingtransientresponseandenergy dissi-

pation.

In additionto describingthebasicimplementationandsimulationresultsof thesesim-



iv

ulation methodsin SQUADS, this thesisalso describesthreedetailedinvestigationsof

quantumdevice simulationandoperation,usingSQUADS asthesimulatorandthe reso-

nant tunnelingdiodeas the testdevice. An investigation of self-consistency in quantum

devicesimulationfoundthatboththeefficientsteady-stateandthemoreaccuratetransient

self-consistency iteration methodshave importantroles to play, and that a Gummel(as

opposedto full-Newton) iterationmethodis almostalwaysquiteadequate.An investiga-

tion of theeffect of slew ratevariationin transientRTD simulationshowedthattheuseof

anappropriateappliedbiasslew rateis necessaryfor accuratesimulationsandto prevent

themisinterpretationof simulationresults.Finally, thedetailedsimulationinvestigationof

the physicsof an RTD produceda betterunderstandingof this device, correctedseveral

errorsin previous interpretationof simulationand experimentalresults,and resultedin

improved agreement between simulation and experiment for this device.

In general,thiswork foundthatquantumdevicesimulationis still in a formativestage,

althoughsignificant advanceshave beenmade in this work and elsewhere. Quantum

device simulationis not yet at a point whereit canreliably reproduceor predictquantita-

tiveexperimentalresults,whetherbecauseof non-idealitiesin experimentor inaccuracy of

the simulator. Nevertheless,quantumdevice simulationin this work and elsewherehas

alreadycontributedto the debatessurroundingsignificantunresolved issuesof quantum

device physics and operation.
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Chapter 1

Intr oduction

This chapterprovidesan introductionandoverview of the researchdescribedin this

dissertation.Section1.1 describesthe motivation for studyingquantumeffects in semi-

conductordevices,Section1.2 presentstherationalefor thespecificapproachandobjec-

tivesof the research,andSection1.3 describesthe organizationof the remainderof this

dissertation.

1.1 Moti vation

1.1.1 The Quantum Challenge

Tremendousadvanceshave beenseenin digital electronicstechnologyin the past

threedecadesdueto a strongmarket demandfor greatersystemspeedandfunctionality.

Theamazingandapparentlytirelessadvanceof digital electronicstechnologyprovidesus

with empowering technologicalinnovations,enablesus to addressnew challengesin our

world, andallows usto tackleevermorecomplex questionsaboutouruniverse.With con-

tinuingefforts to improvethespeedandfunctionalityof integratedcircuits,higherintegra-

tion densitiesare forcing device dimensionsto decreaseto the scaleof the quantum

wavelengthof thechargecarriers1 usedin deviceoperation.Thetransitionbetweenclassi-

cal (particle-like) and quantum(wave-particle) behavior of carriers begins at device

dimensionsof around0.1 µm (100 nm) [1]. With continueddevice scaling,the reliable

1. Hereafter, chargecarriers,meaningelectronsor holes,will oftenbereferredto simplyascarriers.
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operationof ultra-large-scaleintegrated(ULSI) electronicdevices,whichdependsonclas-

sical (particle-based)carrier transport,will be increasinglyantagonizedby “parasitic”

quantum(wave-based)transportphenomena.Figure1.1 shows threeexamplesof carrier

quantum “mis-behavior” that already occur in conventional electronic devices.

The effort to maintain reliable operationof electronicdevices as their dimensions

inevitably shrink towardsthe quantumrealm is hereincalled the “quantumchallenge”.

Theusualresponseto thequantumchallengeis to constrainor modify conventionaldevice

designssuchthat quantumeffectsareavoidedentirely if possible,ignored if they canat

leastbemadenegligible, suppressedasmuchaspossibleevenif they arenotnegligible, or

overwhelmedif all of theabove approachesfail. Whathappenswhenthesecompromises

andconstraintsleavenoroomto advanceULSI electronics?If theconventional,evolution-

ary solution to the quantumchallengeno longer works, and of coursethe demandfor

greaterdigital systemfunctionalityvia devicescalingwill notdiminish,anew, revolution-

ary response to the quantum challenge must be found.

1.1.2 The Quantum Solution

A revolutionaryapproachto addressingthequantumchallenge,which hasmorelong-

Figure 1.1: Parasitic quantum effects in conventional devices

Effectsindicatedinclude(a) chargecarrierstunnelingthrougha DRAM capacitor
oxideat sharpcorners,(b) energy quantizationof carriersin theinversionlayerof
a MOSFET, and(c) electronstunnelingthoughthe bandgap at the base-emitter
junction of a degenerately doped bipolar transistor.
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term possibility thoughat the sametime lesscertainty, is to find somemeansby which

quantumphenomenacanbe usedasenabling, ratherthandisabling, mechanismsin the

operationof electronicdevices.Deviceswhoseoperationis fundamentallybasedonquan-

tum wave phenomenaarecalledquantumdevices.Theconceptof producingusefulcom-

puting(analogor digital signalprocessing)with quantumdevicesis hereincalledquantum

electronics[2, 3].2 Thepathto quantumelectronicsmay in factbeevolutionary, with the

developmentof hybrid conventional-quantumdevices.Suchdeviceswould operateessen-

tially asconventionaldevices,but would usequantumeffectsin a controlledbut subordi-

natemannerto achieve down-scalingor functionality beyond that attainableby a pure

conventionalelectronicdevice. Threewell-known examplesof suchhybrid devices, the

quantumwell laserdiode,hot electrontransistor, andEPROM, areshown in Figure1.2.

The quantum effect used to enhance the operation of each is also described.

Theideaof using,ratherthanavoiding,quantumeffectsin electronicdevice operation

hasseveral significantbenefits.First, it would finally allow (in fact require) at leastone

device dimensionto be scaledinto the quantumrealm,whereasconventionalelectronics

requiresall device dimensionsto begreaterthanquantumscale.Scalingdevicesto quan-

tum dimensions,say50 nm or less,would allow integrationdensitieswell beyond even

ULSI, into a regimethatcanbestbecalledquantumscaleintegration.Higher integration

levels leaddirectly to greatersystemfunctionality. Theadditionalbenefitsof device scal-

ing arewell known: fasterdevice operationandlower device power. Theuseof quantum

devicesandquantumscaleintegrationallow all of theseimprovementsto continueinto the

quantumrealm,solving the quantumchallenge.Secondly, using quantumeffects in the

operationof electronicdeviceswould allow the control electronicdevice operationwith

any of thephenomenathatareparasiticin conventionaldevices,andthuspresentsthepos-

sibility of attainingmuchhigherfunctionalefficiency. Finally, quantumeffectsincludea

2. Theterm“quantumelectronics”is usedwith somereservations,sincethis termhasbeenapplied
in the literature to semiconductorlaser optoelectronics.However, “quantum electronics”aptly
describesthe electronicsystemsdiscussedin this dissertation,which usequantumphenomenain
their operation,but which act externally much like conventionalelectronicsystems.Alternative
termswerealsoconsidered.“Quantumcomputing”hasbeenappliednarrowly to quantumsystems
whoseoperationis basedon thephysicsof discretequanta,which systemsaredescribedin Section
1.1.4.Thisdissertationmainlyconsidersquantumsystemswhoseoperationis basedon thephysics
of acontinuousdistributionof quanta.Someresearchersuse“nanoelectronics”to describethis type
of quantumdevice, but this moniker is not adequatelydescriptive, and is more appropriately
applied to deep submicron conventional electronics, as the natural successor to “microelectronics”.
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diverseset of both analog(wave-like) and discrete(particle-like) phenomena,and may

therebyallow thedesignof quantumeffect-basedcomputingsystemswhichnaturallypro-

duce both analog and digital functions.

1.1.3 Mor e Challenges

While quantumelectronicstheoreticallyallows electronicsystemcapabilities(effi-

ciency andfunctionality) to advanceperhapsordersof magnitudebeyondthatof conven-

tional ULSI, several new challengesmust be faced in the development quantum

electronics,andthesewill requireingenuity to surmount.Thesenew challengesinclude

not only theneedto developnew devicesbasedondifferentphysics,but alsonew fabrica-

tion technologiesandcircuit architectureswill beneededfor thesequantum-scaledevices,

Figure 1.2: Hybrid conventional-quantum electronic devices

Threehybrid devicesareshown: a) thequantumwell laserdiode,b) a hot electron
transistor, andc) anEPROM (erasable,programmableROM) device.Thequantum
effect used to enhance the operation of each device is also described.
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andnew computationparadigmswill probablyberequired.Theseissuesarediscussedin

more detail in Chapter 2.

Becauseof thesechallenges,it is not clear whetherquantumelectronicswill ever

becomea viablesubstitutefor, muchlessa successorto, conventionalelectronics.In fact,

someof thestrongestadvocatesof pursuingquantumelectronicsresearcharealsoits best

debunkers[2, 4]. In spiteof the toutedpotentialof quantumelectronicsasthe futureand

savior of electronics,researchin thisfield mayseemanacademicexercise,consideringall

of thechallengesin theway of its realization.Further, conventionalelectronicscontinues

to improvealmostfasterthanconsumerscantolerate,with noendin sight.Thewisdomof

embarkingonthecostlyandpotentiallyfruitlessendeavor of quantumelectronicsresearch

seemsfoolish andwasteful.However, discoveriesaboutquantumsystemsin just thepast

few years may have rendered this viewpoint invalid, as described below.

1.1.4 Further Possibilities

It turnsout that quantumelectronicsmay itself be a stepping-stoneto an even more

futuristiccomputingparadigmwhichhasco-optedthename“quantumcomputing”.In this

realm,discreteelectronsandphotonsproducedesiredcomputingfunctionsusingcoherent

quantumwaves.In late1994,PeterShor[5] describedthe“killer application”for quantum

computing.This is noneotherthanthepotentialto defeatpublic key encryptionschemes,

which areconsideredthebestcurrenthopefor inexpensive andpervasive securecommu-

nication.Ratherthantheexponentialcomputationalrequirementsof a classicalcomputer

to decryptsuchmessages,the computationtime using Shor’s quantumalgorithm rises

only asthesquareof theencryptionkey size[6]. Effectively, if Shor’sschemewereimple-

mented,any messageencryptedwith thepublic key scheme,whethersent10 yearsagoor

tomorrow, would be immediatelyreadableby the owner of the quantumdecrypter. For

better or worse, it appearsthat it will be extremely challengingto build a quantum

decrypterthatcanhandleanencryptionkey largerthanaclassicalcomputercan(say1000

bits). However, it is equallydifficult to think of a device morecovetedby governments

(who arebestableto fund the developmentof sucha device). For this reasonalone,if a

quantum decrypter can be built, it certainly will be, regardless of the difficulty.

Thequantumdecrypteris justaspecific(but important)exampleof thepowerof quan-

tum computing.Quantumcomputingtakes advantageof the inherentparallel natureof
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processingcoherentwavesfor thefastsolutionof recursiveproblems,essentiallychecking

all possiblesolutionssimultaneously. Only the correctsolution will interfereconstruc-

tively andproduceapositive result.Othercomputationswhichareinfeasibleto solve ona

classicalcomputermay also be proven accessibleusing a quantumalgorithm. Also,

smallerquantumcomputers,perhapshandlingonly a few bits at a time,couldsolve other

seeminglyintractableproblems.For example,provably securequantumcommunication

schemes(e.g.,for passingsecretencryptionkeys)havebeenproposed[7, 8] andtested[9].

Theseimplementationsareasyet impracticalfor generaluse.Several accessiblereviews

of these and other quantum computing possibilities have been written [6, 9-14].

Clearly, there are tremendousincentives driving the researchand developmentof

quantumcomputing,andequallymomentouschallengesto be overcome.Of course,the

eventualsuccessor failureof quantumcomputingcannot bedeterminedunlessanduntil

the conceptis thoroughly investigated. And the ultimate in quantumcomputing will

almostcertainlyneverbeachievedwithoutpassingthroughquantumelectronicsfirst. Fur-

ther, it seemspreferableto facethequantumchallengenow, ratherthanwhenit becomesa

quantumcrisis at the limit of conventionalULSI advancement.Both the inevitability of

thequantumcrisisandthepotentialbenefitsof quantumelectronicsandquantumcomput-

ing werethemotivationsfor this research,thebroadgoalof whichwastheinvestigationof

quantumelectronics.Researchon the ultimate quantumcomputingsystems,the heir-

apparent to quantum electronics, is left for future researchers.

1.2 Approach and Objectives

In general,therearethreeapproachesto pursuinga scientificfield of study:concep-

tual, computational,and experimental.The choiceof approachfor this researchproject

wasafairly straight-forwarddecision.As arguedabove,quantumelectronicstruly is arev-

olutionaryconcept.It’s realizationwill requirenew physics,new fabricationtechnologies,

new circuit architectures,and new computingparadigms.Thus, in order to illuminate

potentiallyusefuldirectionsto take with eithersimulationor experiment,an initial theo-

retical(i.e., conceptual)analysisof quantumelectronicsandits futurein quantumcomput-

ing is absolutelyessential.Many researchershave undertaken suchan analysis,and the

bodyof this dissertationbeginswith a summaryof this theoreticalwork andits maincon-

clusions(Chapter2). The central focus of this investigation of quantumcomputing,as
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described in this dissertation, takes the numerical simulation (i.e., computational)

approach.As in otherfields,simulationfills theinformationgapbetweenidealizedtheory

and “exact” but expensive experiment.Conceptualresearchcan only provide a general

ideaof how a real quantumsystemwould behave, beyond which simulationandexperi-

ment are required.

In quantumelectronicsresearch,simulationwill largely directexperiment,just asthe-

ory directssimulation.Themostcompellingreasonfor this is feasibility: thecostof simu-

lation is many orders of magnitude less than experimental trial-and-error. In fact,

experimentalwork with all but thesimplestquantum-scaledevicesandquantumcircuitsis

not feasibleat all with existing fabricationtechnologies.Even with conventionalULSI

researchanddevelopment,simulationmakespossiblethe investigation of a muchwider

rangeof device structureandoperatingconditionalternativesthanwould befeasiblewith

experimentalone.With therevolutionaryconceptof quantumelectronics,wheretheeven-

tual device “winners” arenot even known, simulationrepresentsa muchmorecost-effi-

cient means of investigating new device concepts and operation phenomena.

Thereare other advantagesbesidescost of simulationover experimentin quantum

electronicsresearch.For example,aquantumsystemsimulationcapabilityis morewidely

applicablethanfabricatingandtestingquantumdevices,sincetheformercanbeusefulfor

any quantumdevice for any application.Further, simulationcangive detailedinformation

aboutdevice operationwhich is not providedby experiment(or even theory),suchasan

internal view of device operation(e.g., internal carrier concentrationsor current flow

lines). An accuratedevice simulatorcantherebyresolve any mysteriesof device opera-

tion. Thus, in quantumelectronicsresearch,simulation will likely serve to illuminate

promising directions for (future/expensive) experimental research.

Anotherissuewhich falls underthe headingof “investigative approach”is to choose

the time-rangewhere the researchis expectedto have impact. In other words, is the

researchmeantto beof short-termor long-termpracticalimportance?Althoughquantum

electronicsinherentlyhasarelatively long-termpotentialpay-off, this researchattemptsto

make its impactmoreimmediatewherepossibleby takinga short-termfocus.3 For exam-

ple, somesimplequantumdevicesarebeingfabricatedtoday, andbeingableto simulate

3. The short-termfocuswas,in fact,an importantreasonfor choosingto researchquantumelec-
tronics rather than quantum computing systems.
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thesedevicesand thus contribute to this work was consideredessential.This focushas

implications for the type of simulator developed, as discussed in Chapters 2 and 3.

Basedontheabovediscussion,theobjectiveof this researchhasbeennarrowedfrom a

generalinvestigation of quantumelectronicsto the developmentof a simulationtool for

the investigation of quantum electronic devices. The resulting simulator is called

SQUADS (StanfordQUAntum Device Simulator).Two goalswereenvisionedin theuse

of this tool: the investigationof quantumdevice operation, andthe investigationof quan-

tum device simulation. Thegeneralapproachtakenin developingSQUADS wastherefore

to include in it asmany capabilitiesaspossible.Progresstoward the researchobjective

wasgaugedby simulatingvariousdeviceswith generallyknown behavior to seewhether

the simulationresultsagreedwith expectations.This dissertationcontainsmany illustra-

tive examplesof suchsimulations.Defining the researchapproachfor this work in any

moredetail requiresa significantamountof additionalbackgroundinformation,which is

provided in the next two chapters.Beforeundertakingthis discussion,an overview and

outline of this dissertation is given below.

1.3 Organization

This dissertationis organizedinto ninechapters,of which this introductionis thefirst.

Note that thebibliography for eachchapteris givenat its end,ratherthanasa combined

bibliography at theendof thedissertation,sincethereferencesof differentchaptershave

minimal overlap.

To give direction and focus to the numericalsimulator developmentin this work,

Chapter2 presentsanoverview of thecurrentunderstandingof quantumelectronics.This

begins with a descriptionof the quantumphenomenaand basicstructuresthat will be

building blocksfor quantumdevices,andthenturnsto thegeneralcharacteristicsof quan-

tum effect devices. The discussionalso analyzesthe merits of somespecificquantum

devices.Finally, this chapterconsiderswhat quantumelectroniccircuits may look like,

and the likely natureof computingwith thesecircuits. The importantresultsfrom this

analysis are its implications for the implementation of SQUADS.

Chapter3 completesthe specificationof the approachtaken in developingSQUADS

by selectingits underlyingbasisfrom the many mathematicalformulationsof quantum

mechanics.To accomplishthis, thecapabilitiesandfeaturesrequiredof a usefulquantum
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devicesimulatorarefirst discussed.Basedon this, thevariousquantummechanicsformu-

lationsareevaluatedin termsof their ability to producea quantumsystemsimulatorwith

thebestcombinationof capabilities,accuracy, andcomputationalefficiency. Theconclu-

sion is thata dual-formulationapproachwould serve asthebestbasisfor SQUADS. The

resultingimplementationof SQUADS andits simulationresultsarethesubjectof Chap-

ters 4 through 8.

Chapters4 and5 describethebasicimplementationof the two formulationsof quan-

tum mechanicsusedin SQUADS. Theimplementationof thetransfer-matrix method,the

de-factostandardin quantumdevice simulation,is describedin Chapter4. This methodis

basedon solvingthetime-independentSchrödingerequation.Thetransfer-matrix method

is suitablefor quick, reasonablyaccuratesimulationsof a wide rangeof quantumdevice

structuresto determinewhich merit more detailed study. The implementationof the

Wignerfunctionmethodin SQUADS is thendescribedin Chapter5. This methodis anal-

ogousto solvingtheBoltzmanntransportequationfor conventionaldevice simulation.As

such,it is suitablefor accurate,but computationallyexpensive,simulations.Basicsimula-

tion results for each method are given at the end of their respective chapters.

Chapters6 and7 describesomeof the moreadvancedcapabilitiesof SQUADS, and

presentsimulationresultsshowing the importanceof thesefeatures.Chapter6 coversthe

implementationin SQUADS of full quantumself-consistency, which requiresthat the

charge densityprofile producedby the quantumtransportequationis consistentwith the

energy bandprofile in the simulateddevice. Chapter7 describesthe transientsimulation

capabilitiesof SQUADS in moredetail throughan analysisof the effect of appliedbias

slew rate variation on the operation of a quantum device.

To bring closureto thebodyof this work, Chapter8 presentsa detailedandcompre-

hensive quantumsimulationinvestigationof a singlequantumdevice.As in chapters4-7,

a resonanttunnelingdiodeis usedasthetestdevice.Thephysicsof thisdevice is analyzed

in as much detail as necessaryto presenta completepicture of its operation.Also dis-

cussedarethe implicationsthis simulatedoperationhasfor the resolutionof several sig-

nificantcontroversiesregardingresonanttunnelingdiodeoperation.Finally, anattemptis

madeto assessthe currentaccuracy and reliability of quantumdevice simulationtools,

including SQUADS.

Finally, Chapter9 summarizesthiswork, presentsits contributionsto thefield of quan-
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tum device simulation, and gives suggestions for future work in this field.
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Chapter 2

Overview of Quantum Electronics

This chapterprovidesa summarywhat is known andwhatcanbereasonablydeduced

aboutthepossibilityof practicalquantumelectronics.Thediscussioncoversthequantum

effects,basicstructures,devices,systems,andcomputingmodels,which might produce

ordersof magnitudedenser, faster, andmoreefficient computingsystems.Although this

chapteris not intendedto bea comprehensive review of quantumelectronics,it will serve

to show wherethis dissertationfits in thelargerfield of quantumelectronicsresearch.The

morespecificgoalof this chapteris to discussthecharacteristicsof computationallyuse-

ful quantumdevices,andthus,whatcapabilitiesandfeaturesshouldbeimplementedin a

practical quantum device simulator.

Thesummaryof quantumelectronicsin this chapteris accomplishedin four steps.In

Section2.1, someguidelinesfor the identificationof usefulquantumdevicesareestab-

lishedby discussingbriefly thepast,present,andultimatefutureof quantumelectronics.

The summaryof quantumelectronicsthenproceedsfrom its basicelementsto complete

systems.In Section2.2,thequantumphenomenaandbasicstructuresthatwill bebuilding

blocksfor quantumelectronicsystemsareenumerated.Section2.3thendiscussesthegen-

eralcharacteristicsof quantumeffect devicesdesignedwith thesestructuresandphenom-

ena,andconsidersthe meritsof somespecificquantumdevices.This sectionconcludes

with theselectionof aprototypequantumdevicefor usein developingapracticalquantum

device simulator. Finally, Section2.4 considersthe likely characteristicsof complete

quantumelectronic systems,and how they might accomplishuseful computing.The
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resultingconclusionsaboutquantumelectronics,especiallythoserelevant to thedevelop-

ment of a quantum device simulator, are summarized in Section 2.5.

2.1 Past, Present, and Future

In this section,the basic outline of the quantumelectronicsconceptis definedby

showing wherequantumelectronicshascomefrom, how existing technologiescaninform

usaboutthenatureof quantumelectronics,andwherequantumelectronicsmayultimately

be headed.

2.1.1 The Genealogy of Quantum Electronics

As hasbeenobserved,quantumelectronicsis arevolutionaryidea,andfew of therules

of conventionalelectronicsmayapplyto it. However, nothingis completelynew, andrele-

vantexisting knowledgeshouldcertainlybeused,wherepossible,to guidethesuccessful

developmentof quantumelectronics.Sowhatknowledgeis relevant?On onehand,at the

very smallestscale,chargecarriersin quantumdeviceswill obey wave mechanics.There-

fore, a wave-basedsystemshouldbe soughtfrom which to draw knowledgeandinsight.

The closestcousinof quantumwave systemsis optical systems.In fact,optical comput-

ing, which seeksto produceuseful digital functionality throughelectromagneticwave

manipulation,is a well-establishedfield of research[1-4]. On theotherhand,at thetermi-

nalsof thequantumcircuit, theinputandoutputsignalswill bevoltagesandcurrents,asin

conventionalelectronics.Quantumelectronicsviewed from the macroscopiclevel will

probablybeverysimilar to conventionalcomputing.Basedonthesearguments,Figure2.1

shows thetypesof knowledgethatshouldbeapplicablefrom opticalcomputingandelec-

tronics in the developmentof a usefulquantumelectronicstechnology. Relevant knowl-

edge will be drawn from these sources throughout this chapter.

2.1.2 The Optical Analogy

Thebasicpremiseof quantumelectronicsis to build electronicdevicesthataresmall

enoughthat their operationis dominatedby the wave natureof charge carriers.Several

researchershave exploredthestrongsimilarity betweensuchquantumelectronicsystems

and electromagneticwave systems[5-7], which relationshipis often called the optical

analogy.1 The optical analogyis important in the developmentof quantumelectronics
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becauseit links commonexperienceandintuition to theseeminglystrangequantumphe-

nomenaandsystems.The optical analogyindicatesthat in a quantumelectronicsystem,

charge carrier quantumwaves will be guidedwith waveguides,reflectedwith mirrors,

refractedwith lenses,split, recombined,etc.,to purposefullytransformsomeinput wave

into a new output wave and thereby, in somemanner, perform a desiredcomputation.

Clearly, quantumcomputingat this level is unrecognizablefrom thestandpointof conven-

tional computing.

Fromtheabove arguments,the functionof usefulcomponentsin quantumcomputing

systemsareexpectedto besimilar to thosein optical systems,basedon theopticalanal-

ogy. Further, all basicwave effects can be producedin any systemif refraction(wave-

lengthchangewith position)andreflectioncanbeproduced.In opticalsystems,material

changesresultin refraction,andconductorsproducereflection.Of course,aquantumelec-

tronicsystemis chieflyanelectronsystem,notaphotonsystem(althoughphotonsmaybe

involved). The materials,structures,andmaterialparametersof electronicsystemsmust

be usedto createthe desiredwave effects.In particular, materialparametersin semicon-

ductorsmustbe engineeredat quantumdimensionsto producereflectionandrefraction.

As it turnsout, two materialparameters,theenergy bandminimum2 andthecarriereffec-

1. “Electromagnetic”(EM) might bemoreappropriatethan“optical”, sincethe latter impliesonly
visible light - averysmallpartof theEM spectrum.However, opticalsystemsarethemostfamiliar
andhighly developedEM wavesystemsin commonexperience,especiallyfor thepurposeof com-
putation, so the term will be used in this dissertation.

ULSI Electr onics

• Circuits
• Systems
• Computation
• Materials
• Fabrication

Optical Computing

• Phenomena (physics)
• Basic components and

functions
• Useful composite

devices
• Wave “computation”

Figure 2.1: Progenitors of quantum electronics

Quantumelectronics,despitehaving many revolutionarycharacteristics,canmake
useof relevantknowledgefrom ULSI electronics(which it seeksto replace),and
from optical computing (which it seeks to emulate).

Quantum Electr onics



14 Chapter 2.Overview of Quantum Electronics

tive mass,fit this requirementin an analogousmannerto the refractive index in optical

systems. The refraction effect (due to wavelength modulation) can be calculated from:

. (2.1)

In (2.1), is thecarrierwavelength, is Planck’s constant,and is the (constant)total

carrier energy. Also, and are the position dependentcarrier effective massand

energy bandminimum(a.k.a.potentialenergy), respectively. Justaswith refractive index

changesin optical systems,if or changegradually, refractionoccursaccordingto

(2.1),while thereis little reflection.Whenthechangeis abrupt,bothrefractionandreflec-

tion occur. Finally, wheretheenergy bandminimum risesabove thetotal carrierenergy

, thewave reflectscompletely. Thus,bothbasicwave effects(reflectionandrefraction)

can be produced in quantum electronic systems. These effects will be depicted shortly.

Technologically, it is easierto manipulatetheenergy bandminimumthantheeffective

massto producereflectionandrefraction.This realityhasresultedin adevicedesigntech-

niquecalledbandgapengineering[8]. With bandgapengineering,adevice is designedby

simply determiningthe energy bandstructurerequiredto producea desireddevice func-

tion, andthenputting togetherthenecessarymaterialsto create(asnearaspossible)this

energy bandstructure.In the caseof quantumdevices, it is the (quantum-scale)energy

band structurethat the propagating quantumwave interactswith to producequantum

effects.3 Note that becausequantumdevice operationis basedon wave interactions,the

fabricationof thesedevicesrequiresmuchmoreaccuracy thandoesconventionaldevice

fabrication.Both the sizeandplacementof structuresin quantumdevicesdeterminethe

function produced.

Two methodsareusedto createstaticenergy bandoffsetsin electronicdevices:p-n

junctions and heterojunctions4. However, p-n junctions are far too large and have too

much statisticalvariability when quantumscaleinterfacecontrol is essential,and they

resultin avalanchebreakdown strengthelectricfieldswhendopingis madehighenoughto

reducethefirst two problems.Thus,isotypeheterojunctions5 mustbeusedto createband

2. The conduction band minimum (or edge) for electrons and the valence band minimum for holes.
3. The effective massaffectsthe relative sizeof quantumstructures,but is a secondaryconsider-
ation during initial quantum device design.
4. An interfacebetweentwo differentmaterials,suchasGaAsandAlxGa1-xAs, wherediffering
electron affinities and band gaps result in an inherent conduction or valence band minima offset.
5. A heterojunction where the two materials have the same doping type,p or n.
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offsetsfor quantumdevices.Theconclusionthattherewill benop-n junctionsin quantum

devicesleadsto anotherconclusion:quantumdeviceswill be majority carrier(unipolar)

devices,sinceall local regions will be of the sameconductivity type. In fact, not only

device structures,but alsointer-device isolation,mustbe producedby heterojunctionsif

integration densities much beyond that of conventional electronics are to be realized [9].

2.1.3 The Future

In theeffort to applyquantumeffectsto computing,researchershave takentwo fairly

distinct approaches.The first approachis to evolve quantumelectronicsfrom existing

computingtechnologies(ULSI electronicsandoptical computing),asdescribedin Sec-

tions2.1.1and2.1.2.By thisapproach,bandgapengineeringis usedonsemiconductorsto

createquantumsystemswhoseelementsfunctionlikeoptical(i.e.,wave)components,but

whosegrossfunction is that of a conventionalULSI circuit. The resulting“distribution

function” quantumdevicesusea continuousdistribution of a large numberof (indistin-

guishable)quantain their operation,just like conventional electronic devices. These

devicestypically rely on quantumtransportdominanceonly in therelatively smallactive

region of the device, with classicaltransport(i.e., scattering)allowable elsewhere.The

resultis thatdistribution functionquantumdevicesareactuallyhybrid classical-quantum

devices. Due to their external similarity, these quantum devices could conceivably

enhanceor replaceconventionalelectronicdevices in-situ. In fact, this is the reasonthis

approachto using quantumeffects in electronicsis sometimescalled “nanoelectronics”

[10, 11]. Several other reviews of quantum electronics are available, including [9, 12-16].

The secondapproachto applying quantumeffects to computation,called quantum

computing,largely ignoresexisting computingtechnologiesandgoals.Instead,quantum

computingresearchersendeavor to developa truly revolutionaryandfully quantumtech-

nology which takesadvantageof the uniquefeaturesof quantumphysics to accomplish

featsnot otherwisepossible.Thequantumdecryptordescribedbriefly in Section1.1.4is

anexampleof sucha uniquelyquantumsystem.Quantumcomputingrequiresthedevel-

opmentanduseof “discrete-quanta”devices,which would operateon thequantumwave-

functionsof individual quanta(e.g., electrons,photons,or atoms).Thesedevicesrely on

therelatively long-rangeandlong-termcoherenceof eachquantainvolved(i.e., scattering

destroys theresult),andthestateof eachquantais significantto thecomputation.Accessi-
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ble reviews of quantum computing include [17-21].

Many physical systemshave been discussed[18, 22] as possiblediscrete-quanta

devices,including thequantumdot, a nuclearspin,a localizedelectronicstatein a poly-

mer, a hydrogenatom,an ion trap,andevenmoleculesin a saltcrystal.For example,the

basicoperationof a hydrogenatom“bit” is indicatedin Figure2.2a.Building quantum

computersrequiresforming a 1-D, 2-D, or 3-D array of thesedevices, “programming”

themwith adesiredquantumstate,andperformingthedesiredcomputationthroughinter-

actionswith andamongthedevices.A comprehensive schemefor accomplishingthis has

beendescribed[18]. For illustration,Figure2.2bshowsa2-D arrayof closely-spaced,and

therefore interacting, quantum dots.

Discrete-quantadevicesandtheresultingquantumcomputingsystemsappearto repre-

sentthefinal frontier of computing,combiningtheultimatein down-scalingandminimal

energy consumptionwith the ability to performamazingcomputationalfeats.However,

the time frame and challengesfor constructinga general-purposecomputerare much

greater for discrete-quantadevices than for distribution-function, quantumelectronic

devices.Therefore,sincethis researchpursueda moreshort-termrealizationof applying

quantumeffectsto computing,the focusin this research,andthe discussionhereafterin

this dissertation,will be on quantumelectronic(i.e., distribution-function)devices.This

a) Possib le Quantum De vice:
Hydr ogen Atom

photon

"0" to "1"

"1" to "0"

b) Possib le Quantum Computer:
Quantum Dot Arra y

Figure 2.2: Possible quantum computing device and system

(a) shows a two energy statesof a hydrogenatom,wherea “probe” photonof the
correctenergy will shift theelectronto theotherenergy level, causingtheemission
of a photonif theelectronwasis in thehigh energy state.(b) shows a 2-D arrayof
interactingquantumdot structures,which might serve as a prototypequantum
computer.
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focushasimportantimplicationsfor thetypeof quantumdevice simulatordeveloped,and

for the prototypedevice usedto test it, asdiscussedin Section2.3. Hereafter, any refer-

ence to quantum devices assumes the distribution function type, unless stated otherwise.

2.2 Phenomena and Structures for Quantum Devices

Givena generalpictureof quantumelectronicsfrom Section2.1,andhaving decided

in Section2.1.3 on the type of quantumdevices that will be considered,deducingthe

detailsof quantumelectronicswith thosedevicesnow begins,startingat the lowest(and

leastspeculative) level. Section2.1.2reachedthegeneral(but important)conclusionsthat

therelevantquantumeffectsarewave phenomena,andthatthestructuresusedto produce

themcanbecreatedby band-gapengineering.This sectioninventoriestheavailablerange

of quantumphenomenaand associatedstructuralelementsfor quantumelectronics.To

facilitate this, complete and unabashed advantage is taken of the optical analogy.

2.2.1 Basic Quantum Wave Phenomena

In deducingthenatureof operationof quantumelectronicsystems,thefirst stepis to

list the phenomenathat canbe usedto develop a quantumwave processingtechnology.

Thebasicwave phenomenathatarefamiliar from opticalsystemsincludewave propaga-

tion, refraction, reflection, diffraction, interference,and evanescentwave penetration.

Basedon the optical analogy, and using band-gap engineering,it shouldbe possibleto

produceall of theseeffects in quantumelectronicsystemsas well. Indeed,Table 2.1

describesthesewave phenomenafrom a quantumsystemperspective andgivessketches

of simpleenergy bandstructureswhich have beenusedto produceeacheffect. See[5-7]

for the theory behind these wave phenomena and structures.

2.2.2 Basic Wave Components and Quantum Structures

The next steptowardsdescribingcompletequantumeffect devicesis to usethe phe-

nomenaandenergy bandstructuresin Table2.1to designsomeof thebasicwaveprocess-

ing elementsfor quantumelectronicsystems.Again drawing on the optical analogy, and

usingband-gapengineering,Table2.2 shows six suchelements:the refractor(lens)[23],

reflector (mirror) [24], beam splitter [25], waveguide [26], partial reflector [27], and

impedancematcher[28, 29]. Noteherethattheopticalanalogyshouldbeseenasasource
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Quantum (Wave) Effect Quantum System Component Structure (Example)

Refraction: Wave “trajec-
tory” bending due to wave-
length changes

Low band-offset material interface

Reflection: Wave “trajec-
tory” reversal at an inter-
face

High band-offset material interface

Dispersion: Refractive
index varies with wave-
length (and thus energy)

Semiconductors are inherently dispersive

Diffraction: Wave bending
around the edges of an
object

Small aperture defined by “opaque” material
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two or more waves. Con-
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Table 2.1: Fundamental quantum phenomena and associated structures
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Quantum Electronic Structure
(Optical System “Equivalent”)
Basic Quantum Effects (BQEs)

Structure/Energy Band Diagram Example
(Note: darker region = higher band edge)

Low-band-edge; High-bend-edge

Refractor (Lens)

BQE: Refraction

Reflector (Mirror)

BQE: Reflection

Beam Splitter/Analyzer (Prism)

BQEs: Refraction, Dispersion

Waveguide (Waveguide)

BQEs: Reflection (abrupt
waveguide); Refraction (graded
waveguide)

Tunnel Barrier (Partial Reflector,
Beam Splitter)

BQEs: Evanescent Penetration

Impedance Matcher (Anti-Reflec-
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Table 2.2: Basic wave processing elements in quantum electronic systems
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of ideasandunderstanding.It is not necessaryto reproduceevery opticalcomponentin a

quantumsystem,althoughthis could probablybe done.The analysisto this point, and

especiallytheopticalanalogy, shouldbesufficient to provideavisualimageof whatquan-

tum phenomena and quantum devices will be like.

2.3 Devices for Quantum Electronics

The purposeof this sectionis to show how the phenomenaand functionalelements

discussedin Section2.2 canbe combinedto producepotentiallyusefuldigital quantum

electronicdevicesandsystems.It is not possible,of course,to discussevery potentially

useful quantumelectronicdevice — all suchdevices are certainly not known. Instead,

somegeneralconceptsabout quantumdevices are considered.Then someprominent

examplesof quantumdevicesareconsidered,drawing from the two classesof (distribu-

tion function) quantum devices: quasi-equilibrium devices and far-from-equilibrium

devices. Finally, conclusionsare drawn about the characteristicsof potentially useful

quantumelectronicdevicesin the nearterm,andthereby, a prototypequantumdevice is

chosen as a test-case for the quantum device simulator developed in this work.

2.3.1 General Concepts of Quantum Devices

Themotivationfor investigatingquantumdeviceswasto solve thequantumchallenge:

to find a way to continuedown-scalingdigital electronicdevicesin spiteof thequantum

barrier. Given a short-termapproachto answeringthis challenge,the solutionsoughtin

this sectionis a simple quantumreplacementfor the conventional transistor. First, the

characteristicsnecessaryfor a direct replacementof a digital computingdevice aredis-

cussed.Thenthegeneralunderstandingof quantumphenomenaanddevice structuresdis-

cussedin Section2.2is usedto predictwaysin whichsuchdevicesmightbeachievedwith

quantum wave phenomena and quantum wave processing elements.

Beginningwith conventionalelectronicsthen,Figure2.3 shows a block diagramof a

genericswitching device. A basic conventional digital electronicdevice functions by

usingan input voltageto modulatethe heightof a potentialbarrierto currentflow along

theoutputpath.The “necessary”characteristicsof conventional(digital) electroniccom-

puting devices can be described as follows [10, 30]:6

• gain — small input change produces large output change,
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• fan-out — output can supply sufficient current for multiple inputs,

• isolationof input from output— outputvoltagedoesnotaffectdeviceoperation,

• inversion — output varies oppositely to input, and

• well-defined logic (voltage) levels for I/O signals (strong device non-linearity).

Giventhesegeneralcharacteristics,two classesof quantumdevicesareconsideredbelow

in terms their potential to replace a conventional digital switching device.

2.3.2 Quasi-Equilibrium Devices

Quasi-equilibriumquantumdevicesuselow resistancewaveguidesandinterferenceto

implementswitching.Thesedeviceswork best(or only) with very low biasesalongthe

outputwaveguidepath[9], which is theorigin of thedesignation“quasi-equilibrium”.The

prototypequasi-equilibriumdevice is the quantuminterferencetransistor(QUIT) [31].

The QUIT (seeFigure2.4) hasan analogousdevice in optical systemscalledthe Mach-

Zenderinterferometer[32]. In theQUIT, aquantumwavefunctionsplits,travelslosslessly

along two (or more) paths,and then rejoins to interfereconstructively or destructively.

Along one or both paths,the carrier wavelengthcan be purposelyalteredsuchthat the

wavesrecombineeither in-phase(constructive interference),which resultsin high trans-

mission, or out-of-phase (destructive interference), which results in low transmission.

FromEquation(2.1),notethatwavelengthis relatedto theposition-dependentpoten-

tial energy U. Further, sincepropagation alongeitherpathof the QUIT is to be lossless,

6. It mustbeemphasizedthat thesecharacteristicsarerelevantonly for thehybrid classical-quan-
tumdevices,in whichdissipationis allowed.In theultimate,discrete-quantadevices,someof these
characteristics are either not necessary or not desirable.

Figure 2.3: Conventional electronic switch (FET, BJT)

Thebasicdigital device building block consistsof a low-power controlling(Input)
electrodewhichmodulatestheresistanceof ahigh-powerconductionpathbetween
theothertwo electrodes(Power andOutput).A quantumreplacementdevice must
have an equivalent function.

Power Output

Input (Gate, Base)

Output Path(Source, Emitter) (Drain, Collector)
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thetotal carrierenergy E is constant.Therefore,a potentialenergy differencebetweenthe

two paths(e.g.,producedby applyinga voltagebetweenthem)will resultin a difference

in wavelength and total phasechangealong the paths.Figure 2.4 shows a possible

(XNOR) logic gatebasedon theQUIT [9]. Here,thedevice is designedto producea 180˚

phaseshift on thecarrierwavefunctionbetweena logic 0 anda logic 1 input (gate)volt-

age.

As a discretedevice, the QUIT has long beentouted as having an extremely low

power-delayproduct[31], a goodmeasureof switchingefficiency. However, the issueis

whethersuchaquasi-equilibriumquantumdevicecanreplaceconventionaldigital logic in

a denselyintegratedcircuit. As their nameindicates,quasi-equilibriumdevices require

very low appliedbiasesto operateproperly. In thecaseof theQUIT, carrierheatingresult-

ing from a potentialdropalongthewaveguidepathsincreasesinelasticscattering,sothat

interferenceeffects begin to fade.Device function is also significantly affectedby any

change in the potentialat the output.If the outputpotentialchanges(e.g.,dueto a load

change),thephasedifferencebetweenthetwo paths,andthustheinterferenceresult,also

changes.Otherproblemsof quasi-equilibriumdevicesarethatthey donotexhibit gainand

requirecryogenicoperation[10]. Thus,quasi-equilibriumquantumdevicesdo not appear

to be suitable as a direct quantum replacement for conventional transistors.

Figure 2.4: Quantum interference transistor XNOR gate

A symmetricQUIT exhibits constructive interference(high conductivity) for the
samebiasonbothwaveguides,but canbedesignedto producedestructive interfer-
ence (low conductivity) if the inputs differ.
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2.3.3 Far-From-Equilibrium Devices

If thereis to bea directquantumenhancementof, or substitutefor, conventionalelec-

tronic switches,it will come from the far-from-equilibrium classof quantumdevices.

Thesedevicesusetunneling,quantumwells,andsuperlatticesto achieve higheroperating

voltages,albeit with resulting energy dissipation.The prototype far-from-equilibrium

quantumdevice is theresonanttunnelingdiode(RTD) [33]. Its basicenergy banddiagram

andI-V characteristicareshown in Figure2.5.Notethat this device is essentiallya quan-

tum well definedby tunnel barriers.The RTD has high current (resonance)when an

allowedenergy statein thequantumwell linesup with thebandminimumin theemitter

electrode. For details on RTD operation, see [34].

Again the questionis whetherfar-from-equilibriumquantumdevicescanpotentially

enhanceor replaceconventionaltransistors.This time, the answerappearsto be “yes”.

Resonanttunneling transistorshave been proposedby contacting (either directly or

throughaninsulator)theRTD quantumwell. In fact,resonanttunnelingtransistorsof var-

iousdesignshave actuallybeenfabricatedfor proposeduseasfrequency multipliers,par-

ity generators,multi-statememory, andA-to-D converters[35]. Therearestill difficulties

with thesuccessfulimplementationof this technology[9], thoughthey appearlessfunda-

mental than the limitations of quasi-equilibrium quantum devices.

Figure 2.5: Resonant tunneling diode structure and I-V curve

Currentis at a maximum(resonance)whenthe quantumwell statelines up with
the emitterminimum,so that electronsin the emitter(which areat energiesnear
the minimum) can tunnel through the quantum well state.
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2.3.4 Prototype Quantum Electronic Device

Basedon the above analysis,the RTD wasusedasthe prototypequantumdevice for

directing the development,testing the features,and benchmarkingthe performanceof

SQUADS, asdescribedin theremainderof this dissertation.TheRTD waschosenmainly

in deferenceto theshort-termfocus:RTD-baseddevicesarenot totally differentfrom con-

ventionalelectronicdevices- they supportrelatively large appliedbiases,they have I/O

signalswhich arecurrentsandvoltages(ratherthanquantumwaveswhich mustsomehow

be converted),andquite usefulroom temperatureoperationhaseven beendemonstrated

[10]. In fact, in comparisonto the discrete-quantadevices discussedin Section2.1.3,

RTD-baseddevicesarejustasmallfirst stepfrom conventionalelectronicdevicestowards

the ultimate quantum devices and true quantum computing systems.

In addition to the RTD’s similarity to conventionalelectronicdevices as described

above, the RTD hasmuchto recommendit for its prominentrole in the developmentof

SQUADS. The generaldifficulty or impossibility of conductingexperimentalquantum

electronicsresearchslows both theoryandsimulationefforts, sinceeachapproachbuilds

on the results,both successesand failures,of the others.Therefore,the secondmost

importantfeatureof RTDs is simply thefactthatthey canbefabricatedwith existing tech-

nology. The result is that RTD-baseddevices have beenwidely studiedexperimentally

[33, 35]. The availability of experimentalmeasurementshasbeenvery beneficialin the

developmentof SQUADS, enablingthedevelopmentof a moreaccuratesimulationtool.

The symbiotic relationshipbetweensimulationandexperimentin this work is clear. On

one hand,simulationsindicate which devices, materials,dimensions,doping, etc., are

promising,andthey describethe“ideal” operationto which realdevicesshouldaspire.On

the other hand,experimentsindicate invalid simplifying assumptionsin the simulation

models,the numericalaccuracy required,andsecondaryeffects(e.g.,scattering)that are

(or arenot) importantfor anaccuratemodel.Whenaneffect canbesafelyneglected,the

simulationwill bemoreefficient,but effectswhich areinappropriatelyignoredin a simu-

lation or not implementedin thesimulatorresultin an inaccurateprediction.Laterchap-

ters of this dissertationinclude comparisonsbetweensimulations and experimental

measurements.

Anotherkey featureof theRTD is thefactthatit is thesimpleststructurein whichboth

quantumtunnelingandspatialquantization(dueto quantumself-interference)candomi-
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natedevice operation,even at room temperature.As a result, the RTD hasbeenwidely

studiednotonly experimentally, but alsoanalyticallyandnumerically, sothatits physicsis

now well understood.Finally, quantumdevicesareintendedfor very high speedapplica-

tions,andtheRTD is a very fastdevice [36]. All of thesefactsmadevery easythechoice

of the RTD as the prototype device for the development of SQUADS.

For thedevelopmentof a generalquantumdevice simulator, thedevice characteristics

that thesimulatormusthandleshouldbeenumeratedindependentlyof thedescriptionof

any test device. This requiresessentiallya summaryof what hasbeendeducedabove

aboutpotentiallyusefulquantumdevices,basedon theshort-termapproachin this work.

Thus, SQUADS must simulate devices which are:

• unipolar (no bipolar effects such as recombination-generation),

• heterojunction-based (abrupt band offsets),

• far-from-equilibrium (non-linear, self-consistent band-bending),

• irreversible (scattering), and

• very high-speed (transient).

A reasonablecasecan be made for the implementationof two-carrier simulation in

SQUADS, sincesomeproposedresonanttunneling transistorsand most quantumwell

laser diodesare bipolar. In thesedevices, both carrier types,both the conductionand

valencebands,recombination-generation,andphotoneffects(laserdiodesonly) mustbe

treated.Suchbipolareffectsarenotcurrentlyhandledby SQUADS, but their implementa-

tion in SQUADS is certainly feasible.

2.4 Quantum Electronic and Quantum Computing Systems

This sectiondiscussesthechallengesandpossibilitiesof integratingquantumdevices

into highly-functionalquantumsystems,andhow the ultimatequantumcomputermight

operate.Theseaspectsof quantum-effect computinggo beyondwhat is strictly necessary

for thepurposesof quantumelectronicdevice simulatordevelopment.A prototypequan-

tum device hasalreadybeenselectedfor testingSQUADS, andthedevice characteristics

which areessentialfor SQUADS to handle,andthosewhich arenot, have alreadybeen

determined.The purposein analyzingthe challengesandpossibilitiesof completequan-

tum-effect (includingquantumelectronicandtruequantum)computingsystemsis to show

wherequantumelectronicdevice simulationresearchfits in theprogresstowardsthereal-
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ization of quantum-effect computing.

2.4.1 Ar chitecture Challenges and Conclusions

In Section1.1, theconclusionwasthat theonly way to scaleULSI electronicdevices

beyond the quantumchallenge(the inevitable increaseof quantumeffects)wasto adopt

quantumphenomenaastheoperatingmechanismsof thesmallerdevices.Quantum-effect

computingwasadvocatedasa revolutionaryapproachto advancingelectronicsinto the

quantumregime. But in previous sectionsof this chapter, a short-term,evolutionary

approachto usingquantumphenomenain electronicswasactuallyadopted,by looking for

quantumdevicesthat could directly replaceconventionalelectronicdevices(in the same

circuit architectures).Note that thequantumchallengeis not theonly problemfacingthe

advancementof ULSI asit pushestowardhigherintegrationdensities.Otherseriousprob-

lems include interconnect-dominateddelay and scaling limits, increasingcross-talk,

increasinghardandsoft-errors,andinefficientarchitectures.If quantumintegratedcircuits

don’t remove or at leastmitigateeach of theseproblems,the potentialbenefitsof using

quantumdevicesover conventionaldeviceswill besmallor non-existent.In otherwords,

to significantlyimprove on ULSI, it will not besufficient to simply replaceconventional

devices with quantum devices.

Thefollowing is a list of otherproblemsandchallengesfacedby ULSI, andtheresult-

ing characteristicsthatcomputingsystemsmusthave to achievequantumscaleintegration

[12, 37, 38].

• Interconnect scaling and delay limits are serious and increasing.

• Limited-interconnect architectures will be mandatory.

• Function per interconnect must increase.

• There will be many basic logic units, rather than a single universal switch.

• Device and interconnect cross-talk increases as device spacing decreases.

• Isolated, functionally independent devices will be impossible.

• Inter-device coupling must be used for communication.

• Circuit operationwill begovernedby distributedcomputationandcollective

modes of behavior.

• Hard and soft error probability will tend to increase.

• Fault-tolerant architectures will be necessary.
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• Low parallelism limits speed in conventional architectures.

• High levels of computational parallelism are required.

In discussingquantum-effect computingarchitecturesandoperation,it is difficult to

separateany of theseissuesandtheir implicationsfrom theothers.Therefore,thediscus-

sionis presentedin reverse,by simply describinga viablequantumelectronicarchitecture

and how it might operate,and then presentingthe reasoningbehindthesespeculations.

Theresultsareasfollows.Thequantum-effect computerwill have a hierarchicalarchitec-

ture.On thelargescale,it maylook muchlikeaconventionalULSI circuit, with relatively

conventional interconnectionsbetweenwhat appearto be single devices. But these

“devices” areactuallyquantum“sub-circuits” in themselves,eachproducinga very com-

plex function comparedto the simpleswitch that they essentiallyreplacefrom conven-

tional circuits.Thequantumsub-circuitsmustusea limited interconnectarchitecture,for

which two optionshave beenproposed:cellularautomatonarraysandquantumwave fil-

ters.Eachof theseoptionshasits own advantagesand challenges,which are explored

below. Thesearchitecturesareevenmoremandatoryasthesub-circuitsscaledown from

thequantumelectronicdevicesthatarethefocusof this work to truequantumcomputers

(Section 2.1.3).

2.4.2 The Cellular Automaton Architecture

The interconnectchallengeis perhapseven moreseriousthanthe quantumchallenge

to the advancementof electronics.Unlessquantum-effect computersuseslimited-inter-

connectarchitectures,it will not bepossibleto improve substantially, if at all, on theinte-

gration limits of conventionalelectronics.In the upperlimit of integrationdensity, only

somethinglike a nearestneighborinterconnectionschemeis possible.An arrayof digital

devices interactingwith nearest-neighborsessentiallydescribesthe cellular automaton

architecture[12]. It hasbeenshown that,in theory, a cellularautomatonarraycanbecre-

atedto produceany desireddigital function [12]. For example,Figure2.6 shows a small

inhomogeneous(differing interactionrules)2-D cellularautomatonarray. 3-D arraysare

also possible.

In a quantum-effect computer, becauseof the minute size of individual devices, it

might seemthat a quantumcellular automatonarray(QCAA) musthave periphery-only

access- inputsmustbesupplied,andoutputsmonitored,only at theperipheryof thecir-
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cuit. However, it may be possibleto supply inputs optically to interior devices [22].

Capacitive coupling has beenproposedfor communicationbetweennearest-neighbors

within a QCAA [9], andtunnelingmight alsobeused.Both would eliminateall physical

interconnectswithin thearray. However, they arerelatively weak(high attenuation)inter-

actions.That is, signals(voltagesfor capacitive coupling,quantumwavesfor tunneling)

would be seriouslyattenuatedin the distanceof very few cells.Thus,it is not clearhow

theeffectof aperipheralinputsignalcouldsuccessfullycascadethroughthearraywithout

externalpowercontactsto thearrayinterior. A singleglobalcontactaboveor below a2-D

QCAA offers somehopeof accomplishingsignal restoration,thougha mechanismfor

doing so must be found. Alternatively, photonemissionand absorptionmight allow a

more lossless interaction between devices.

Note that theQCAA architectureinherentlysolvesthecross-talkproblemof conven-

tional electronicsto someextent.Cellularautomatonarrayoperationis basedon nearest-

neighborinteraction,using“cross-talk” to communicatebetweendevices.In contrast,in

conventionalelectronics,cross-talkis detrimentalto propercircuit operation,andmustbe

suppressedusing adequatedevice isolation. Even in the QCAA circuit, the interaction

mustbelimited, sincedevicesmustbeisolatedenoughto maintaintheir own digital state,

and much of the circuit function is accomplishedthroughthe designof the interaction

rules between devices.

Findingsomeway to adequatelyisolatequantum-sizedcellsin aQCAA seemsquitea

challenge,especiallysincecell operationis basedon waves,which areinherentlydifficult

Figure 2.6: Inhomogeneous 2-D cellular automata array

Diagramis meantto indicatenearest-neighborinteractionof a2-D arrayof cellular
automata with differing interaction rules.

Automaton Cell

Sources and detectors
arrayed around periphery
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to confine.The isolationbetweenindividual cells in the QCAA might be accomplished

with heterojunctionsperhapsnot unlike grain boundariesin polycrystallinesemiconduc-

tors.Finally, thecellularautomatonarchitecturegoesa longwaytowardssolvingtheother

challengesof conventionalULSI architecturesaswell. It canbe stabilizedagainstnoise

(“f ail-soft”) [37], and its inherent distributed processing,perhapscombinedwith the

redundancy that is feasiblewith quantum-scaledevices,canprovide fault tolerancefrom

single-cell hardware failures.

2.4.3 The Quantum Filter Ar chitecture

An alternative to thequantumcellularautomatonarrayfor thequantumsub-circuitsis

the quantumwave filter (QWF). Externally, the QWF looks very similar to the QCAA,

with periphery-onlyaccess.However, internally, theQWFwouldnothavedistinguishable,

independentdigital devices,but rathershouldbe viewed asa single,extended,complex

heterojunctionstructuredesignedto performsomedesiredtransformationof thequantum

wave.Thisquantumwavefilter conceptis at thesametimemoreradicalandmorepromis-

ing than the QCAA as a basis for a viable quantum-effect computer architecture.

To visualizehow computingmight beaccomplishedwith a QWF, considerthequan-

tum wavefunction of a carrier propagating through a quantum-scalesystem.Quantum

effectsthatthis carrierexperiencesaretheresultof its wavefunctioninterferingwith (i.e.,

scatteringelasticallyoff) the local energy bandsandwith itself as it propagatesthrough

the system.Eachsuchinteractionresultsin somepredictable(via the Schrödingerequa-

tion) transformationof the carrier’s wavefunction. By selectively combining many of

theseinteractions,any desiredtotal transformationof the wavefunctioncan (at least in

principle)begenerated.This kind of signalprocessingis analogousto opticalcomputing

[1], and so is not a purely theoretical concept.

Following this idea further, imagineimplementinga binary adderas a QWF. There

would be one input waveguide for each bit, and a wavefunction is sent down each

waveguidethat hasa logic-1 input. Insidethe QWF, the input waves interfereconstruc-

tively anddestructively, asin the quantuminterferencetransistor, suchthat the quantum

wavesresultingon theoutputwaveguidesgive thepropersumbit patternfor theexisting

input bit pattern.Note that interference(summationof two 180˚ out-of-phasewaves) is

essentiallyan XOR operation.NOT can be implementedsimply as a 180˚ phaseshift.



30 Chapter 2.Overview of Quantum Electronics

Also, the summationof in-phasewaves is like an OR logic function. Finally, a NOT1/2

(90˚ phaseshift) canbecreated,sothattwo successive operationsgive NOT, althoughthe

usefulnessof this logic functionis not manifest.Otherlogic functionsmaybepossibleas

well. In fact,theAND, OR, NAND, andNOR logic functionshave beendemonstratedin

optical computingsystems[39]. In any case,the QWF shouldbe function-complete,so

thatit shouldbeableto produceany desiredlogic function.Becausethephaseof thewave

is very importantto theproperfunctionof theQWF, boththeorderandthelocationsof the

interferencejunctions are significant.Note that the QWF vindicatesquasi-equilibrium

quantumdevices(suchasthequantuminterferencetransistor)thatweredismissedin favor

of far-from-equilibrium quantum devices (such the RTD) based on the short-term

approachof this work. In the long-term,quasi-equilibriumdeviceswill undoubtedlybe

king of the quantum hill.

Basedon theexistenceandinitial successof optical computing,theQWF conceptas

expressedabove appearsto have a reasonablechanceof success.However, two complica-

tionsmustbe treated.First, in orderfor quantumwavesto interfere,they mustbephase-

coherent.If independentcarrierstravel down eachlogic-1 inputwaveguide,theassociated

wavefunctionsarenot phase-coherent,so they would not produceany usefulinterference

result. Since the quantumwave of a single carrier is phase-coherentwith itself, one

approachmightbeto justsplit thatsinglecarrier’squantumwave into therequirednumber

of “1” bits andsendit into the inputs.This alsowon’t work, becauseif only a singlecar-

rier goesin, only asinglecarriercanbedetectedat theoutput,regardlessof thenumberof

outputbits thatshouldbelogic-1.Thingsgeta little betterby splitting thequantumwave

of many carriersafter they have traveledtogetherfor a while. Experimentsin interfering

suchmulti-carrierwavefunctionsshow strongerinterferencethanexpectedassuminginde-

pendentparticles[32], but still notgoodenoughto beusedasthebasisof aQWF. Thus,it

mustbeadmittedthatsomemeansof creatingaphase-coherentquantumwaveis essential.

At first, this seemsimpossible,sincethewavefunction,andparticularlyits phaseinforma-

tion, hasbeenthoughtto be not directly measurable,much lessmanipulated.However,

experimentsin electronholography [40] indicatethat wavefunctionphasecanindeedbe

measured,which meansthat it may be possibleto createa phasecoherentmulti-carrier

quantum wave just as a coherent optical wave is created in a laser.

A secondproblemwith the QWF conceptis the large numberof inputsandoutputs
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required.EventhoughtheQWF mayperforma very complex function,if it doessoin the

spaceof a singleconventionalelectronicdevice, how cansufficient inputsandoutputsbe

suppliedfor that function?Few useful and significantcomputationsrequireonly a few

variable inputs. Fractal calculationsare one example.A more typical caseis a 10-bit

adder, which requiresfully 22 inputs(2 setsof 10 bits, and“power”) and11 outputs(10

bits anda carry).Clearly makingover 30 contactsto a device the sizeof a conventional

transistoris unrealistic,sincemakingjust threeor four is increasinglydifficult now. The

solutionseemsto beto serializetheinputandoutput,whichshouldreducetheinputcount

to perhaps4 (2 inputs,1 output,andpower). Unfortunately, usingserializedinputsand

outputsmight significantlydelaythecalculation,andrequiresthedevelopmentandnear-

ubiquitous use of some form of quantum shift register.

The QWF architecturesharesall of the advantagesof the QCAA over conventional

electronics(limited-interconnectarchitecture,high-function“devices”, inherentlyparallel

for speed,and distributed for fault-tolerance).It also avoids many of the remaining

unknownsandchallengesof theQCAA architecture.First, inter-device isolationis totally

eliminated,which side-stepsthevery difficult problemof QCAA of providing someform

of engineeredof device isolationeven at quantumscaleintegration.In fact, in the QWF,

makingany distinctionbetween“devices”and“interconnects”(waveguides)is tenuous—

both perform a significant operation on the propagating wavefunction.

The absenceof isolation in the QWF alsosolves the relatedproblemof the QCAA,

that signal renormalizationwas neededdue to signal attenuationbetweensemi-isolated

nearest-neighbordeviceswhich needto communicate.TheQWF simply admitsthatwith-

out gain, inter-device isolation is not desirable— the signal shouldpassunattenuated

throughtheQWF andto theoutputs.With theQWF, the input wave will eitherbe trans-

mittedto theoutputor reflectedlosslesslybackto theinput. In fact,ideallynopoweratall

is usedin the computation!How is it possibleto perform a very complex computation

while usingzeroenergy, whena non-zerominimum energy hasbeenderived for even a

singleswitchingevent [41]? This is oneof theamazingfeaturesof quantumphenomena:

aslong asonly wave effectsareused,no energy is expended.Anotherway to saythis is

thatno energy is lost aslong asno informationis lost [41]. Purequantumwave phenom-

enaloseno information- givena wavefunctionat any point in time, andits environment

(theQWF, in this case),onecanprojectexactly how thewavefunctionwill evolve into the
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future (or how it looked in the past).Energy is only necessarilyexpendedin supplying

inputs and detecting the results of the computation.

2.4.4 General Comments

A completediscussionof quantum-effect computerarchitectureand operation is

beyond the scopeof this dissertation.In this overview, only two moreissuesareconsid-

ered.First, recall from Section2.4.1the(asyet unsubstantiated)predictionthatquantum-

effect computerswill have a hierarchicalarchitecture,ratherthanbeinga singlequantum

circuit. The reasonis inelasticscattering,alsocalledthe “decoherenceproblem” [17, 19,

42]. Whena quantascattersinelastically, it is essentially“detected”at that location. In

quantumtheory, thequantumwavefunctionhas“collapsed”(it is localizedto apoint),and

thenew quantumwave hasno continuityor coherencewith thepast[43]. But coherence

and continuity of the quantumwavefunctionare essentialfor properoperationof wave

phenomena.Therefore,predictablewave-basedoperationof quantumdevicesrequiresthe

bulk of thequantumcircuit to beessentiallyfreeof inelasticscattering.This in turnessen-

tially meansthat the quantumcircuit mustbe smallerthanthe averagedistancebetween

scatteringevents,which is calledtheelasticmeanfreepath.Luckily, theelasticmeanfree

pathcanbeup to many tensof microns[25], thougha few micronsis moreattainable.Of

course,limiting the total integratedcircuit size in a quantumcircuit to a few micronsis

undesirable.A hierarchicalarchitectureis the obvious solution,wherethe few-micron-

sizedquantumsub-circuitswould be interconnectedmore-or-lessconventionally in the

larger quantum integrated circuit [12].

Second,considertheimplicationsof thefactthatwavephenomenaareinherentlyana-

log in nature,but a replacementfor digital electronicsis being sought.Becausewave

effectsaredistributed,they usuallycannot,evenin theory, producea perfectdigital result

in any interferenceevent.As a result,it may turn out thatquantum-effect computerswill

only exceloverconventionalcomputersin “fuzzy” artificial intelligenceapplications.This

applicationalone would be sufficient motivation to pursuequantum-effect computing.

However, the analognatureof quantumwave phenomenashouldnot automaticallydis-

qualify quantum-effect computersasthefutureof digital computing.Althoughwave pro-

cessingis inherentlyanalog,detectinga quantais perhapsthe only perfectbinary event,

giving eitherzeroor one,andnothingelse.Unfortunately, theexact locationof detection
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of agivenquantais probabilistic.However, aproperlyconstructedquantumcomputercan,

in theory, make the probability arbitrarily close to binary. Note that some“guessing”

occursin all digital systems.For example,voltagerangesarespecifiedfor acceptablesig-

nalsin digital logic, maximumlikelihoodcircuitry is now usedin harddisk drive readcir-

cuitry, etc. In this sense, all computing systems are contrived to act as if they were binary.

2.5 Summary

Thischaptersummarizedthefield of quantum-effectcomputing:theideaof producing

usefulanalogor digital signalprocessingusingelectronicdeviceswhoseoperationis fun-

damentallybasedon quantumwave phenomena.Accomplishingdigital computationwith

wavesseemsat leastinefficient, if not impossible.However, initial researchwith optical

computinganddiscretequantumsystemsprovidessomecluesto whatmaywork. With the

intentof applyingthiswork in theshort-term,theresonanttunnelingdiodewasselectedas

the prototypequantumdevice for directing the development,testing the features,and

benchmarkingtheperformanceof SQUADS. TheRTD hasmany featuresto recommend

it, includingsimplicity of structureandrichnessof physics.Fromtheprocessof choosing

this test device, several key featuresthat SQUADS must handlehave beenspecified:

abrupt material changes, self-consistency, scattering, and high-speed transient operation.

The discussionin this chapterclearly shows that investigating discreteRTD-based

devicesis but a tiny stepinto thequantumrealm.However, it is anundeniableandneces-

saryfirst step.SQUADS wasdesignedto illuminate this stepandtherebyto help direct

futureprogress.Evenwith suchtools,theapproachtowardthefull realizationof quantum

electronics,muchlesstruequantumcomputing,will continueto bedifficult. In spiteof the

considerableeffort thathasalreadybeenfocusedonthedevelopmentof quantumelectron-

icsasaviablesuccessorto ULSI electronics,many significantbarriersstandin thewayof

realizing this goal:

• conventional circuit architectures will not work,

• conventional computing models may not work,

• quantum physics is unfamiliar and unintuitive,

• quantum device simulators are rudimentary, and

• fabrication capability for quantum devices is also rudimentary.

Perhapsthebiggestbarrierto thedevelopmentof quantum-effect computingis skepti-
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cism.Basedon the many unknowns indicatedabove, it is not difficult to understandthis

sentiment.A conceitof eachgenerationis thebelief thatno significantdiscoveriesremain

to bemadein physicsandtechnology. This notionhasnever provedcorrect,andthereis

no indication that the paceof scienceand technologywill even slow, much lessstop,

becauseof suchbeliefs.Admittedly, the debateis far from over concerningwhetherany

technologywill follow ULSI electronics.If thereis a successortechnology, thedemands

of thecomputingpublicwill eventuallyforceusto find it, andit will bebasedonquantum

effects.Perhapsthe besttechniquesavailablein the questfor quantum-effect computing,

then, are the ability to suspend disbelief and to ignore conventional wisdom.
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Chapter 3

Quantum Device Simulation Approach

Many formulationsof quantummechanicshave beenproposedasmathematicalfoun-

dationsfor numericalsimulationof quantumsystems.Eachhas its own strengthsand

weaknesses.The theoreticalinvestigationof quantumelectronicsin thepreviouschapter,

andespeciallythedecisionsmadeaboutthetypesof thequantumdevicesto besimulated,

allows this chapterto describethe processby which the two formulationson which

SQUADS is basedwere chosen.The choicehingeson which formulationsof quantum

mechanicsoffer the bestcombinationof capabilities,accuracy, and computationaleffi-

ciency in a numericalsimulation.In addition,this chapterdescribestheplanof actionand

the guiding principles behind SQUADS’ development process.

Thefirst stepin designinga planof actionfor thedevelopmentof SQUADS is to ana-

lyze thestateof thefield of quantumdevicesimulation,which is donein Section3.1.Sec-

tion 3.2 thenenumeratesspecificallythegoalsof this effort to developa quantumdevice

simulation capability. Section3.3 examinesconventional electronicdevice simulation

methodsto extract any insight andguidanceit offers for the developmentof SQUADS.

Next, the variousformulationsof quantummechanicsarecomparedin Section3.4, con-

cludingwith thedeterminationof which formulationsarebestsuitedto the taskof simu-

lating RTD-like quantumdevices.Finally, Section3.5 combinesall of this analysiswith

thediscussionof severaladditionalissuesto completetheplanof actionandlist theguid-

ing principles for developing SQUADS.
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3.1 State of Quantum Device Simulation

Quantumdevice simulationwork to datehasbeenratherdisorganized.Themainrea-

sonis that thereis no softwarepackagethat providesa base-lineof functionality which

researcherscanuseandenhance(for example,like PISCES[1, 2] for conventionaldevice

simulation). Luscombeand Frensley have advocated such a tool [3], and Frensley

describedinitial work to realizeit in a simulationprogramcalledBandProf[4]. However,

BandProfhasapparentlynot beenmentionedin the literaturein the five yearssincethis

first description,it wasnotwidely availableat thetime(only onesupportedplatform),and

did not have all of thecapabilitiesnecessaryfor generalquantumdevice simulation(e.g.,

no transientcapabilitywasdescribed).Work by otherresearchershave generallygivenno

consideration at all to use of their simulation tools by others.

Dueto thelack of a widely availableandeasilyextensiblequantumdevice simulation

tool, eachresearchteamhashad to implementthe samebase-linefunctionality them-

selves,beforethe enhancementsof interestcould be addedand investigated.Of course,

this new functionality is not availableto anyoneelse,sinceeachgroup’s quantumdevice

simulationtools have independently-evolved structuresandinterfaces.All of thesefacts

have madeadvancesin quantumdevice simulation much slower than necessary. This

understandinghada definingimpacton the goalsanddesignprinciplesof SQUADS, as

describedin the remainderof this chapter. As a result,SQUADS may becomethe first

quantumdevicesimulationtool whichhasthenecessarycharacteristicsto serveasa foun-

dation for future quantumdevice simulationwork, and thus to enablemuchmorerapid

advancements in the field.

3.2 Goals of Quantum Device Simulation

Theoverridinggoalof this researchis to developa general quantumdevice simulator,

whichmeansthatthis tool shouldbeableto efficiently modelquantumdeviceoperationin

any useful modeof operation.Basedon the conclusionsand decisionsof the previous

chapter, this goal cannow be clarified.The quantumdevicesof interestin this work are

externally similar to conventional electronicdevices, so that the quantumdevices can

eitherenhanceor replaceconventionaldevicesin existing architectures.Therefore,input

andoutputsignalsof thesequantumdevicesarevoltagesandcurrents.Theresultinggoal

of this researchis to develop the capability to simulatecurrentflow throughquantum
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devices,eitherversusappliedbias(current-voltagecurve), time (switchingresponse),or

both (small-signal behavior).

Having statedthis, the main goal of this chapter is to explain the choiceof formula-

tionsof quantummechanicsthatserve asthemathematicalbasisof SQUADS. An essen-

tial ingredientin understandingthis choiceis a statementof thegoalsof this work. Recall

that the goal of quantumelectronicsfor the purposesof this dissertationis to improve

uponULSI electronicsby integratingquantumdevicesatquantumscaleintegrationdensi-

ties.Theidealprogressionof knowledgein thisendeavor is to build from theoryto simula-

tion to experiment.The overview of the theoryof quantumelectronicsin Chapter2 has

alreadybeenusedto direct this simulationeffort. In turn, the main purposeof quantum

device simulationis to guideexperiment.Theonesentencegoalof SQUADS, then,is to

fill the knowledgegap betweenidealizedquantumtheoryandhighly expensive quantum

experiment.Thefollowing list enumeratesin moredetailthewaysin whichSQUADS can

accomplish this:

• SQUADS can do things which are not experimentally possible:

• view the internal operation of a device,

• view entities not easily measurable (e.g., a quantum wavefunction),

• vary physical parameters/models independent of real materials and systems,

• investigate systems not possible or feasible to produce experimentally, and

• avoid experimental variation/uncertainty and measurement error.

• SQUADS can serve as an inexpensive substitute to experiment:

• orders of magnitude faster and less expensive,

• reduces the number of experimental iterations necessary,

• mistakes are not costly - simply correct and re-run,

• risk/benefittrade-off disappears- completefreedomto pursuenew ideas,and

• allows back-tracking or branching from an intermediate point at will.

• SQUADS can also serve as an adjunct to experiment:

• replication of experiment to derive additional understanding,

• verification of physical models and mechanisms, and

• highlights non-ideal device operation.

Basedon thesepoints,several designgoalsfor SQUADS canbestated.Most impor-

tantly for thechoiceof simulationmethods,SQUADS shouldbea general device simula-
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tor (i.e.,not tied to a singledevice).Also, it shouldprovide aninternalview of thedevice

stateandoperation,since,new ideasfor quantumelectronicswill undoubtedlycomefrom

insightgainedby “watching” the internaloperationof quantumdevices.This is informa-

tion thatexperimentcan’t provide: experimentonly givesaggregateterminalvalues(volt-

agesandcurrentsat contacts).The additionalinformation is especiallyimportantwhen

investigatingnew situations(suchasthequantumrealm)or designingnew deviceswhere

theoperationcan’t beextrapolatedfrom previousresults,or isn’t understoodbasedon the

experimentalresults.In suchcases,watchingtheinternaloperationis like turningthelight

on in a dark room or openingup a black box: reverse-engineeringor guessingwhat’s

going on in the device is unnecessary - the device’s operation physics becomes manifest.

Theincreasingimportanceof simulationwith respectto experimenthasbeena steady

trendin electronicsresearch.Early electronicsresearchwasnecessarilyan experimental

undertaking— computersof thetimewerenotcapableof doingsimulations.As semicon-

ductor devices have decreasedin size and improved in performance,the cost of using

experimentaliterationfor device developmenthasincreaseddramatically. However, each

generationof fastercomputershasmadeit possibleandalwaysmorenecessaryto improve

simulationtoolsandusethemto a greaterextentin researchanddevelopmentfor thenext

generationof devices.Quantumelectronicsresearchhassimply broughtthis trendmuch

closerto completion.This changeis duepartly to thegreatlyincreasedpower of comput-

ersto simulatephysicalsystems,but moreimportantlyin this caseto thefactthatnumeri-

cal simulation can provide a detailedviewport into a world that is otherwiselargely

inaccessible: the quantum realm.

Despitethe importancethatsimulationwill play in quantumelectronicsresearch,the

ultimategoalis to actuallybuild usefulquantumdevices,circuits,andquantumelectronic

systems.Of course,reality will be differentthansimulation,so experimentalresultswill

directsimulatordevelopment,asdiscussedin Section2.3.4.Only afterasimulatoris suffi-

ciently developeddoesthe influencearrow begin to reverse,so that simulationsdirect

experiment.Theimportanceof comparingto experimentalresultsduringsimulatordevel-

opmentcannotbeoverstated,becauseexperimentis thefire in whichasimulatoris tested.

The processof simulator refinementand experimentalverification is iterative. In fact,

comparisonsbetweensimulationsandexperimentaldatain laterchaptersshow examples

of where SQUADS’ development was partly directed by experimental results.
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Anotherconsiderationthatwill direct thechoiceof mathematicalbasisfor SQUADS

is the desireto be ableto link SQUADS with conventionalelectronicdevice simulators.

Quantum effects are an increasing “nuisance” in shrinking conventional electronic

devices,andwill beunavoidablein thefuture.A quantumdevicesimulatorcoupledwith a

conventionalsimulatorcanbeusedto investigatethis,andtherebyhopefullymaintainreli-

able conventionaldevice operationin spite of these“parasitic” quantumeffects.These

requirementsarein additionto theonethatSQUADS mustbeableto handledevice char-

acteristics that are considered important, as listed in Section 2.3.4.

3.3 Classical Electronic Device Simulation

Beforeconsideringpossiblequantumsimulationmethods,onefinal sourceof informa-

tion canhelpdirectthechoiceof quantummechanicsformulationasabasisfor SQUADS:

conventionalelectronicdevice simulation.Tools for conventionaldevice simulationhave

beenrefinedover many yearssothatthey have exactly thequalitiesdesiredfor SQUADS:

accuracy and efficiency. Further, becausea short-termfocus has beenchosenfor this

research,Chapter2 concludedthatthequantumdevicesSQUADS musthandlearesimilar

in many ways to conventionalelectronicdevices.Thus,many of the characteristicsand

capabilitiesof classicalsimulationshouldbe mirroredin SQUADS. The purposeof this

section,then,is to analyzeclassicaldevice simulationto further inform thechoiceof the

best quantum device simulation method.

3.3.1 The Boltzmann Transport Equation

Conventionalelectronicdevice simulationis basedon the Boltzmanntransportequa-

tion (BTE) [5, 6]. The BTE specifiesthe evolution of the classicaldistribution function,

, which is the densityof carriers1 at , where is the three-coordinate

position, is the three-coordinatemomentum,and is time. The fact that is a phase-

spacefunction2 is key to its usefulnessasa basisfor conventionaldevice simulation.The

BTE can be written

, (3.1)

1. The number of carriers within the spatial volume  and the momentum volume .
2. A function of position and momentum (or velocity or wavevector).
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which is often written as

. (3.2)

In (3.2),  is the carrier velocity, and  is the force on the carriers.

The BTE would be very computeintensive if implementedin morethan1-D. Thus,

simplifiedmodelsof carriertransportwhich derive from theBTE areoftenmorefamiliar.

The hydrodynamicmodel [7] resultsafter moderatesimplificationsof the BTE. Even

more widely used is the “first order” drift-diffusion model [8]. For electrons,where

 is the electron concentration, this model is written as:

, (3.3)

. (3.4)

Here, is theelectroniccharge, is theelectroncurrentdensity, is thenetelectron

recombinationrate, is theelectronmobility, and is theelectrondiffusionconstant.

Similar equations hold for holes.

3.3.2 Strengths of the BTE

Now considerwhy the BTE andits simplificationsare ideal for conventionaldevice

simulation,andthuswhat is desirablein a quantumdevice simulationformulation.First,

simulationbasedon theBTE hasall of thecharacteristicsspecifiedsofar for SQUADS: it

is ageneralformulation3, it permitsaninternalview of deviceoperation,andit canhandle

all of thedevice characteristicslisted in Section2.3.4,particularly, far-from-equilibrium,

irreversible,andtransient.Anothercritical featureof theBTE is thatit lendsitself to vari-

ouslevelsof simplification,to allow either1-D simulationwith theBTE itself, or to make

multi-dimensionalsimulationfeasibleusingthehydrodynamicanddrift-diffusionmodels.

Further, by recastingtheBTE in a path-integral (a.k.a.,Monte-Carlo)form, even3-D sys-

tems can be feasibly handled while still including the full complexity of the BTE [9].

ThemainreasontheBTE hasthesefeaturesis thatits statefunction is aphase-space

distribution function.As such, containsall of theinformationof interestaboutthecarri-

ers,includingpositioninformation(to calculatecarrierdensities)andvelocity information
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(to calculatecurrents).For simulationof electroniccomputingdevices,a phase-spacedis-

tribution function is the most naturaland efficient, yet complete,way to describethis

information.Both theBTE andits classicaldistribution functionareintuitive.They donot

requireopaqueinterpretationto understand.Theresultsneeded(e.g.,carrierdensitiesand

currents) are easily and transparently calculated.

3.3.3 Implications for Quantum Device Simulation

All of theseattributesof conventionalsimulationshouldbe retainedin choosinga

quantumsimulationmethod.Section3.4showsthatsomeof thequantumtransportformu-

lationsdo not give thebenefitsof theBTE. Of course,theBTE itself cannot beusedfor

quantumsystemsimulationbecauseit is basedonaclassical,ratherthanquantum,formu-

lation of physics.In particular, theBTE assumesthatcarriersobey theclassicalNewton’s

laws: they arepoint particleswith a singlemomentum,they experienceforcesof a single

value at a single location,and collisions are instantaneous[10]. Theseassumptionsare

whatallow theuseof a phase-spacedistribution function to describethecarrierdistribu-

tions, the many benefitsof which have alreadybeendescribed.Unfortunately, noneof

theseassumptionsandresultsaretrueatquantumdimensions,sinceparticleson thequan-

tum scaleact like waves.The Heisenberg uncertaintyprinciple declaresthat a particle’s

position and momentumcan not be preciselyknown simultaneously. In fact, a particle

usuallydoesnot have a singlepositionor momentumvalue,but rathera distribution of

suchvalues.Theresultis that it is impossibleto have a phase-spacedistribution function

in a quantummechanicalrepresentationof a system.This is very unfortunate,sincesome

quantumformulationof carriertransportmustbeused,but not thephase-spacestatefunc-

tion that has made the BTE so ideal for classical electronic system simulation.

All of the quantumtransportformulationsconsideredbelow usesomerepresentation

of the stateof the system(e.g., the wavefunction in the Schrödingerrepresenta-

tion). Any of theserepresentationscanbe usedto determinethe informationneededfor

device simulation(carrierdensitiesandvelocities).Themathematicalbasisfor SQUADS

will betheformulationof quantummechanicsthatgivesthis informationmosteasily. This

essentiallymeansthat the representationof the chosenformulation shouldbe intuitive,

like , so that its interpretationis not opaqueor convoluted.It is thepurposeof thenext

sectionto determinewhich formulationof quantummechanicshasthis quality throughan

Ψ r t,( )

f c
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analysis of the various possible approaches to quantum device simulation.

3.4 Quantum Transport Formulations

This sectionfinally answersthequestionof which of themany formulationsof quan-

tum mechanics(FQM) arebestsuitedto quantumdevice simulation,andthereforewill be

usedasa foundationfor SQUADS. Dueto theincreasinginterestin investigatingquantum

effects in electronicdevices,several otherresearchershave alsorecentlyconsideredthis

question(see,e.g., [11-13]).Thesetof FQMswhich areconsideredappropriatefor quan-

tum device simulationis dynamic,andnew formulationswill undoubtedlybeaddedover

time,while othersmayevenbedroppedfrom thesetasno longercompetitive.Theanaly-

sis in this sectionshouldthereforebeconsidereda snap-shotof thecurrentstateof quan-

tum device simulation. Future researchwill undoubtedlyextend the capabilitiesand

surmounttheuniquechallengesof usingsomeof theFQMsasabasisfor numericalsimu-

lation. In fact, this research contributes to that dynamic.

3.4.1 Relationships Between Candidate Formulations

Figure 3.1 shows schematicallythe relationshipsbetweenthose FQMs which, at

present,aremostwidely proposed,discussed,and/orusedfor quantumdevice simulation.

Theseinclude the Schrödingerequation,transfer-matrix, densitymatrix, Green’s func-

tions, Wigner function, and path integral approaches.The respective statefunction4 of

eachFQM is alsoshown. Basedon the intention to simulateRTD-like devices,andthe

analysisof conventionaldevice simulationin Section3.3,severalcharacteristicsandfea-

turesthat SQUADS musthave beenspecified.Theseincludethe useof an intuitive state

function(for aninternalview of device operation)andtheability to handlefar-from-equi-

librium, irreversible,transient,andopensystems.Mostof theserequirementswerealready

taken into accountin generatingFigure 3.1, becauseonly thoseFQMs appropriateto

quantum device simulation are shown.

FQMs not shown in Figure3.1 includethe force-forcecorrelationfunction [14] and

current-currentcorrelationfunction[15], whicharenear-equilibrium,linearresponseanal-

yseswhich do not usestatefunctions;the Heisenberg matrix mechanicsapproach[16],

which is mathematicallyequivalentto the Schrödingerequation,but is lessintuitive; the

4. A function which describes the state (e.g., position and velocity) of the carriers in the system.
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relatedLangevin equationapproach[17], which is toocomplex to solveexceptin thesim-

plestcases;thescatteringmatrix approach[18, 19], which is similar to thetransfermatrix

approachincludedin Figure3.1, but which includesscatteringin a lesssatisfactoryway

than, for example,the Wigner function approach(alsoshown in Figure3.1); andmany

others.Theapproachesto analyzingquantumsystems,eachof whichhasits own uses,are

virtually innumerable.

3.4.2 Analysis of Formulations

This sectioncomparesthe capabilitiesandcharacteristicsof the six formulationsof

quantummechanicsshown in Figure3.1,first with asummaryof thecomparison,andthen

with a more detailed discussion of the analysis underlying the summary.

3.4.2.1 Summary

To make a final choiceof thebestformulationfor usein SQUADS, Table3.1 grades

eachformulationin Figure3.1 accordingto its ability to meetthe requirementslisted in

theSection3.4.1.TheBTE is alsolisted in thetableto show its excellentcapabilitiesfor

simulatingelectronicdevicesdominatedby classicalmechanics,which capabilitieswill

f w r k t, ,( )

Scaled Wavefunction: αΨ r t,( )

f w r k t, ,( )

G r t r; ′ t ′, ,( )ρ r r ′ t, ,( )

Figure 3.1: Family tr ee of relevant formulations of quantum mechanics

This flow chartshows the relationshipsbetweenthe main formulationsof quantum
mechanicsthathave beenemployedfor electronicdevice simulation,aswell astheir
respective statefunctions.Many other formulationsof quantummechanicsare not
shown.

Schröding er Equation

Density Matrix Green’s Functions

Path Integral (Monte-Carlo)

Transf er-Matrix

Wigner Function

Quantum Transport Equation Forms
(statistical state functions)

Wavefunction: Ψ r t,( )
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ideally be mirrored in SQUADS. Becausethe list of FQMs hasalreadybeenlimited to

thosewhich meetmostor all of theknown requirements,thechoiceof thebestapproach

for SQUADS will hingeon othermorepracticalcriteria.Thus,Table3.1 alsorateseach

formulation for its relative computationalefficiency and the simplicity of interpretation

(richnessin intuitive information)of its statefunction.Basedon all of thedata,Table3.1

promptstheconclusionthattheWignerfunctionformulationis optimalfor thesimulation

of RTD-type quantumelectronicdevices.For this purpose,it hasall of the featuresand

capabilitiesrequired,aswell asan intuitive statefunction andacceptablecomputational

complexity. An explanationandjustificationof theresultsof Table3.1for thesix quantum

mechanics formulations included in Table 3.1 is given in the following sections.

3.4.2.2 The Schrödinger Equation

Most usesof theSchrödingerequationfor quantumsystemsimulationarebasedon a

scaledsingle-particlewavefunctionas the statefunction, since the exact many-particle

wavefunctionbecomesunmanageablycomplex with more than just a few carriers.As

indicatedby Table3.1, two featuresof quantumelectronicdeviceshave not beenaccu-

rately treatedwith the Schrödingerequationapproach:absorbingboundaryconditions

(i.e., ohmic contacts)in a transientsimulation, and inelastic scattering.Interestingly,

Characteristic
(5=good; 1 = poor)

Method of Quantum System Analysis

BTE SE TM DM GF WF PI

State Function-Based yes yes yes yes yes yes yes

Far-From-Equilibrium yes yes yes yes yes yes yes

Irreversibility (Scattering) yes no no yes yes yes yes

Transient Simulation yes yes no yes yes yes yes

Absorbing Boundaries yes no yes yes yes yes yes

Computational Efficiency 3 4 4 3 2 3 2

Intuitive State Function 5 3 4 3 2 4 4

Suitability for SQUADS 1 3 3 3 2 4 3

Table 3.1: Comparison of quantum system analysis approaches
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althoughtheSchrödingerequationwasfirst postulatedfully 70yearsago[20], theincreas-

ing needfor accuratenumericalsimulationof quantumdeviceshasfueledrecentadvances

in theseareas[21-26]. AlthoughtheSchrödingerequationmayhave a brighterfuture for

quantumdevice simulation,theselimitationsmadeit impossibleto basea comprehensive

quantum device simulator on this formulation of quantum mechanics.

3.4.2.3 The Transfer-Matrix Method

Oneway to surmounttheabsorbingboundaryproblemof theSchrödingerequationis

to solve the equationin steady-state.The simplestresult is the transfer-matrix method

(TMM) [27-31], themostwidely usedmethodof quantumdevicesimulationto date.5 The

TMM is basedon the assumptionsthat particlesenterandexit the systemascontinuous

streams(beams)with amplitudesgiven by the fixed boundaryconditions,that a particle

beamenteringatagivenenergy is perfectlyphase-coherent,andthatparticlebeamsatdif-

ferentenergiesdo not interact.Theresultis a statefunctionfor eachparticlebeamwhich

is simply a scaled,steady-state,single-particlewavefunction.Thepopularityof theTMM

is dueto its simplicity (in boththeoryandprogramming),andtherelatively low computa-

tional requirements.However, becauseit is baseddirectly on the Schrödingerequation,

theTMM alsocannothandleirreversibility (inelasticscattering).Further, becausecontin-

uousparticlebeamsareassumedthroughoutthesystem,transientsimulationsaredifficult

or impossible to implement using the TMM.

3.4.2.4 The Quantum Transport Equation Approaches

The densitymatrix, Greenfunction, and Wigner function formulationsin Table 3.1

employ a statisticalstatefunction, ratherthan the exact many-quantawavefunction(as

with theSchrödingerequation)or onewavefunctionperenergy (aswith theTMM). Quan-

tum statisticalmechanicsdoesnot attemptto retainall informationaboutthe evolutions

and interactionsof perhapsmillions of distinct quanta,but ratherdealswith continuous

distributionsof particlesandinteractions,justastheclassicaldistribution functiondoesin

theBTE. A statisticalstatefunctionis thusanaturalandefficientwayto modelparticlesin

amany-bodysystem[32]. A statisticalapproachshouldalsobequiteaccurate— themyr-

5. This work differentiatesbetweenquantumsystems, which aremorecommonlyinvestigatedvia
the Schrödinger equation, and quantumdevices, which must have open, absorbing boundaries.
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iad single-particlewavefunctionsintermingleso completelythat they cannot be distin-

guishedanyway. Thestatisticalstatefunctionis usuallyformedby assumingtotal particle

independence(the one-particleapproximation).Several suchstatefunctionshave been

foundto beuseful,andthenameof eachformulationis givenby thenameof theparticular

statefunction employed. Eachof theseformulationsalsohasits respective, but related,

quantumtransportequation(QTE), which specify how the statefunction evolves with

time. As indicatedin Table3.1, eachof the QTE approachesis ableto handleall of the

quantumdevice characteristicsof interest,just as the BTE could for conventionalelec-

tronic device simulation.

ThemainpracticaldifferencebetweenthethreeQTE approachesis in their respective

statefunctions,andthis is wheretheWigner functionmethod(WFM) of quantumdevice

simulationachievesits greatestsuperiority. TheWigner function [33], denoted in this

chapter, is a real-valued6, phase-space7 statefunction, just like the classicaldistribution

function in theBTE. Recalltheargumentin Section3.3 thathaving a phase-spacedis-

tribution function in quantummechanicsis impossible,becausethe Heisenberg uncer-

tainty principle dictatesthat position and momentuminformation can not be known

exactly simultaneously. In fact,theWigner function is not a truephase-spacedistribution

function, specifyingthe densityof carriersat eachpositionandvelocity - if it were,

would be exactly equalto ! Ratherthe Wigner function is called a quasi-distribution

function.Far away from quantumstructures, is equalto . Wherequantumeffectsare

significant,the mustreflectthesephenomena,andthusit will differ from . However,

all observables(e.g.,carrierdensitiesandcurrent)arecalculatedfrom just asfrom .

In fact, the Wigner function transport equation (WFTE), which in 3-D can be written8

, (3.5)

is the quantum analog of the BTE (3.1), as the following interpretation of (3.5) shows:

. (3.6)

6. Real-valuedstatefunctionsarerarity in quantummechanics,andtheWigner function is unique
in this respect among many-body formulations.
7.  Phase-space function: a function of position and velocity.
8. The WFTE is derived in Chapter 5.
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Becauseof thesimilarity of theWFM to conventionaldevice simulationmethods,andthe

intuitivenessof a phase-spacestatefunction, the WFM of quantumdevice simulation

receives high marks in Table 3.1 in this regard.

In contrastto theWigner function,boththedensitymatrix [34] andtheGreen’s func-

tions [35, 36] areratherabstractstatefunctionswhich correlatethestateof thesystemat

one point to that at anotherpoint. The interpretationof thesefunctionsis not intuitive.

However, Figure3.1 indicatesthatboth thedensitymatrix andGreen’s functionformula-

tions are relatedto the WFM, so their respective statefunctionscan be, and often are,

interpretedby conversionto the Wigner function (e.g., after solutionof their respective

QTE) [13]. Thus,theWignerfunctioncanbecalculatedfrom thedensitymatrixasfollows

(in 3-D):

. (3.7)

AlthoughthedensitymatrixandWignerfunctionformulationsaretheoreticallyequivalent

(they arerelatedby a Fouriertransform),theunfamiliar natureof thedensitymatrix itself

makesWFM muchpreferable.In contrast,theGreen’s function formalismis not directly

equivalent to the WFM; it is moregeneral.Not only aretherefour independentGreen’s

functions[13] (andsix Green’s functionstotal), but eachGreen’s function alsocontains

moreof the exact many-quantawavefunctioninformationthanthe Wigner function.The

“double-time” correlationGreen’s function is most directly relatedto the Wigner

function,but someinformationis integratedout,alongwith performingtwo (information-

neutral)Fourier transformsand a changeto center-of-masscoordinates,to arrive at

[37]. If  is the initial Green’s function, then:

; (3.8)

; (3.9)

. (3.10)

TheGreen’s functionformulationdoeshave oneimportantadvantageover theWFM.

Its powerful formalismallows for moregeneralanalyticalderivations,presentingthepos-

sibility of morerealisticsimulation(i.e.,with fewer simplifying assumptions)of quantum
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systemsthan with the WFM. In fact, the Green’s function formalism hasproducedthe

mostgeneralderivation andform of the WFTE yet [38]. However, solutionof the exact

Green’s functionQTE is currentlyintractable[39]. Simplifying assumptionsandapproxi-

mationshave beenusedto arrive at tractableGreen’s functionQTEs[40, 41], but for the

requirementsin Table3.1, thesearenot currentlypreferableto the WFM. Again, asthe

costof computingdeclines,the requirementsof Table3.1 may soonbe met moreagree-

ably by approximate versions of the Green’s function QTE than by the WFM.

As aresultof theabstractdensitymatrixandGreen’s functionstatefunctions,it is also

not obvious how to apply appropriateboundaryconditions[40, 42]. The WFM, by con-

trast, can use the sameboundaryconditionsas the BTE. This indicatesanothervery

important advantage of the WFM over the density matrix and Green’s function

approaches.A conventionalelectronicdevice simulatorcanbe easilyandnaturallycou-

pled to a WFM-basedquantumdevice simulator, sincethe boundaryconditionscan be

identical. This is not true of the density matrix and Green’s function approaches.

3.4.2.5 Derivatives of the Wigner Function Method

Returningagain to theWFM, notethat,aswith theBTE, it is currentlyonly feasibleto

numericallysolve theWFTE in 1-D. However, asshown in Chapter2, theRTD is effec-

tively a 1-D device, so this limitation does not disqualify the WFM as a basis for

SQUADS. Recall that transportmodelsderived from the BTE, specificallythe hydrody-

namicandMonteCarlomodels,haveallowedsimulationsof 2-D and3-D systems,asdis-

cussedin Section3.2. The fact that the WFTE is the quantumanalogof the BTE has

promptedthederivationof analogoustransportmodelsbasedon theWFTE. TheWigner

function hydrodynamic(or moment)equationapproach[43] offers a simplified formula-

tion thatmakes2-D simulationsfeasible.But sincethe(1-D) RTD waschosenasa proto-

type device, the more accurate WFM is preferred for SQUADS.

Thepathintegral (or Monte-Carlo)approach[44] mayallow multi-dimensionalsimu-

lationsaswell, while includingthefull complexity of theWFTE.However, asindicatedin

Table3.1, this simulationmethodis significantlymorecomputationallydemandingthan

the WFM, again making the latter preferablefor this quantumdevice simulationeffort.

Also, difficulties arise in the tracing of the quantumtrajectoriesof the path integral

approach,especiallywheretunnelingis involved.A quantacandisappearfrom oneplace
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andappearin anotherwithout apparentlyhaving traversedthe interveningspace,calling

into question the entire notion of quantum trajectories.

3.5 SQUADS Simulation Approach

This sectionexplainstherationalefor theremaininghigh-level choicesfacedin defin-

ing or directingSQUADS’ development.It alsocombinestheresultsof Section3.4 into a

well-defined plan for the design and use of SQUADS.

3.5.1 One-Dimensional versus Multi-Dimensional

Section3.4 concludedthat the optimal approachfor simulatingRTD-like (i.e., far-

from-equilibrium, irreversible, dynamic, open) quantumdevices, the Wigner function

method,is only currentlytractablefor numericalsolutionin 1-D form. In acceptingthis

limitation, thenear-termapproachhasagainbeenapplied.First,recallthatoneof themain

reasonstheRTD waschosenastheprototypesimulatortestdevicewasbecauseit is a1-D

device, thusbeingrelatively simpleto fabricateandunderstandcomparedto multi-dimen-

sional quantumdevices. Further, the previous sectionargued that an equally capable

multi-dimensionalquantumsimulator would require much more computationalpower

thana onedimensionalWignerfunctionapproach,andis thereforecurrentlyinfeasibleto

execute.Admittedly, multi-dimensionalquantumsimulationtoolsarenecessaryfor more

accuratequantumdevice simulation, and their realization is being pursuedby other

researchers.Available computing power will eventually make them as feasible as

SQUADS is now. Muchof thetheory, computercode,andexperiencegeneratedduringthe

developmentof a1-D simulatoris applicableto thedevelopmentof a relatedmulti-dimen-

sionalsimulationtool. In any event, the goal of this researchis now statedformally: to

developa softwaretool for theaccuratesimulationof 1-D quantumdevices(i.e., devices

that are quantum scale in only one dimension).

3.5.2 Envelope Function versus Tight-Binding

Anotherdecisionwhich remainsto bemadeis thatof theenergy bandmodelthatwill

be usedin SQUADS. Two choiceshave becomepopularfor quantumsystemmodeling:

the “tight-binding” model9 [45] andthe “envelope-function”model10 [46]. Note that the

Kronig-Penny model [47] is usually usedmainly for analytical derivations. All three
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energy bandmodelsareillustratedin 1-D in Figure3.2.Theenvelope-functionapproach

is most familiar, as standardvalenceand conductionbanddiagramsare basedon this

potential.Herethepotentialis assumedto beanaverageover a unit cell of theatomiclat-

tice of thesemiconductor. Thecarrierkineticsis treatedalmostthesameasa freecarrier,

but with a modifiedmasscalled the effective mass,denotedm*. The envelope-function

model is thus often called the effective mass model.

The tight-binding approach,as its nameimplies, takes the oppositeextreme of a

nearly-boundcarrier. Thepotentialis periodic,with deepenergy wellsat theatomiccores.

Thus,electronconcentrationis highestnearatomiccores,andis periodic.Thetight-bind-

ing approachis theoreticallymoreaccurate,but it is significantlymorecomputationally

demanding.This presentsanothertrade-off choiceof accuracy versuscomputationtime.

Thechoiceis not very difficult in this case,however. Thetight-bindingpremiseof nearly-

boundcarriersgoesagainstthechoiceof far-from-equilibriumquantumdevices,with car-

rier energiesfar above theenergy bandminimum.Further, thetight-bindingapproachcan

bevery numericallydifficult to implement,with successive multiplicationsof very small

and very large numbers.Thus, the tight-binding approachwas rejectedin favor of the

9. Also known as the LCAO (linear combination of atomic orbitals) model
10. Also known as the “nearly-free” carrier model or the effective mass approximation.

Figure 3.2: Energy band models for the conduction and valence bands

Thetight-bindingmodelmostcloselymatchesthephysicalatomicstructure,but is
alsothemostcomputationallydemanding.theKronig-Penny modelis usuallyused
mainly for analyticalderivations.Due to its simplicity, this work usesthe enve-
lope-functionmodel,whichusestheaverageof thepotentialenergy overaunit cell
of the semiconductor lattice.
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envelope-functionpotentialmodel.Like the choiceof a 1-D simulator, this choicemay

also be subject to change as the cost of computing power continues to decline.

3.5.3 Two-Tiered Approach

During the developmentof SQUADS, it wasdecidedthat implementingan indepen-

dent, less calculation-intensive quantumsimulation approachin addition to the WFM

would bevery advantageousfor several reasonslistedbelow. TheTMM wastheobvious

choiceto fill thisposition:it hasbeenthestandardapproachin quantumdevicesimulation,

it is relatively calculation-efficient, and it is an independentformulation of quantum

mechanicsfrom theWFM. BecausetheTMM is not ableto handleirreversibleandtran-

sientsystems,it cannot matchthecapabilitiesof theWFM in somecases.However, the

TMM is very useful for the following roles in a two-tiered simulator scheme:

• Transfer-Matrix Method (TMM) roles in SQUADS:

• efficient simulationof a wide rangeof structuresto determinewhich merit

more detailed study (by WFM simulation),

• high resolution energy spectrum investigations,

• a reality check on WFM results,

• faster implementation and testing of simulator enhancements, and

• 2nd and 3rd dimensions in multi-dimension simulations may be possible.

• Wigner Function Method (WFM) roles in SQUADS:

• higheraccuracy simulationsto determinewhich devicesmerit experimental

investigation,

• simulations including inelastic scattering, and

• transient simulations.

Notethatwithout two independentsimulationmethods,no meanswould beavailable,

exceptexperiment,for checkingtheresultsof a simulation.In fact,Section3.1arguedthat

certaintypesof informationavailablefrom simulations,suchasthe internaloperationof

thequantumdevice, canonly be inferredfrom experiment.Evenfor thosetypesof infor-

mationthatcanbegleanedfrom experiment,thechoiceof implementingtwo independent

simulationmethodsin SQUADS is alsoa responseto the very expensive, uncertain,and

time-consumingnatureof experiment,aswell asthesparsityandincompletenessof pub-

lishedresults.Theabove list combinestheresultsof Section3.4 into aunifiedplanfor the
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designanduseof SQUADS. LuscombeandFrensley [3] alsoarguedthata “spectrumof

modelingtools of varying degreesof sophisticationis requiredto meetthe needsof the

various stages of quantum device development.”

Given the intentionto implementtwo independentformulationsof quantummechan-

ics in SQUADS, it is advantageousto maintainasmuchcommoncodebetweentheTMM

andWFM aspossible.Functionalitysuchasinputfile processing,outputandplotting rou-

tines,current-voltagecurve tracing,enforcingself-consistency, numericalmethods,matrix

manipulations,and others,would all be neededby virtually any simulation.By imple-

mentingthis functionality in a modularfashion,it could be utilized by eithersimulation

methodwhereappropriate.Thus,maximizingcode-sharingbetweentheTMM andWFM

was taken as another design goal for SQUADS.

3.5.4 Experimental Verification

The ultimategoal of this researchwasto createa numericalsimulationtool to accu-

rately predict the operationof any one-dimensionalquantumdevice. The only way to

determineif, or how well, thatgoalis metis to comparethepredictionsof SQUADS with

actualexperimentalmeasurements.In fact,duringSQUADS’ development,knowledgeof

experimentalresultsmoreoftendirectedthecourseof this developmentthanthe reverse.

Severalexamplesof theimpactof comparisonwith experimentonSQUADS development

will bepresentedin laterchapters.Two sourcesof experimentalmeasurementsarepossi-

ble: in-houseexperimentsandthepublishedexperimentalresultsof otherresearchers.The

advantagesof in-houseexperimentalwork are that desiredexperimentalstructuresand

measurementscanbe specified,resultingin morecertaintyof what thosestructuresand

the associatedmeasurementswere.Further, a potentially wider range,or more targeted

set, of measurements than are usually reported in the literature could be performed.

Thechoicebetweensourcesof experimentalmeasurementswasmadewith theunder-

standingof thecentralgoalof thisproject.With thefocusof thiswork on thedevelopment

of a quantumdevice simulator, fairly standardand well-understoodquantumdevices

shouldbeusedfor thedevelopmentprocess.Thus,evenwith in-houseexperimentalwork,

advancementsin quantumdevice technologywerenot expectedthroughthis project. In

fact, it seemedoptimistic to expectto fabricatedevicesof equalquality to thoseof other

researcherswhohadspentagreatdealof timeperfectingquantumdevice fabricationtech-
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niques.Therefore,in spiteof thesignificantadvantagesof doing(at leastsome)in-house

experimentalwork, the interestsof time dictatedthatusingonly publishedmeasurements

of other researchers was optimal for achieving the central goal of the project.

3.5.5 Research Tool

Onefinal point needsto be madeexplicit in definingthe motivations,priorities, and

principleswhich determinedSQUADS developmentpath.On onehand,SQUADS is not

an endin itself, but is intendedto be usedeventually to guideexperiment.On the other

hand,becauseanaccuratequantumdevicesimulatoris suchanimportanttool, knowledge

gainedin its developmentanduseis importantin its own right. Thus,SQUADS is usednot

only to researchquantumdevice operation, but alsoto researchquantumdevice simula-

tion. For this reason,many featuresandoptionsthatperhapswouldnotexist in acommer-

cial simulationtool aremaintainedin SQAUDS simply for the knowledgethey cangive

theresearcheraboutvarioussimulationissues,suchasthememoryuseversusspeedver-

susaccuracy trade-off, thecorrect(or incorrect)functioningof a new feature,the impor-

tanceof aphysicaleffect (e.g.,scatteringor self-consistency), etc.Whereeveraresearcher

might reasonablywonderaboutissuessuchasthese,SQUADS wasdesignedto allow the

choicebetweenvariousoptionssothattheissuecanbeinvestigatedasefficiently aspossi-

ble. This is anotherexamplewhereSQUADS’ modularstructureandresultingflexibility

andextensibility allows the substitutionof onesolutionmethodfor another, to a degree

unmatched by any other quantum device simulator.

3.6 Summary

This chapterhasdescribedthe goalsandguiding principlesusedduring the develop-

mentof SQUADS. In short,SQUADS wasdevelopedasa generalone-dimensionalsimu-

lator for far-from-equilibrium, irreversible,open,transientquantumdevices suchas the

resonanttunnelingdiode.SQUADS concentrateson providing accessto informationnot

availablein experiment,suchasthe internaloperationof the quantumdevice. SQUADS

wasalsodesignedfor flexibility andextensibility, to allow the investigation of quantum

device simulation, in terms of alternative quantummechanicsformulations,numerical

implementations, and quantum system characteristics.

Both the Wigner function andtransfer-matrix methodsof quantumdevice simulation
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werechosento accomplishthesedesigngoals.The TMM is an efficient methodfor fast

initial simulations,for checkingWFM simulationresults,andfor high-resolutionenergy

spectruminvestigations.The WFM allows a morecompletedescriptionof real quantum

systems,includingscatteringandtransientoperation,althoughat a highercomputational

cost.To make theimplementationandupgradeof bothsimulationsmethodsasefficientas

possible,anotherdesigngoalwasto utilize code-sharingandmodularityasmuchaspossi-

ble. In thefollowing two chapters,a detaileddescriptionis givenof thenumericalimple-

mentationof thesetwo simulationmethods,beginningwith thetransfer-matrix methodin

Chapter 4.
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Chapter 4

The Transfer-Matrix Method

The intention of quantumdevice simulation— at leastfor quantumdevices in this

work, whoseambitionis to replaceconventionalelectronicdevices— is to predictcurrent

flow throughthedevice. The transfer-matrix method(TMM) accomplishesthis by deter-

miningthetransmissionamplitude of anincidentwavefunction(thequantummanifesta-

tion of chargecarriers)throughthedevice, asdepictedin Figure4.1.Themagnitude of

the incidentwave is givenby thenumberof incidentcarriersat theenergy beingconsid-

ered.TheTMM calculates at therangeof energiesover which is significant,andadds

the results to arrive at total current flow through the device.

This chapterdescribestheTMM in somedetail,beginningwith a review of thelitera-

ture in termsof the accomplishmentsandstate-of-the-artof this methodin Section4.1.

Section4.2 then presentsan analyticalderivation from the Schrödingerequationof the

equationsandexpressionsusedin theTMM. A descriptionof thebasicimplementationof

T

I

T I

Figure 4.1: Transfer-matrix method overview

Thetransfer-matrix methoddeterminescurrentflow througha quantumdevice by
calculatingthe transmissionamplitudeT, and thus the current,of many mono-
energetic beams of carriers over the range of incident carrier energies.

TR

I
I = Incident amplitude
R = Reflected amplitude
T = Transmitted amplitude

Quantum
Device
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the TMM is then presentedin Section4.3. Several alternative implementationsof the

TMM arediscussedin Section4.4.Finally, Section4.5investigatesthesealternativeTMM

implementations,resultingin conclusionsabouthow theTMM shouldbeimplementedfor

accuracy and efficiency.

In previouschapters,a relatively non-technicallevel of discoursehasbeenmaintained.

As thetheoryandimplementationof SQUADS arepresentedbeginningin thischapter, the

presentationwill necessarilybecomemoremathematical.However, it is undesirable,and

in factimpossible,to includein thisdissertationacomprehensivedescriptionof theimple-

mentationandinternalworkingsof SQUADS. The readerinterestedin this level of dis-

course is referred to theSQUADS Technical Reference [1].

4.1 History and State of the Art

The TMM is currently the most widely usedmethodof quantumelectronicdevice

simulation1 for severalreasons.It hasbeenin existencefor thelongest(since1962[2]), its

derivation is relatively simple,it is easyto understand(usingthe optical analogy),andit

requiresthe leastcomputationalresources.The TMM isn’t the only methodof quantum

device simulationbecause,asdiscussedin Section3.3, it cannot accuratelytreatscatter-

ing andtransientoperation.BecausetheTMM is widely used,its basictheoryandimple-

mentationhave beenwidely (if incompletely)describedin the literature[2-6]. However,

several alternative implementationshave never beendirectly comparedto the standard

approach,andseveralcomplicatingissueshaveapparentlyneverbeendiscussed.Onepur-

pose of this chapter is to properly discuss these issues.

Vassellet al. [3] enumeratedeleven simplifying assumptionsandapproximationsin

the original descriptionof the TMM [2], and other short-comingshave beendiscussed

elsewhere.Thepast15 yearshave witnesseda continualattackon theseapproximations,

andmosthavenow beenimprovedor removed.For example,position-dependenteffective

massand more generalstructureswere incorporatedin [3] and most subsequentwork.

More accuratepiece-wiselinear(asopposedto piece-wiseconstant)potentialshave been

usedby several researchers[7, 8]. Self-consistency hasbeenincludedby simultaneous

1. It is necessaryto differentiatebetweenquantumsystems, whicharemorecommonlyinvestigated
via directdiscretizationof the time-dependentSchrödingerequation,andquantumdevices, which
musthaveopen,ohmicboundaries.As discussedin Section3.3,time-dependentSchrödingerequa-
tion has not adequately demonstrated the ability to treat this key feature of many-particle devices.
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solutionof the PoissonandSchrödingerequations[9-11]. The TMM hasalsobeenused

with bothtight-binding(seeSection3.5.2)[12, 13] and approaches[14, 15], to rep-

resent the energy-velocity relationship more accurately. Interactionsbetweenenergy

bands(conduction,light hole,heavy hole,and/orsplit-off hole)have beenincorporatedin

two-band[6, 12,13], three-band[15, 16], andevenfour-band[14] models.TheTMM has

also beenusedto determinethe discretebound stateenergies of quantumwells [17].

Finally, a1-D TMM calculationhasbeenincorporatedin a2-D resonanttunnelingtransis-

tor simulation [18].

The remainderof this chapterdescribesSQUADS’ implementationof the transfer-

matrix method of quantumdevice simulation. This implementationhandlesposition-

dependenteffective mass,generaldevice structures,piece-wiselinearpotentials,andself-

consistency; andit includesa simplified multi-bandcapability. The last two featuresare

describedin Chapter6. Many of themoresubtlefeaturesof theTMM in SQUADS, which

make it a robust and extensible quantum device simulation tool, will also be described.

4.2 Background

Thissectionderivesthebasicanalyticexpressionsandequationsusedin implementing

the transfer-matrix method of quantum device simulation.

4.2.1 General Solutions of the Schrödinger Equation

The TMM is basedon solving the time-independent,or steady-state,Schrödinger

equation,as mentionedin Section3.4.2.3.In 1-D,2 the time-independentSchrödinger

equation (TISE) in the effective mass approximation (see Section 3.5.2) is:

- . (4.1)

In (4.1),thesolution is thequantumwavefunctionof achargecarrier(i.e., electronor

hole)or (asin theTMM) a beamof carrierswith effective mass andenergy , is

potentialenergy (i.e., the conductionor valenceenergy bandminimum), and is the

reducedPlanck’sconstant.Useof theeffectivemass(a.k.a.envelopefunction)approxima-

tion hasimportantconsequencesin termsof the choiceof positiongrid scheme,asdis-

2. Recallfrom Section3.5.1thatthiswork took thepracticalstepof limiting SQUADS to thesimu-
lation of one-dimensional quantum systems.
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cussed shortly.

As describedin Section4.3,in theTMM, theTISEis solvedmultiple timesfor abeam

of carriersatasequenceof closely-spacedenergies.3 SincetheTISE is asecondorderdif-

ferential equation,it hastwo independentsolutionsat a given energy , which will be

denoted and . Thegeneralsolution is a linearcombinationof and :

. (4.2)

Thewavefunction in any particularcaseis determinedby thepotentialprofile .

For a constantor linear (and few others),the TISE is analytically solvable. The

TMM takesadvantageof this fact.Of course,useful1-D quantumdevicesdon’t havesuch

simple potential profiles. Therefore,to solve the TISE analytically for real quantum

devices,thesimulationregion is dividedinto aseriesof shortregions,within whichacon-

stantor linear approximationto the potentialis acceptable.Most implementationsof the

TMM, includingthedescriptionin this section,useonly constantpotentialregions.Even

for a region of constantpotential,therearethreedistinctsolutionsof theTISE,which are

described below.

A region in which the carrier energy is greaterthan the potentialenergy is

calleda “classicallyallowed” region, sincecarriersareenergetically allowed to exist in

suchregionsaccordingto classical(aswell asquantum)physics.In a classicallyallowed

region of constantpotential(a CCA region), , andthewavefunctioncanbe

written as the sum of forward-travelling and backward-travelling plane waves:

, (4.3a)

where  is the base of the natural log and is the “wavevector” of the quantum particle:

. (4.3b)

Wavevector playsan importantpart in quantumsystemanalysis,so its relationshipto

other, perhapsmore familiar quantitieswill be given. The wavevector of a particle is a

measure of its momentum, velocity , quantum wavelength , and kinetic energy :

, (4.4)

where  is the reduced Planck constant and is the effective mass of the particle.

A region in which thecarrierenergy is lessthanthepotentialenergy is called

3. Technically, the TISE represents an eigenvalue equation at energy .E
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a “classically forbidden” region, sincecarriersare energetically not allowed into such

regionsaccordingto classical(althoughnotquantum)physics.Quantumparticles,suchas

electronsor holes,cantravel into andthroughverynarrow classicallyforbiddenregions,a

processcalled quantumtunneling.However, even quantumparticleswill inevitably be

repelledfrom wide classicallyforbiddenregions.In a classicallyforbiddenregion of con-

stantpotential(a CCFregion), , andthewavefunctioncanbewritten asthe

sum of exponentially increasing and decreasing functions:

, (4.5a)

. (4.5b)

 is the attenuation constant of the wavefunction as it penetrates into the CCF region.

Finally, a region in which the(fixed)carrierenergy is exactly equalto thepotential

energy is calleda constant“classicallyneutral” (CCN) region. For ,

theTISE (4.1) requiresthat thesecondderivative of thewavefunctionbezero.Therefore,

the wavefunction has the following general form in a CCN region:

. (4.6)

The treatmentof CCN regions has apparentlynever beendescribedin the literature.

Admittedly, its occurrenceis unlikely in TMM simulation,andmostTMM implementa-

tions probably ignore this possibility altogether. However, a robust simulator (i.e., one

which will not crash or give erroneous results) must correctly handle this case.

4.2.2 Gridded Potential Profile

Figure4.2 shows anapproximatepotentialprofile of a resonanttunnelingdiode

(the prototypequantumdevice usedin this work). There is no analytic solution to the

TISE for sucha potential.As indicatedabove, a TMM simulationstartsby dividing the

quantumsysteminto many small regions.Within eachregion, a constantapproximation

is usedfor thepotential.This determinesthegeneralsolutionof theTISE for

thatregion. If asuitablyfinepositiongrid is chosen,andanappropriatechoiceis madefor

the potential function in eachsmall region, the resultingpiece-wiseconstantpotential

functionandits resultingTISE solutionwill tracktheactualpotentialprofile andits TISE

solutionarbitrarily closely. Theremainderof this sectiondescribesthebasicpositiongrid

scheme used in SQUADS and the choice of potential function for each grid region.
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Having arguedthat thesolutionof theTISE canbe facilitatedby dividing thesystem

into many smallregions,how shouldthepositiongrid4 bedesigned?To beconsistentwith

SQUADS’ useof the effective massapproximation,which averagesthe potentialover a

unit cell (i.e., the region “controlled” by a singleatom),neitherthewavefunctionnor the

potentialshouldberesolvedto any finer degreethantheatomicspacing.In fact,theposi-

tion grid should be designed to have exactly one grid point per atomic spacing.

Thus,asshown in Figure4.3,SQUADS usesa uniform positiongrid with nodepoints

(denoted ) separatedby adistance , startingat , andendingat , where

L is thewidth of thesystembeingsimulated. is thenumberof grid regionsbetweenthe

contacts(onelessthanthenumberof nodes),sothat . As discussedin thepre-

viousparagraph, shouldbeequalto thelatticespacingof thematerial.Of course,dif-

ferentmaterialstypically have slightly differentlatticeconstants,soit is not possiblewith

a uniform grid to exactly mirror the lattice of real quantumdevices,which are always

multi-material systems. The discrepancy should be fairly small, however.

SQUADS usesthegrid nodeschemedepictedin Figure4.3,aswell asdevicestructure

informationandtheappliedbias,to calculatethepotential at eachgrid node . The

potentialvalues at the internal device nodesmay be approximatedusing a suitable

algorithm,suchasasimplelinearmodelfor thepotentialprofile,or calculatedself-consis-

tently (i.e., consistentwith the carrier density),as discussedin Chapter6. To solve the

TISE in eachregion, theTMM musttranslatethe valuesat thegrid nodesinto

functionsfor eachregion betweenthe nodes.The logical choicefor is to usethe

4. The set of points at which physical quantities, such as carrier density, will be calculated.

Figure 4.2: Typical quantum device potential energy profile

Thepotentialenergy profileU(x) shown for aresonanttunnelingdiodeis relatively
simple, but still far too complex to solve the TISE analytically.
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average of the potential at two bounding nodes and :

. (4.7)

This interpolationschemeresultsin a stepped,ratherthansmooth,potentialprofile, but

with atomicgrid spacing,theerrorshouldnot belarge.More accuratepotentialinterpola-

tion schemes are discussed in Sections 4.4.1 and 4.4.3.

Notefrom (4.3b)and(4.5b)that theeffective mass mustalsobeknown in thegrid

region to determinethe TISE generalsolution in that region. SQUADS suppliesto the

TMM thevalueof theeffective massat thegrid nodes, . Therefore,SQUADS usesthe

average of the effective masses at the two bounding nodes for that of the enclosed region:

. (4.8)

For boundaryconditionson theelectrostaticpotential , asindicatedin Figure4.4,

SQUADS definestheFermienergy at theleft contact(calledtheincidentcontact,for now)

asthereferenceenergy. Thepotentialat theright contact(calledthetransmittedcontact)is

set by the applied bias . Thus, contact potentials are:

, (4.9a)

, (4.9b)

where is theelectroncharge, is theFermienergy (relative to theenergy band)at the

incident contact, and  is that at the transmitted contact.

Theelectrostaticpotentialboundaryconditionsdepictedin Figure4.4 differ from the

standardboundaryconditionsin quantumdevice simulation[3, 8, 10, 19-21]. The stan-

dardapproachis to take theenergy bandminimum(ratherthantheFermi level) at the I-

0 21

Figure 4.3: SQUADS position grid scheme

SQUADS usesauniformpositiongrid, xn=n x, atwhichpointsdeviceparameters
(e.g.,bandoffset,doping)aresuppliedandsimulationresults(e.g.,carrierdensity,
wavefunction) are calculated.
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contactasthereference( ). SQUADS usestheboundaryconditionsshown in Fig-

ure 4.4 (also used in [6, 11]) for several reasons:

• If multiple energy bandsareincluded,eachof which mayhave a differentband

minimum at the contacts,thereis no reasonto preferonebandminimum over

another as reference. In contrast, there is only one Fermi level at each contact.

• At equilibrium(zeroappliedbias),it is reasonableto expectthereferenceonone

sideof the device to equalthe analogouspoint on the otherside.Even usinga

singleenergy bandasreference,with any materialdifference(bandoffset,effec-

tive mass,or doping), the bandminima at the two contactswill not be equal.

However, the Fermi levels at the two contacts are always equal at equilibrium.

• By extension,bias is appliedbetweenthetwo Fermilevels,not thebandmin-

ima at thecontacts.Whenthecontactmaterialsaredifferent,theT-contactband

minimum is (where is the relative bandoffset at the T-contact)

below the I-contact, but the T-contact Fermi level is exactly  below .

Although the Fermi level is in a sensea more“fundamental”entity of a device thanthe

bandminimum(basedon theabove points),SQUADS recognizesthatusingtheI-contact

bandminimumasreferencein thecasesof a singlebandis moreuser-friendly. Therefore,

while all calculationsin SQUADS areperformedusingtheI-contactFermi level asrefer-

ence,whenonly oneenergy bandis includedin thesimulation,SQUADS shiftspotential

profile plots such that the I-contact minimum is at 0 energy.

SystemI-Contact T-Contact

U(x)
E

ne
rg

y
EFI=0

EFT-qVa

Figure 4.4: Typical potential with applied bias and boundary conditions

SQUADS usesthe I-contactFermi level asthe energy reference(EFI = 0), rather
than the I-contact electrostatic potential [U(0) = 0].
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4.2.3 Wavefunction Matching Conditions

Giventhepotentialapproximation for eachregion using(4.7),thegeneralsolu-

tion of theTISE (i.e., thewavefunction)in eachregion is known, basedon the resultsof

Section4.2.1.But theTISE is not yet completelysolved.In particular, thecoefficientsin

the generalsolutionsfor eachregion [see(4.2)] areasyet unknown. In fact, thereare2

unknown coefficientsfor eachregion! However, thewavefunctionsin adjacentregionscan

be relatedusing “matchingconditions”at the interfacebetweenthe two regions.These

matchingconditionsarisefrom ananalysisof theSchrödingerequation,which shows that

every physically viablewavefunctionwill becontinuous,andits probability currentden-

sity5 must be constant (in steady-state), everywhere in the system.

Thecontinuity requirementsmustbesatisfiedevenacrossinterfacesbetweenregions

with different TISE generalsolutions. In other words, the wavefunctionsof adjacent

regions must be matched,as well as their probability currentdensities,at the interface

between the regions. For example, at interface , the matching conditions are:6

, (4.10a)

. (4.10b)

Sincethewavefunctioncoefficientsaretheunknowns(theTISE generalsolutions and

areknown, given the region potential),(4.10a)and(4.10b)aresolved for and

in terms of  and :

, (4.11a)

, (4.11b)

where the  values are constants. In matrix form, these equations are written

. (4.12)

Note that the2x2 matrix essentiallytransfersthewavefunctioncoefficient relation-

shipacrossinterface , which is theorigin of theterm“transfer-matrix”. Detailedexpres-

sions for the terms in transfer matrix  are derived in [1].

5. Probability current density is analogous to “normal” charge current density.
6. Thesewavefunctionmatchingconditions,althoughuniversallyusedin theTMM, wererecently
disputed by Harrison and Kozlov [22].
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In SQUADS,  is actually calculated as the product of two 2x2 matrix factors,

, (4.13)

where is associatedwith region just beforeinterface and is associated

with region justafterit. With threetypesof regions(CCA, CCF, andCCN), thereare

ninedifferentfunctionalformsfor , sincethis transfermatrix includesfactorsrelating

to theTISE solutionsin bothregionsboundingnode . In general,to implement region

typesin aTMM simulator, thereare formsof to code.7 However, thereareonly

formseachof and . In usingthis separationof , modificationandaddi-

tion of region types are greatly simplified, making SQUADS easily extensible.

Becauseof the centralrole of (4.12) in the TMM, a graphicaldepictionis shown in

Figure4.5. Using (4.12), the coefficientscanbe mathematicallyrelatedbetweenregions

and , andbetweenregions and . Thenthe relationshipbetweeneachpair of

regionscanbe combinedto relatethe coefficientsin region to thosein region .

By extension,thewavefunctioncoefficientsin any regioncanberelatedmathematicallyto

those in any other region using the appropriate transfer matrices.

4.2.4 System Transmission Matrix

TheI-contactandT-contactcanbethoughtof asregionsof thedevice just like any of

the internalgrid regions.The main resultof Section4.2.3wasthat matchingconditions

7. In Section 4.4.3, a fourth region type will be added, giving 16 possible forms of .
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Figure 4.5: Relating wavefunction coefficients across an interaface

The wavefunctioncoefficients in adjacentregions,sayn andn+1, arerelatedby
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allow thewavefunctioncoefficientsin any region to berelatedmathematicallyto thosein

any otherregion.Thus,considerconstructingarelationshipbetweenthecoefficientsin the

I-contactandthosein theT-contactby combiningtherelationshipsacrosseachgrid inter-

facein turn. This net relationshipacrosstheentiredevice, calledthesystemtransmission

matrix (STM), hasaspecialplacein theTMM, for reasonsthatwill beapparentin Section

4.3.1. This section describes the simplest method of calculating the STM.8

4.2.4.1 Basic STM Calculation

As indicatedabove, theSTM is acompositeof thematchingconditions(4.12)relating

thewavefunctioncoefficientsacrosseachinterfacein order, from oneendof thedevice to

the other. To form the STM, first use(4.12) to relatethe coefficients acrossthe

interface (between the I-contact and first device region) and the  interface:

, . (4.14)

Now substitutethe expressionfor the region coefficients from the first equation

into thesecond,to relatethewavefunctioncoefficientsin theI-contactto thosein thesec-

ond device region:

. (4.15)

Note that the parenthesescan be removed in (4.15) using the associative property of

matrixmultiplication9 [23]. However, matrix location(order)in theproductmustbemain-

tained,sincematrix multiplication is not commutative10 [23]. Finally, notethat theprod-

uct of two 2x2 matrices is again a 2x2 matrix.

Following theapproachindicatedin (4.15),thecoefficient relationshipis expandedto

include additionalinterfaces.By bridging the relationshipbetweenthe I- and T-contact

regions (i.e., across all interfaces from  to ), the STM is determined. Thus:

. (4.16)

8. Otherapproachesto calculatingtheSTM, which areoftenmoreefficient althoughtheir deriva-
tions are more complex, are described in Section 4.4.
9. If A, B, and C are matrices such that the product ABC can be performed, then (AB)C = A(BC).
10. If A and B are matrices, in general, AB≠ BA.
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The matrix product in parentheses is the STM:

. (4.17)

The transfermatrices areconstants,dependingonly on the generalsolutionsof the

TISE in theassociatedregionsof thedevice [1]. Thus,theSTM is a constant2x2 matrix,

where each of the 4 elements is (in general) a complex number.

Every significantcomputationin a numericalsimulatoris alsoanopportunity, evenan

obligation, to find efficienciesthatcanbeexploited.Thecomputationof theSTM is cer-

tainly sucha computation,andSQUADS usesseveral “tricks” to make this computation

moreefficient. The mostobvious is discussedin the remainderof this section.In many

simulateddevices,thereareflat-bandregions(whereno energy bandbendingoccurs)of

significantextentadjacentto oneor bothcontacts(e.g., seeFigure4.4).Sincethepotential

function in theflat-bandregion is thesameasthat in theadjacentcontact,theTISE solu-

tions(includingcoefficients)is alsothesameasthatin thecontacts.11 Thus,theSTM cal-

culationcanbeconfinedto theactiveregionoverwhichbandbendingoccurs,with exactly

thesameresult.Thiscanoftenreducethelengthof theSTM calculationby 50%.Suppose

theflat-bandregionsarebeforeinterface on the I-contactside,andafter interface

on theT-contactside.SQUADS simply treatsthis asa generalcaseof theSTM derivation

above, where  and . The STM equation (4.17) now is

. (4.18)

4.2.4.2 STM Calculation Complications

Therearetwo importantcomplicationsto thebasicSTM calculationthatmustbehan-

dled to ensurea robustandaccurateTMM simulator. Both complicationsinvolve tunnel-

ing through extendedclassically forbidden (CF) regions betweenthe two (classically

allowed) contacts.In a real system,extendedCF regionswould just result in essentially

total reflection of the quantumwave . In a numericalsimulator, thesecases

requiretheconsecutive multiplicationof exponentiallylargeandsmallnumbers.This can

result in numeric overflow (crashingor invalidating the calculation)or rounding error

11.Notethateffective massmustalsobeconstantto takeadvantageof a flat-bandregion,sincethe
TISE solution depends on effective mass. SQUADS does check for effective mass variations.
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(translatinginto an exponentiallylarger error in the STM result).To prevent this, if an

extendedCFregion is encounteredduringtheSTM calculation,SQUADS mimicsthereal

systemresultby terminatingtheSTM calculationandtaking (total reflection)for

thatwave.Of course,thisgambitshouldonly beusedwhenthetransmissiontruly is negli-

gible.Most waveswill tunnelthroughsomeamountof CF region (suchasthetunnelbar-

riers in an RTD), but they can still contribute significantly to current flow. The task,

therefore, is to establish a measure to judge the effective width of a CF region.

From Section 4.2.1, the wavefunction in a CCF region is

. (4.19)

Therefore,thepropermeasureof the“tunnel width” of a CCFgrid region is theexponen-

tial “decay phase” of that region:

. (4.20)

The total decay phase of a series of CCF grid regions is

, (4.21)

where is thepositionwheretheseriesof CCFregionsstarts.If exceedsa specified

maximumdecayphase beforetheseriesof CCFregionsends,thentheSTM calcula-

tion is terminatedand the transmissionamplitude for that energy is taken to be 0.

SQUADS uses , which givesa wavefunctiondecayfactorof .

Nine ordersof magnitudeof attenuationensuresthatthesewavefunctionscannot contrib-

ute significantly to current flow.

The secondpotentialproblemin the basicSTM calculationinvolves a more direct

sourceof numericaloverflow. In a CCFregion, theSTM calculationrequiresthecalcula-

tion of numbersof theform . Dependingon how large and might be,a numerical

overflow mayoccurin forming this number. Examplecalculationsshow thatthis situation

is unlikely, but quitepossible,dependingonthemaximumdoubleprecisionnumberonthe

machinebeing used.A robust simulatormust thereforeprotectagainst it. Actually, the

total reflectionconditions discussedabove occurwell beforenumerical

overflow in mostcases.In the few remainingcases,the decayrateof the wavefunction

mustbe extremelyhigh, so the bestsolution is simply to implementthe total reflection

gambit a little early. In SQUADS, the exponentlimit wassetat 10 below the maximum

(typically about700), leaving a few ordersof magnitudebreathingroom to do computa-
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tionswith largenumberswhich arejust below the limit. Ratherthenbeing“hard-wired”,

thisexponentlimit is calculatedat run timebasedon themaximumdoubleprecisionnum-

ber of the machine on which SQUADS is being executed.

4.3 Quantum Device Simulation Using the TMM

Thefirst paragraphof this chapterdescribedtheTMM in very generalterms.In Sec-

tion 4.2, the foundationfor a mathematicaldescriptionof the TMM hasbeenlaid. This

sectioncompletesthe picture.Several importantsimulationtasksin the TMM investiga-

tion of quantumdevice operationaredescribedin this section.Themostbasictaskis the

calculationof the current-voltagecurve, which is describedin Section4.3.1.Othertasks

describedincludethecalculationof thewavefunction(Section4.3.2),energy spectrumof

carriers in the device (Section 4.3.3), and carrier density profile (Section 4.3.4).

4.3.1 Curr ent-Voltage Curve Simulation

Perhapsthemostbasicgoalof a TMM simulationis to determinetheI-V characteris-

tic of a quantumelectronicdevice.Currentdensityis independentof positionin a steady-

statesystemsuchas that modeledby the time-independentSchrödingerequation.Thus,

currentdensitycanbecalculatedfrom thewavefunctionat any point in thedevice. How-

ever, bothcoefficientsof thewavefunctionmustbeknown, not just thegeneralsolutionof

the TISE, at somelocation in order to determinecurrent.This sectionshows how the

TMM determinesbothwavefunctioncoefficientsat a singlepoint in thedevice, andwith

these how current is calculated.

4.3.1.1 Determining the Transmission Amplitude

Figure4.6shows theabstractionof a typical RTD simulatedby theTMM. Considera

quantumwave of kinetic energy , which is incidenton thesystemfrom theI-con-

tact,is partially reflectedbackinto theI-contact,andpartially transmittedthroughthesys-

tem into the T-contact.The TMM calculationassumes(for the moment)that thereis no

incidentwave from T-contact.Theobviouspoint at which to determinethewavefunction

coefficientsis oneof the device contacts.To accomplishthis, the generalsolutionof the

TISEin thecontactsmustbespecified.SQUADS assumesidealohmiccontacts(nopoten-

tial dropoutsidethedevice),12 so in eachcontactis aconstant.In particular, from the

E U0–

U x( )
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boundary conditions (4.9a) and (4.9b),  and .

On the I-contactside (region 0), incident wavefunctionsmust have positive kinetic

energy . In otherwords,the I-contactis a CCA region, andthe solutionof the

TISE in this region is given by (4.3a):

. (4.22)

On theT-contactside,therearetwo possibilities.If theT-contactis aclassicallyforbidden

region (i.e., , usually due to a negative appliedbias), the wavefunctionwill be

totally reflectedbackto theI-contact,andtherewill beno transmission . Conse-

quently, waveswith do not contributeto currentflow, andneednot beconsidered

in a currentcalculation.Theonly non-trivial caseis where , wherethesolutionof

the TISE in the T-contact is also given by (4.3a):

. (4.23)

As derivedin Section4.2.4,therelationshipbetweentheI-contactandT-contactwave-

function coefficients is written as

, (4.24)

where through arecomplex numbersresultingfrom themultiplicationof all of the

12. For accuratecomparisonof simulationand experiment,the systemwidth L shouldbe large
enough to naturally accommodate all band bending between the contacts.
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factorsof theSTM, asdescribedin Section4.2.4.In theI-contact,thecoefficient of

the FTW (i.e., the incident amplitude) is denoted , and that of the BTW (the

reflectedamplitude)is . In theT-contact,thecoefficient of theFTW (thetransmit-

ted amplitude) is denoted . These changes give

. (4.25)

(4.25)is still two equationsin four unknowns,soit is still impossibleto solve for any-

thing - theentireexerciseof generatingtheSTM seemsto gainnothing.Actually, because

theI- andT-contactsareat theboundariesof thesystem,two boundaryconditionson the

TISE canbe supplied(sinceit is a second-orderdifferentialequation)asthe constraints

necessaryto make (4.25) solvable. Concerningboundaryconditions, the TMM first

assumes,asstatedpreviously, that thereis no incidentwave (BTW) from the T-contact

side . Second,a normalizedincidentwave is used.13 Thus,the nor-

malized solutions in the contacts are:

, (4.26a)

. (4.26b)

and (4.25) finally becomes two equations in two unknowns:

(4.27)

(4.28)

. (4.29)

Note that, since through arecomplex numbers,the reflectionamplitude and

transmissionamplitude are also complex, having both magnitudeand phase.Thus,

giventheSTM, thewavefunctionincludingcoefficientscanbedeterminedin eitherof the

contacts.Sincethe wavefunctionin the T-contactis simpler, it is invariably usedin the

currentcalculation.Fromanotherstandpoint,it is moreintuitive to calculatecurrentflow

from the transmission amplitude, due to their conceptual similarity.

13. Both of thesemaneuvers are correctedlater in current density calculation,which properly
scales the result given the actual incident carrier distribution at both contacts.
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A quantity related to the transmission amplitude is the transmission coefficient:14

, (4.30)

where is thecomplex conjugateof . Thetransmissionspectrum (transmission

coefficient versusincidentwave energy) containssignificantinformationin its own right,

independentof the currentcalculation.For example,sharppeaksin indicatereso-

nant energies in the device. Example transmission spectra are shown in Section 4.5.1.

4.3.1.2 Calculating Current

Upon determiningthe transmissionspectrum , currentflow can be calculated

using a modified Tsu-Esaki formula [24],

, (4.31)

where is the appliedbiasacrossthe device; , with beingthe temperature

and beingtheBoltzmannconstant;andthe ’s arethe I- andT-contactFermiener-

gies (w.r.t. the energy band).

(4.31)correctsfor thetwo boundaryconditions(givenbelow (4.25))usedin calculat-

ing thetransmissionamplitude.To do this, it usesthefactthatthetransmissioncoefficient

is thesamefor carriersincidentfrom theleft andright atenergy . Thus,it notonly prop-

erly scalesthecurrentfrom thenormalizedtransmissionamplitude,but it alsoaccountsfor

carriersincident from both contacts.More accurate(andmorecomplicated)expressions

for the TMM currenthave beenderived [25, 26] andchallenged[27]. Theseexpressions

arenotcurrentlyimplementedin SQUADS. However, SQUADS doesuseaslightgeneral-

izationof (4.31)and(4.30),allowing theeffective massof thetwo contactmaterialsto be

different. This requires the  term to be split up, giving:

, (4.32)

where

14. Technically, the ratio of incident current to transmitted current.
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. (4.33)

Another simple generalizationis to allow the contactsto be at different temperatures,

making , as appropriate. SQUADS does not currently implement this feature.

4.3.1.3 I-V Curve Simulation Overview

The completeprocedurefor calculatingcurrent-voltagecurve of a quantumdevice

using the TMM is as follows:

1) At a given incidentwave energy andappliedbias , computethe

system transmission matrix  using (4.17).

2) Calculatethe transmissionamplitude for that incident wave using

(4.29).

3) Determine the transmissioncoefficient of the system  from (4.33).

4) Repeatsteps(1) - (3) to determine over the rangeof energiesat

which there are significant incident carriers from either contact.

5) Use (4.32) to calculate the current density at that applied bias.

6) Finally, repeatsteps(1) - (5) over a desiredrangeof appliedbiases,

yielding the current-voltage curve.

Step(4) requireselaboration.In quantumdevices like the RTD, transmissionreso-

nances(sharppeaksin thetransmissionspectrum)canbeverynarrow. Further, mostof the

currentflow may be dueto carriersat theseresonantenergies,sinceoff-resonancetrans-

missioncanbeexponentiallysmall.Thus,theenergy spacingin the calculationmust

beverysmallto adequatelyresolve theseresonancesandaccuratelycalculatecurrentflow.

Of course,doingmorecomputationthannecessaryis almostasbadasdoingtoo little. To

this end, the rangeof energies shouldbe restrictedto only thosewhich could possibly

carryasignificantamountof current.Theresultingenergy rangeis depictedin Figure4.7.

Of course,thereis no point in calculating for carriersincidentat energiesbelow the

bandminimum at the T-contact( )—thesewill be totally reflectedback to the I-

contact[ ]. Also, thereis no point computing at very high energies wherethe

numberof incidentcarriersis negligible. In SQUADS, is setat 15 above the

higherFermi level (or 15 above the higherbandminimum if it is above the higher

Fermilevel). Thus,for purposesof calculatingcurrentflow via theTMM, SQUADS typi-
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cally uses1,000to 10,000energy pointsdistributedevenly from thehigherbandminimum

up to . Several TMM-simulated I-V curves are shown in Section 4.5.

4.3.2 Calculating the Wavefunction

In thetransfer-matrixmethod,thequantumwavefunctionis thefundamentalcontainer

of carrier information. In the TMM, to go beyond the terminal, I-V characteristicsof a

quantumdevice,aninternalview of deviceoperationrequirescalculationof thewavefunc-

tion. A singlewavefunctionshows how carriersat particularenergy arebehaving. Wave-

functionsat a rangeof energiescanbe usedto determinethe energy spectrum(Section

4.3.3)andcarrierdensityprofile (Section4.3.4).This sectiondescribesthecalculationof

the wavefunctionfor a continuousbeamof carriersincident on the quantumdevice at

energy . This is exactly the entity for which the transmissioncoefficient wascalcu-

latedfor the I-V curve, asdescribedin the previous section.Although it is necessaryto

calculatewavefunctionsincidentfrom eithercontact,for agivenwavefunctioncalculation,

onecontact(right or left) is the I-contactwhile theotheris theT-contact.Thus,this con-

tact naming scheme can (and will) be retained.

In Section4.3.1,when wascalculated,it wasonly necessaryto determinethe

wavefunction(for eachenergy) at a singlepoint: the T-contact.Now the taskis to deter-

Emax
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Figure 4.7: Energy range for T(E) calculation in I-V cur ve simulation
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minethewavefunctionatall points,or rather, all grid pointsin thesystembeingsimulated.

As shown in Section4.3.2.1,theresultsof the calculationcanoften(but notalways)

beusedto quickly determinethewavefunctionat thedevice’s internalgrid nodes.Sections

4.3.2.2and4.3.2.3thenconsidertwo complicationsthatarisein thewavefunctioncalcula-

tion, and explain how they are addressed in SQUADS.

4.3.2.1 Basic Wavefunction Calculation

Thetaskathandis to calculatethewavefunction(numericalvalues- not functionsand

coefficients)at thegrid nodesof thesimulatedsystem.FromSection4.2.1thewavefunc-

tion in region  at node  can be written as

. (4.34)

Notethatthewavefunctionmatchingconditions(4.10a)and(4.10b)usedin theSTM cal-

culationusethefunctionvalues and . It is a simplematterto storetheseval-

ues for later use during the wavefunction calculation.

What isn’t known during the STM calculationare the wavefunctioncoefficients

and . But as discussedin Section4.2.3,given both wavefunctioncoefficients in any

region, thewavefunctionmatchingconditionscanbeusedto determinethewavefunction

coefficientsin any otherregion.Thus,theSTM calculationis aprerequisiteto thecalcula-

tion of the wavefunction:it gives the wavefunctioncoefficients in both contacts,and it

givesall of thewavefunctioncoefficient relationships.TheI-contactwavefunctioncoeffi-

cientsareusedasthe“seed”to calculatethecoefficientsatall internalgrid nodesusingthe

matching conditions.

Of course,the matchingconditions,like the TISE solution values,usedduring the

STM calculationmustalsobe storedfor later usein the wavefunctioncalculation.This

storageis minimal (typically 50KB) if thewavefunctioncalculationis completedimmedi-

atelyaftereachSTM calculation,andthestorageis thenreusedfor thewavefunctioncal-

culation at the next energy. The STM calculation is therefore completed as follows:

; (4.35a)
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. (4.35c)

Θ E( )

n n

ψ xn( ) an f n xn( ) bn gn xn( )+=

f n xn( ) gn xn( )

an

bn

p0
1 0

0 1
≡

pn+1 in pn
≡ n 1 2 … N, , ,=( )

STM pN+1=⇒



4.3. Quantum Device Simulation Using the TMM 83

Here, relatesthe region 0 coefficientsacrossinterface to the region coeffi-

cients.After the STM calculation,both region 0 coefficients are known ( and

). Thus,

, (4.36)

and the wavefunction coefficients of all other regions are quickly calculated.

This wavefunctioncalculationalgorithmassumesthata productmatrix is avail-

able from the STM calculationfor every interface . However, Section

4.2.4showed that, in many cases,the STM calculationcanbe significantlyshortenedby

takingadvantageof flat-bandregionsnearthecontacts.Oneresultis thatproductmatrices

arenot calculatedandstoredfor grid nodesin theflat-bandregions.However, ratherthan

retreatingto a full (andmoreexpensive) STM calculation,SQUADS again takesadvan-

tageof theflat-bandregionsto achieve a moreefficient computation.At grid nodesin the

flat-band regions, the wavefunction is simply an extension of that in the contacts:

Flat-band I-contact wavefunction: , (4.37)

Flat-band T-contact wavefunction: . (4.38)

TheSTM calculationproducedvaluesfor and , sothesefunctionscanbeeasilyevalu-

ated at the relevant grid points .

Recallingfrom Section4.2.4all of theeffort requiredto calculatetheSTM, it should

beclearfrom theabovedescriptionthatcalculationof thewavefunctionrequiresrelatively

little additionaleffort. Unfortunately, several complications,describedbelow, make the

wavefunction calculation more difficult in some cases than this simple picture portrays.

4.3.2.2 Classically Forbidden T-Contact

Themaincomplicationin thecalculationof thewavefunctionstemsfrom thefactthat

the transmissioncoefficient calculationis only doneat incident energies that are above

bothcontactenergy bandminima.Thus,in Figure4.7,thetransmissioncoefficientwasnot

calculatedfor , sincetheresultwouldbezero(total reflection).In fact,themean-

ing of a systemtransmissionmatrix, not to mentionits calculation,is dubiousfor carriers

incidentat theseenergieswheretheT-contactis classicallyforbidden.However, it is often

necessary(e.g., in the calculationof the carrier density)to determinethe wavefunction
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evenwhentheincidentbeamis eventuallytotally reflected.This sectiondiscussesthecal-

culationof thewavefunctionin this caseof a classicallyforbidden(CF) T-contact.Figure

4.8 shows an example of such a wavefunction.

To calculatethewavefunctionwhentheT-contactis classicallyforbidden[ ],

SQUADS changesthe standardprocedureonly slightly. The STM calculationproceeds

and the product matrices  are formed just as with a classically allowed T-contact:

, (4.39)

. (4.40)

In order to determine from this equation(to seedthe full wavefunctioncalculation),

either or mustbespecifiedin someregion sothatthereareonly two unknowns

in (4.40).Essentially, a new secondboundaryconditionis needed.FromSection4.2.1,if

the T-contact is a CF region, the TISE solution here is:

. (4.41)
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Figure 4.8: Wavefunction incident at energy below T-contact minimum

Thepositionprobability is shown for a wavefunctionincidenton a reverse-biased
RTD at an energy just below UN. In this case, T=0 and |R|=1.

U L( ) E>

pn[ ]

pn[ ] in[ ] pn-1[ ]=

an+1

bn+1

pn[ ] 1

R
=

R

an+1 bn+1

ψN+1 x( ) aN+1 e
κN+1x

⋅ bN+1 e
κN+1x–

⋅+=



4.3. Quantum Device Simulation Using the TMM 85

SincetheT-contactregion extends(in thesimulationabstraction)to infinity, a physically

permissiblewavefunctionin a CF T-contactregion cannot have anexponentiallygrowing

component,or the wavefunctionwould grow without bound.The coefficient must

therefore be zero. This will serve as the second boundary condition.

SQUADS couldcalculatetheproductmatricesupto theT-contactandthenset to

0 in (4.40),whichwould indeedgive . As usual,however, this is aspecialcasewherethe

lengthof theT-contactflat-bandregion is zero.In general,if theT-contacthasa flat-band

region afternode , thewavefunctioncoefficientsareconstantin this region. Thus,the

coefficient of the exponentiallygrowing piececanbe setto zeroasthe STM calculation

crossesinto theCF T-contactflat-bandregion at node . Further, productmatrix

is theSTM, sinceit relatesthewavefunctioncoefficientsin theI-contactto thosein theT-

contact flat-band region, and thus in the T-contact itself. Then (4.40) becomes

. (4.42)

 and  are found as:

, (4.43a)

, (4.43b)

which aredifferentthantheexpressionsfor and for a classically-allowedT-contact.

Given , SQUADS usesthe sameapproachasin Section4.3.2.1to calculatethe wave-

functionfor nodes . For nodes through , theTISE solutionfor theT-con-

tact CF region is simply evaluated at the grid nodes:

. (4.44)

4.3.2.3 Quantum Turning Points

Thereis yet a further complicationin the wavefunctioncalculationfor certainCF T-

contacts,or, in fact,wherethedevice includesanyextendedCF region for someincident

energies,evenif theT-contactis classicallyallowed.In thelattercase,recallfrom Section

4.2.4.2that the STM calculationwasabandonedandthe transmissionamplitudesetto 0

whenanextendedCFregionwasencountered.Again,it is necessaryto computethewave-
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function even in suchcases,so the computationcannot simply be abandoned.The trick

will be to introducewhat will be called a quantumturning point (QTP) as the second

boundarycondition.This artifice will terminatethe STM calculationcleanly, enablethe

calculationof the reflectionamplitude,andtherebythe calculationof the wavefunction.

ThissectiondescribesSQUADS implementationof QTPsandthecalculationof thewave-

function in these cases.

A quantumturningpoint is hereindefinedasthepoint at which an incidentwave has

traversedenoughCF spacethat its decayphaseexceeds , as definedin Section

4.2.4.2.Recall from the STM calculationthat at this point, the wavefunctionamplitude

hasdecayedby about9 ordersof magnitudefrom its incidentvalue,andhasthuseffec-

tively beentotally reflectedbackto theI-contact.To minimizebothunnecessarycomputa-

tion and numerical error of multiplying more exponentials together, SQUADS

mathematicallyinserts(for the calculationof this onewavefunction)a totally reflecting

barrierto reflectthe tiny remainderof the wavefunction,thusterminatingthe wavefunc-

tion at thisquantumturningpoint.This introducesnegligible error, sincethewavefunction

is already highly attenuated.

To calculatethewavefunctionin thecaseof aQTP, theprocedureis almostidenticalto

that for CF T-contact: at node , the STM calculation gives:

. (4.45)

When the STM calculationfinds that the decayphasehasexceeded during grid

interval , a quantumturningpoint is insertedat thenext interface(node ). A

totally reflectinginterfaceis createdby assumingthat region (just after the QTP)

hasan infinitely high potential, . This hastheunfortunateeffect of making

someof the matrix elementsin infinite. Thus, implementingthe QTP boundary

condition requires a little finesse.

To implementasecondboundarycondition,SQUADS usesthefactthatthewavefunc-

tion must be continuous,even at an infinite discontinuity in the potentialenergy ,

suchasataQTP. In particular, sincethewavefunctionis 0 justaftertheQTP, it mustgo to

zero just before it. Thus, in region  at the QTP, the general solution of the TISE is:

, (4.46)
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, (4.47)

where is justaplace-holdername.(4.47)will beusedasthesecondboundarycondition

in thecaseof a QTP. To incorporateit, first write theproductmatrix , astherela-

tionship between the I-contact coefficients to those in region  (just before the QTP):

. (4.48)

Next, multiply both sides of (4.48) by the following 2x2 matrix:

, (4.49)

. (4.50)

Now use (4.47), and solve for :

, (4.51)

. (4.52)

Having calculated , thesameapproachasin Section4.3.2.1is usedto calculatethe

wavefunctionat node0 through . For nodes through , the wavefunctionis

zero,sincetheQTPis totally reflecting.Notethatin therarecaseswhereaQTPis inserted

dueto impendingnumericaloverflow, asdescribedat theendof Section4.2.4.2,theQTP

is treatedno differently for purposesof wavefunctioncalculationthat a “normal” QTP.

Finally, notethatfor all casesof wavefunctioncalculation(partialtransmission,CFT-con-

tact,or QTP),theSTM calculationalwaysproducedsomereflectionamplitude . In con-

trast, only in the first case was there a transmissionamplitude . Therefore, for

consistency, the wavefunctioncalculationin SQUADS alwaysusesthe I-contactcoeffi-

cients as the “seed” to initiate the wavefunction calculation.

4.3.3 Calculating the Energy Spectrum

A useful derivative of the wavefunctioncalculationis the calculationof the energy

spectrum of carriersin variousregionsof thedevice.Theenergy spectrumis simply
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the numberof carriers(probability density)versusenergy at a given location.SQUADS

allows specificquantumdevices to be defined,as well as regions for that device. For

example,the basicresonanttunnelingdiodehasthreedevice regions: the quantumwell

andthetwo contacts(separatedby thetunnelbarriers).During anenergy spectrumcalcu-

lation,SQUADS recordsthemaximumamplitudeof eachwavefunctioncalculatedin each

region. This capability can be used,for example,to determinethe energy and energy-

width of resonantstatesin the quantumwell of the RTD. The wavefunctionswith the

highestamplitudeareat the resonantenergy. Resonantstatesarecritical to theoperation

of quantumdevices,andbeingableto locateandmapthesestatesin detail is animportant

(albeit rare) feature of quantum device simulators.

Normally, the transmissionspectrum givesessentiallythe sameinformationas

the energy spectrum , since haspeaksexactly at the resonantenergies.How-

ever, asshouldbeclearfrom thewavefunctioncalculationdiscussionin Section4.3.2,the

transmissionspectrumis not availablefor incidentenergy rangeswherea CF T-contactor

QTP occurs.However, theremay still be resonantstatesin the device for wavefunctions

incidentat theseenergies.Chapter8 describessucha case,andtheenergy spectrumfea-

tureof SQUADS wascrucial in clarifying someparticularlyinterestingRTD behavior in

this case.

4.3.4 Calculating the Carrier Density Profile

A morecommonuseof thewavefunctioncalculationin simulationsis for thedetermi-

nationof thecarrierdensityprofile (densityof carriersversusposition)in thedevice.

is usefulin determininghow an electronicdevice is operating,andit is an essential

ingredientin implementingself-consistency [agreementbetween and ] for more

accuratesimulations(seeChapter6). This sectiondescribesthecalculationof thecarrier

density profile using the transfer-matrix method of quantum device simulation.

The basicstrategy of the carrierdensitycalculationis to addup the densitiesdueto

individual wavefunctionsover the energy rangewherethe numberof incidentcarriersis

significant.The carrierdensitycalculationis thussimilar to the currentcalculation,but

therearesomeimportantdifferences.Figure4.9helpsto illustratethesimilaritiesanddif-

ferences.With the currentcalculation,wavesare incidentat only onecontact,sincethe

transmissioncoefficient at a given energy is the samein either direction (seeSection

Θ E( )

P E( ) Θ E( )

c x( )

c x( )

c x( ) U x( )



4.3. Quantum Device Simulation Using the TMM 89

4.3.1.2).Further, any energy at which theT-contactis classicallyforbidden(darkshading

in Figure4.9) is not considered,andany calculationduringwhich a QTP is encountered

(mediumshadingin Figure4.9) is simply abandoned.In contrast,in the carrierdensity

calculation,all energiesat which therearea significantnumberof incidentcarriersmust

beconsidered.This includesthosecaseswheretheoppositecontactis classicallyforbid-

denor wherea QTP is encountered.The resultis that thewavefunctionsof carriersinci-

dent from eachcontactmust be consideredseparately. The distribution and rangeof

incident energies are identical with the carrier density and current calculations, however.

Consideringthe carrierdensitycalculation,then,given wavefunction , which is

thenormalizedpositionprobabilityamplitudeof a beamof carriersat energy , thecar-

rier densitydue to this wavefunction is simply . The total carrier concentration

requiresa summation(integration)over all wavefunctionsfrom eachcontact,eachmulti-

pliedby therespectivenumberof carriersincidentat thatenergy. In SQUADS, theintegra-

tion is actually carried out over wavevector (4.4), rather than , as in the current

calculation,which enablesan integrationonly over incomingwaves from eachcontact.

Onceagain,SQUADS modifiesthestandardformulafor carrierdensity[10, 21] by allow-

ing different effective masses at the two contacts, giving:

SystemI-Contact T-Contact

Normal Transmission

Figure 4.9: Classes of carriers during carrier density calculation

Even carrierswhich have no transmission( , dueto a QTP or CF contact)
must be includedin the carrier densitycalculation.Carriersincident from each
contactmust be consideredseparately, since the two contactsinclude different
energy ranges.

T 0=

EFI

EmaxI

EFT

EmaxT

T = 0 (QTP) T = 0 (CF Contact)

U(x)

EFT+15kBθ
EFI+15kBθ

E
ne

rg
y,

 E

ψ x( )

E

ψ x( )
2

k E



90 Chapter 4.The Transfer-Matrix Method

. (4.53)

4.3.5 Calculating the Wigner Function

Onefinal featureof theTMM simulatorin SQUADS is theability to view theresults

asa Wigner function . As discussedin Chapter3, the Wigner function is a very

intuitive andefficient way to view the stateandoperationof a quantumdevice. Like the

carrierdensity , theWigner functioncontainsa compositeview of all wavefunctions

computed.However, the Wigner function also shows the number of carriers at each

wavevector (which is proportionalto velocity) as well as position,so it containsmuch

moreinformationaboutcarrierbehavior thanthecarrierdensityprofile.To maintainarea-

sonablecomplexity in this discourse,only the basicsof the Wigner function calculation

from individual wavefunctionsarepresentedhere.The interestedreaderis referredto [1]

for details of the derivations and numerical implementationof this calculation in

SQUADS.

TheWignerfunction is calculatedfrom thewavefunctionsvia anintermediate

entity: the densitymatrix . The densitymatrix calculationis very similar to the

carrierdensitycalculation15, beingessentiallyasummationof all wavefunctionsof signif-

icantamplitudein thesystem.However, insteadof addingprobabilities,thedensitymatrix

calculationusesa correlation of the wavefunctionamplitudeat one point with that at

another point. That is:

, (4.54)

where and . Note that

. TheWigner function is calculatedfrom thedensitymatrix via a series

of Fourier transforms at successive fixed positions :

15. In fact, SQUADS usesthe samesubroutineto calculatethe carrier densityand the density
matrix, with only a few lines of code specific to each calculation.
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. (4.55)

It is notdifficult to show [1] thattheWignerfunction is a real(asopposedto com-

plex) function.Figure4.10shows theWignerfunctionfor theRTD in Figure4.8,but at a

positive biasof 0.4V. TheWignerfunctionwill bedescribedin moredetail in Chapter5,

but for now notethebeam(small ridge)of carrierswhich have tunneledthroughtheRTD

and are exiting the RTD to the right.

4.4 Alter native Implementations

This sectiontreatsseveral alternative implementationsof the transfer-matrix method

of quantumdevice simulation.As shown, thesealternatives are often more accurateor

efficient than the standard implementation described in Sections 4.2 and 4.3.
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Figure 4.10: Wigner function calculated from TMM wavefunctions

TheTMM-calculatedWignerfunction is shown for anRTD at 0.4V bias.
The Wigner function shows the numberof carriersversusposition and velocity
(actuallywavevector) in the device. The small beamof carrierstravelling at high
velocity into the T-contact have tunneled through the quantum well state.
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4.4.1 Node-Centered Regions

One simple but significant modification of the TMM is to use node-centeredgrid

regions,wheregrid interfacesarehalf-way betweennodesratherthanat thenodes,asin

the(perhapsuniversallyused)node-boundedgriddingschemedescribedin Section4.2.2.

Themainbenefitof node-centeredgriddingis depictedin Figure4.11,whichshowsasim-

plepotentialprofile , thepoints extractedfrom , andthepiece-wise-constant,

node-boundedandnode-centeredapproximationsto thepotentialasdeterminedfrom the

. Node-boundedgridding uses , which resultsin poor fidelity

to the actualpotentialprofile nearheterojunctions,asshown. In contrast,node-centered

griddinguses : thepotentialapproximationof the region is just thepotential

at thenodein thecenterof that region. Node-centeredgriddingtendsto give muchbetter

agreementbetweenthe actualand piece-wise-constantpotentials,even thoughthe grid

points andpotentialvalues areexactly thesameasfor node-boundedgridding.The

fidelity of node-centeredgridding is especiallygoodwhendevice layer widths aresome

multipleof theatomicspacingin therealmaterials,andthepositiongrid nodesarespaced

onelatticeconstantapart,asdiscussedin Section4.2.2.This putsmaterialinterfaceshalf-

way between nodes, which coincides with the node-centered region interfaces.

There is also no confusionwith node-centeredgridding aboutwhat to use for the

effective massin eachregion. As with the values,effective massvalues aresup-

plied to theTMM simulatorat thegrid nodes.For node-centeredgridding, in region
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Figure 4.11: Node-bounded/node-centered gridding and TMM potentials

TMM potentialapproximations for node-boundedandnode-centeredgrid-
ding schemesareshown. Node-centeredgriddingtendsto give significantlybetter
approximation of the actual potential  near heterojunctions.
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is just thatat theassociatednode.For node-boundedgridding,theaverageof theeffective

masses at the two bounding nodes had to be used, as discussed in Section 4.2.2.

Sincenode-centeredgridding is clearly superiorto the standardnode-boundedgrid-

ding scheme,theobviousquestionis why node-centeredgridding isn’t thestandard.The

factthatthegrid nodesandgrid interfacesarenot coincidentwith node-centeredgridding

resultsin a morecomplicatedTMM implementationandcomputation.Themaincompli-

cations of node-centered gridding include the following:

• The transfer-matrix terms  are slightly more complicated.

• Wavefunctionvaluesusedfor theSTM calculation(at internodepoints)cannot

be reused during the wavefunction calculation (at node points).

• More care is required in checking for QTPs and numeric overflow.

• The normalization algorithm (see Section 4.4.2.2) is more complicated.

• Linear potential interpolation (see Section 4.4.3) is more complicated.

Thesedifficulties requiremorecarefulcoding,andareslower for somecalculations,but

the useof node-centeredgridding hassignificantbenefitsfor the simulation.Therefore,

SQUADS doesimplementthis gridding scheme.The detailsandcomplicationsof node-

centeredgridding[1] will notbecoveredin detailhere.However, thelasttwo issueslisted

abovewill bementionedagain in Sections4.4.2.2and4.4.3.Sections4.5.1and4.5.2com-

pare the accuracy and computationalefficiency, respectively, of the node-boundedand

node-centered gridding schemes.

4.4.2 Alter nate STM Calculation Algorithms

The STM calculationschemedescribedin Section4.2.4is the moststraight-forward

way to develop a relationshipbetweenthe I-contactand T-contactwavefunctioncoeffi-

cients,and thus to solve for the currentor the rest of the wavefunction.However this

scheme[2, 7, 17,19,5], hereaftercalledtheinterfacealgorithm,is not theonly reasonable

STM calculationmethod.This sectiondescribestwo others,theregion algorithmandthe

normalizationalgorithm, which are often more efficient and more numerically robust

(have lesschanceof numericaloverflow). A comparisonof thecomputationalefficiency of

thesealgorithmsis given in Section4.5.2.Both the normalizationalgorithm[4] andthe

region algorithm[3, 8] have beenusedby othergroups.Most publicationswhich usethe

transfer-matrix method do not describe the STM calculation algorithm used.

in[ ]
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4.4.2.1 Region Algorithm

The region algorithm follows the standardinterface algorithm derivation in most

details,but it is designedfor fastcomputationof theSTM, andthuscurrent.In the inter-

face approach, the STM was calculated as (4.17):

. (4.56)

From Section4.2.3,each2x2 transfermatrix is the productof two 2x2 matrix fac-

tors, oneassociatedwith region just beforeinterface and the otherassociatedwith

region just after it, asindicatedin Figure4.12.Theregion formulationjust regroups

these matrix factors as follows:

, (4.57)

where the matrix factors  are associated with region , as shown in Figure 4.12.
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Figure 4.12: STM factor matrix f or the region algorithm

The region STM calculationalgorithmgroupsthe matrix factorsso that the two
matrices associated with region n are used to compute transfer matrix [rn].
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Furtherdetailsof the region algorithm[1] will not be reproducedhere,althoughthe

basicmotivationsand issuesinvolved in its usewill be describedbriefly. (4.57) would

seemto entail thesameamountof calculationas(4.17)for the interfacealgorithm.How-

ever, sincethereareonly threeregion types(CCA, CCF, andCCN), thereareonly three

formsfor , while therearenineformsof (onefor eachregionpair).Further, the

canbesimplifiedmuchfurtherthanthe , sinceall factorsof involve solu-

tionsof theTISE in asingleregion.Finally, numericaloverflow, which is apotentialprob-

lem in a CCFregion with theinterfacealgorithm(seeSection4.3.2),is improvedwith the

region formulation.Whereasany involving a CCFregion containstermsof theform

(see[1]), termsin areof the form , where is the (small)

positiongrid spacing.Flat-bandregionsandquantumturningpointsarehandledthesame

in the region algorithm as in the interface algorithm (see Section 4.3).

Because is, in general,simplerthan , the region algorithmenablesquicker

calculationof the STM, and thus current, than the interface algorithm. However, the

region formulationis notwell suitedto quickcalculationof thewavefunction.Eachregion

matrix transfersthewavefunctioncoefficient relationshipacrossregion andhalf-

way throughthe next interface,ratherthaninto region , Thus,the productmatrices

producedduring theregion STM calculationdo not give thewavefunctioncoefficientsin

the regions, although these can be computed with additional work.

4.4.2.2 Normalization Algorithm

The third STM calculationalgorithmimplementedin SQUADS is calledthenormal-

izationalgorithm.Its advantagesaresimilar to thoseof theregion algorithm,but it canbe

usedfor efficient calculationof both theSTM andthewavefunction.Describingthenor-

malization algorithm requires rewriting the transfer-matrix equation (4.12)

(4.58)

as

. (4.59)

In words,thetransfer-matrixequationsin thenormalizationalgorithmrelatenot thewave-
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functioncoefficients( and ) acrosstheinterface,but eachcoefficient timesits respective

TISE solution( and ). Although(4.59)doesn’t look simplerthan(4.58),the -

termsaremuchsimplerto calculatefor eachof thesolutionsof theTISEdiscussedin Sec-

tion 4.2.1.

As wasthecasewith theregion algorithm,thenews is not all goodfor thenormaliza-

tion algorithm.This formulationrelates and , not just and , acrossthe device,

and and vary acrossgrid regions.To createa continuouschainrelationshipbetween

the solution in the I-contactand that in the T-contact,it is necessaryto include region

matricesto incorporatethis change.Luckily, theregion matricesarequitesimplefor each

of theregion typesconsideredin Section4.2.1.Also, theelementsin theregionmatrix for

a CCF region are of the form , as in the region algorithm,so the numerical

overflow danger is minimal with the normalization algorithm.

Onceagain, the complicationsand detailsof implementingthe normalizationalgo-

rithm [1] will not begivenhere,althougha few of theissueswill bementioned.Flat-band

contactregions are handledin the normalizationSTM calculationwith a single region

matrix for a entireregion. Quantumturningpointsarehandledasin theotherSTM algo-

rithms.Calculatingthewavefunctionis actuallyslightly easierwith thenormalizationfor-

mulation,sincethetwo piecesof thewavefunction( and ) aregivenby theprocess,

ratherthan just the coefficients.However, calculatingthe wavefunctionwith node-cen-

tered regions and the normalizationalgorithm requiresthe multiplication of two half-

region matrices to get the value of the wavefunction at the center of the region.

4.4.3 Piece-Wise Linear Interpolation

As mentionedin Section4.2.1,the TISE (4.1) is analyticallysolvablefor only a few

potential functions . Thus far in this chapter, only constantpotential regions have

beenconsidered,but linear and parabolicpotentialsalso yield an analytically solvable

TISE. It is not difficult to imaginethatusingsuchpotentialregionscouldproducea better

piece-wiseapproximationof the actual potential.Many groups[7, 8, 19, 28-30] have

implementedtheTMM for linearpotentialregions,claiminga significantimprovementin

theaccuracy of theTMM.16 To testtheseclaimsandpossiblyachieve betteraccuracy, the

ability to handlelinearpotentialregionswasimplementedin SQUADS. Thissectionover-

16. Apparently parabolic potentials have not been used yet in the TMM.
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views this implementation.Latersections(4.5.1and4.5.2)will considertheaccuracy and

computational efficiency of the piece-wise-linear potential approximation scheme.

Thesolutionof thetime-independentSchrödingerequation(4.1) for a linearpotential

 is a linear combination of the Airy functions, Ai and Bi [31]:

, (4.60a)

. (4.60b)

SincetheTMM is suppliedthepotentialvalues at thegrid nodes,theobviousscheme

for creating linear potential grid regions is simply to connect the points:

. (4.61)

This adoptsthe node-boundedgridding scheme,andis shown on the left in Figure4.13.

Also shown in Figure4.13is thenode-centered,piece-wise-linearscheme,which clearly

haslesserror thanall otherpotentialapproximationsschemesyet considered.However,

implementingnode-centeredgridding with linear regions is problematic,requiring the

estimationof thepotentialderivativeat thegrid points.Thelocationof all abruptbandoff-

setsmustbeknown andaccountedfor in thisestimation,or theapproximationwill bevery

poor nearheterojunctions.For all other gridding and potentialapproximationschemes,

only thepoints hadto beknown. Dueto thedifficulty of handlinggeneraldevicestruc-

tures, the node-centered, piece-wise-linear combination is not implemented in SQUADS.
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Figure 4.13: Node-bounded/node-centered regions with linear potentials

TMM potential approximationsUn(x) for the node-boundedand node-centered
griddingschemeswith linearpotentialregionsareshown. As with constantpoten-
tial regions,node-centeredgriddingtendsto give a significantlybetterapproxima-
tion of the actualpotentialU(x) nearheterojunctions,but its implementationis
problematic.
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Given the TISE solution in eachregion, the calculationof the STM, current,wave-

functions,carrierdensity, andWigner function proceedjust asbefore.Again, detailsare

given in [1], andwill not be repeatedhere.A few significantdetailswill be mentioned.

First,notethattheadditionof a fourth region typeincreasesthenumberof possibleinter-

facetransfermatricesto 16 in boththeinterfaceandnormalizationSTM algorithms.This

makesthedivision of the interfacetransfermatrix into two parts(eachof which hasonly

four possibleforms) quite essential(seeSection4.2.3).Adding a fifth region type (e.g.,

parabolic)in thefuturewould furthernecessitatethis approach.A secondissueis that the

transfer-matricesdo not simplify with linear regions as they did with constantregions

whenusingtheregion andnormalizationformulations.This will beapparentin thecom-

parisonof algorithmefficienciesin Section4.5.2.Quantumturning pointsarealsomore

difficult to locate,sincedeterminingthedecayphaseis morecomplicated.Finally, numer-

ical overflow is apossibilitywith linearregions,regardlessof theSTM algorithm(because

simplificationis not possible),evenwhena QTPis not indicated.In particular, theBairy

function andits derivative grow exponentiallywith . This occurs,for example,when

becomesvery small (a nearlyconstantpotential).This numericaloverflow is avoidedin

SQUADS by using a constantpotential region when exceedsa (platform-dependent)

calculated limit, as recommended in [8].

4.5 Simulation Results

This sectionservesa dualpurpose.First, it presentstheresultsof threeinvestigations

of the relative merits of variousalternative implementationsfor transfer-matrix method

simulation. Second, this section shows the basic TMM simulation capabilities of

SQUADS. Thethreeinvestigationsincludea comparisonof linearversusconstantpoten-

tial region simulationresults(Section4.5.1),a comparisonof thecomputationalefficien-

ciesof thevariousSTM calculationalgorithms(Section4.5.2),andaninvestigationof the

significanceof usingaposition-dependenteffectivemass(Section4.5.3).All of thesesim-

ulationsusetheresonanttunnelingdiode(RTD) shown in Figure4.14(andpreviously in

Figures 4.8 and 4.10). Simulation parameters used are given below the figure.

4.5.1 Accuracy of Linear versus Constant Potential Regions

As mentionedin Section4.4.3,many groupsusingtheTMM for quantumdevice sim-

z c

z
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ulation,claim thatusinga piece-wise-linear(PWL) potentialinsteadof a piece-wise-con-

stant (PWC) potential significantly improves TMM simulation accuracy. This section

presentsthe resultsof several TMM simulationsto determine,at leastfor the RTD and

simulation parameters in Figure 4.14, whether these claims are valid.

Thefirst setof simulationresultsareshown in Figure4.15,which comparesthetrans-

missionspectrum (transmissioncoefficient versusenergy) for the threepotential

approximationschemesdiscussedin this chapter:a PWC potential(both node-bounded

(NB) andnode-centered(NC) gridding)anda PWL potential.Themainresultis thatdif-

ferencesin thetransmissionspectrumarequitesmall throughouttheenergy rangeconsid-

ered.In thecritical first transmissionpeak(throughwhich mostof thecurrentflows), the

shapeandsizeof thepeakareindistinguishablefor thethreeschemes,andthelocationof

thepeakvariesby only 1-2 meV. Thesecondtransmissionvalley doesshow somediffer-

ence,but therearevirtually no incidentcarriersat this high of energy. Anotherconclusion

is that thePWC/NCschemeis (asexpected)preferablethanthePWC/NBapproachsince

the PWC/NCspectrumis closerto the (presumably)moreaccuratePWL result.Finally,

Figure 4.14: Conduction band profile of RTD used in TMM investigations

ThetestRTD is shown at a biasof 0.1V, andthepotentialis assumedto droplin-
early acrossthe central“active” region. The RTD is composedof a 5 nm GaAs
quantumwell between3 nm Al0.3Ga0.7As tunnelbarriersand3 nm GaAsspacer
layers.TheGaAscontactlayersare19 nm each,giving a total simulationwidth of
L = 55 nm.Exceptin Section4.5.3,electroneffective massis assumedconstantat
0.0667m0, andpermittivity is alsoassumedconstantat12.9 0. Also, thesesimula-
tionsuse86positionpoints,10,000energy points,anda temperatureof 77K. Dop-
ing on both sides is Nd=2e18/cm3.
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therelative locationsof thetransmissionpeaksarenot difficult to understand.Theconfin-

ing “strength” of the barriersis highestwith the PWC/NC schemeand lowest in the

PWC/NB case.A moreconfiningquantumwell shortensthe wavelengthandthusraises

theenergy of theresonantstate.Of course,transmissionis greatestat theresonantenergy.

A moredefinitive indicatorof electronicdevice operationis thecurrent-voltage(I-V)

curve.Therefore,Figure4.16shows I-V curvesfor theRTD in Figure4.14usingthethree

potentialapproximationschemes.Onceagain,thedifferencesbetweenthePWCandPWL

simulationsarerelatively small.The inevitable conclusionfrom thesesimulationsis that

usinga PWL potentialdoesnot changethe simulationresultssignificantlyfor this (very

Figure 4.15: Transmission spectra for the three potential approximations

The transmissionspectra(transmissioncoefficient versusincident energy) are
given for TMM simulationsof the test RTD at 0.1 V for a piece-wiseconstant,
node-bounded(PWC/NB) potential; a piece-wise constant, node-centered
(PWC/NC)potential;and apiece-wiselinear, node-bounded(PWL/NB) potential.
Theinsetdetailsthefirst transmissionresonance(peak).ThePWC/NCspectrumis
closerthanthePWC/NBresultto the(presumablymostaccurate)PWL/NB curve.
However, all diferencesare relatively small. For example,the peaksin the first
transmission resonance are separated by only about 2 meV.
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typical)device,andthereforeis notsignificantlymoreaccurate.As thenext sectionshows,

usinga PWL potentialalsocomesat a high computationalprice.SQUADS thereforeuses

thePWC/NCschemeasdefault. It is worthnoting,however, thatmoresophisticated,grid-

dingalgorithmscoulduseasinglelargelinearregion for extended,relatively linearpoten-

tials. In fact, the RTD in Figure4.14 could be exactly representedby 5 linear potential

regionsbetweentwo constantpotentialregions,which would result in an extremelyfast

simulation. This avenue is quite worthy of further investigation.

4.5.2 Efficiency of STM Calculation Algorithms

This chapterdescribedthe threesystemtransmissionmatrix (STM) calculationalgo-

rithmsimplementedin SQUADS andusedby otherresearchers:theinterface,region,and

normalizationalgorithms.Thissectioncomparestherelativecomputationalefficienciesof

thesealternative STM calculationalgorithms(which give identicalresultsfor the STM),

bothfor currentdensityandcarrierdensitycalculations.Notethatdeterminingthecarrier

Figure 4.16: I-V cur ves for the three potential approximations

Current-voltagecurvesfor the testRTD areshown for TMM simulationsusinga
piece-wiseconstant,node-bounded(PWC/NB) potential; a piece-wiseconstant,
node-centered(PWC/NC) potential; and a piece-wise linear, node-bounded
(PWL/NB) potential.Thedifferencesaresmall,meaningthatthePWL schemedid
not yield significantly more accurate results in this case.
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densityrequirescalculatingthe wavefunctionat all points,andis thereforea supersetof

thecurrentdensitycalculation(whichonly requiresthewavefunctionto beknown atasin-

gle point).17 Also, notethateachof theSTM algorithmscanbeusedwith any of thethree

potentialapproximationschemesinvestigatedin the previous section.All nine resulting

combinations will be compared.

Table4.1 summarizesthe resultsof thesesimulations,giving the computationtimes

(in seconds)for all ninecombinationsandfor boththecurrentdensityandcarrierdensity

calculationsat a singlebiaspoint (0.1V) for theRTD in Figure4.14.Thefirst conclusion

from theseresultsis thatthemostefficientSTM calculationalgorithmdependsonthegoal

of thesimulation.If only currentdensityis needed(e.g.,for theI-V curve),thentheregion

algorithmis optimalfor all threepotentialapproximationschemes.For carrierdensitycal-

culations,the normalizationalgorithm is optimal, except for the PWL potential case.

However, thecommonlyusedinterfacealgorithmis not farbehindthemostefficientalgo-

rithm in any of the calculations,and is thereforethe best single choice. As a result,

SQUADS usesthe interfacealgorithmunlessinstructedotherwise.Finally, notethat the

PWL potentialrequires2.5 - 5 timesasmuchCPU time asthe equivalentPWC simula-

tion. Therefore,asmentionedin theprevioussection,usinga PWL potentialis not worth

the effort for generalquantumdevice simulation, contrary to claims in the literature.

Undoubtedly, further innovations in these(and possibly other) STM calculationalgo-

rithms could significantly modify these conclusions about the most efficient algorithm.

4.5.3 Constant versus Variable Effective Mass

Sections4.5.1and4.5.2investigatedtwo aspectsof thenumericalimplementationof

the transfer-matrix methodof quantumdevice simulation.This sectionpresentsa more

device-orientedexampleof theuseof TMM simulation.In particular, this sectioninvesti-

gatesthe importanceof usinga position-dependenteffective massfor accuratequantum

devicesimulation.All previoussimulationsin thischapter, andmany quantumdevicesim-

ulationsin the literature,assumea constanteffective mass.Of course,in real systems,

effective massvarieswith material.For example,the testRTD in Figure4.14shoulduse

aneffective massof about0.092 in thetunnelbarriers,not the0.0667 thathasbeen

17. SQUADS doesnot implementthemthis way, however. Thecurrentdensityis implementedas
an integral over energy, while the carrier density is implemented as an integral over wavevector.

mo mo
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assumedthroughouttheRTD. Usingthecorrectbarriereffectivemasswill make thebarri-

ersmoreopaque,which will decreasecurrent.Figure4.17comparestheTMM simulated

I-V curve for aposition-dependenteffectivemassto thatsimulatedpreviouslywith afixed

effective mass.Clearly, theuseof a position-dependenteffective massis crucial for accu-

rately modelingquantumdevices.This conclusionalsohasimportantconsequencesfor

the implementation of a Wigner function method simulator, as discussed in Chapter 5.

4.6 Summary

This chapterhasdescribedthe transfer-matrix methodof quantumdevice simulation

andits implementationin SQUADS. AlthoughtheTMM is thesimplestandleastcompu-

tationally demandingmeansof simulating quantumdevices, this chaptershows (even

without presentingmost of the details) that theseare relative figuresof merit. Specific

Calculation
Potential

Approximation

STM Calculation Algorithm

Interface Region Normalized

Current
Density

PWC/NB 24.9 22.3 26.5

PWC/NC 24.4 21.6 30.2

PWL/NB 92.0 88.1 146.4

Carrier
Density

PWC/NB 74.4 87.9 67.7

PWC/NC 76.7 90.2 76.2

PWL/NB 198.2 257.0 289.2

Table 4.1: TMM computation times for STM calculation algorithms

Computationtimes(in seconds)areshown for TMM simulationsof the testRTD
at 0.1 V for the threepotentialapproximationschemesimplementedin SQUADS
[piece-wiseconstant,node-bounded(PWC/NB); piece-wiseconstant,node-cen-
tered(PWC/NC); and piece-wiselinear, node-bounded(PWL/NB)], and for all
three STM calculation algorithms (interface, region, and normalization).The
region algorithmis themostefficient for thecurrentdensitycalculation,while the
normalizationalgorithmis optimalfor thecarrierdensitycalculation.However, the
interfacealgorithmis all-aroundperformer. Simulationsusingthe PWL potential
were3 timessloweronaveragethantheequivalentPWCsimulations,while giving
little additionalaccuracy. CPU times are averagedover 3 runs on a DECstation
5000-200.
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resultsincludedconclusionsaboutthemostefficient algorithmsfor computingthesystem

transmissionmatrix, thestartingpoint for all TMM analysis.Anotherresultcontradicted

claimsin theliterature:usingapiece-wise-linear(insteadof apiece-wise-constant)poten-

tial wasfoundto make little differencein thesimulationresult,andrequiredabouta factor

of 3 morecomputationtime. Therefore,thepiece-wise-linearmodificationwasnot worth

theadditionalcomputation.Finally, it wasshown thatusingaposition-dependenteffective

mass,insteadof assumingafixedeffectivemassasis donequiteoftenin theliterature,can

produce very inaccurate simulation results, and therefore should be avoided.

Perhapsmoreimportantthantheseparticularconclusionsis theevidencetheseinvesti-

gationsprovide thatSQUADS providesa foundationfor thestudyof quantumdevicesim-

ulators (as well as quantum device operation) that is broad (many alternative

implementationsto work with), strong(well-tested),efficient, andextensible.SQUADS

handlingof severalof thecomplicationsof TMM simulationweredescribed,includingthe

incorporationof contactflat-bandsfor efficiency, theimplementationof CCN regionsand

quantumturningpointsfor robustnessandaccuracy, andotherprotective measurestaken

against numerical overflow and round-off error.

TheTMM is a very usefulmethodof quantumdevice simulation,allowing thetracing

Figure 4.17: RTD I-V cur ves for constant and position-dependent mass

Current-voltagecurves for the test RTD are shown for TMM simulationsusing
either a fixed or a material-dependent(and thus position-dependent)effective
mass.SincetheI-V curvesdiffer significantly, useof thematerial-dependenteffec-
tive mass is important for accurate quantum device simulations.
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of current-voltagecurvesandthecalculationof carrierdensityprofiles.However, onevery

importantvariablehasbeenconspicuouslyabsentin thisentirechapter:time.TheTMM is

basedon thetime-independentSchrödingerequation.As a result,theTMM cannot speak

to any transienteffect in, or operationof, quantumdevices.On this basisalone,and in

spiteof its capabilitiesandefficiency, theTMM cannot serve asthe(sole)basisof a gen-

eralquantumdevicesimulator. In contrast,theWignerfunctionmethodof quantumdevice

simulation,whoseimplementationin SQUADS is describedin thenext chapter, doeshave

the necessarycapabilities.Nevertheless,the TMM in SQUADS servesseveral important

functions in quantum device analysis, as outlined in Section 3.5.3, including:

• efficient simulationof a wide rangeof structuresto determinewhich merit more

detailed study (by Wigner function method simulation),

• high resolution energy spectrum investigations,

• a reality check on Wigner function method results, and

• faster implementation and testing of simulator enhancements.
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Chapter 5

The Wigner Function Method

TheWignerfunctionmethod(WFM) of quantumdevice simulationwasintroducedin

Section3.4.2.4.The WFM is basedon solving the Wigner function transportequation

(WFTE),which describeschargecarrieractionin a quantumsystemin thesameway that

theBoltzmanntransportequation[1] doesfor classicalsystems.In particular, theWFTE

describesthe evolution of the Wigner function , which containsboth densityand

velocity informationof carriersin a quantumsystem.The WFM solvesfor at a

discretesetof pointsin thesimulatedsystem.Given , it is asimplematterto calcu-

late aggregate quantum device operation measures such as current and carrier density.

This chapterdetailsthe numericalimplementationof the WFM in SQUADS. As in

Chapter4, thelevel of mathematicalcomplexity is mitigatedby placingmoredetailedder-

ivationsin theSQUADSTechnical Reference[2]. Theoutlineof this chapteris asfollows.

Section5.1 givesa brief review of thehistoryof WFM simulation.Section5.2,describes

in somedetail the analyticalequationsinvolved in the Wigner function formulation of

quantummechanics,includingtheWigner functiontransportequation.Thediscretization

of the WFTE for numericalsolutionis detailedin Section5.3. Section5.4 discussesthe

advancedmemoryutilization schemesusedin SQUADS to reducethe relatively large

memoryfootprint of WFM simulations.Finally, Section5.5presentstheresultsof several

simulations produced with the WFM capability in SQUADS.

f w x k,( )

f w x k,( )

f w x k,( )
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5.1 History and State of the Art

The Wigner function formulation of quantummechanicswas derived over 60 years

ago[3], althoughits usein quantumsystemsimulationspansonly thelast15 years.How-

ever, becauseof thevastknowledgeof numericalsimulationfor otherpurposes,andwith

the rapid advanceof computationalcapabilities,the functionality andaccuracy of WFM

simulatorshave improvedgreatlyover this relatively shortperiod.This sectionprovidesa

brief review of thehistoryandstateof theartof WFM simulation.JensenandGanguly[4]

also give a brief review of WFM simulation research.

The first usefulnumericalimplementationof the WFM wasaccomplishedby Kluks-

dahlet al. [5, 6], who simulateda Gaussianwave packet in a quantumstructure,including

asimplescatteringmodel.Frensley [7-9] reportedthefirst successfulsimulationof RTDs,

usingtwo significantimprovementsto theWFM: upwindspatialdifferencingandbound-

aryconditions(to simulateohmic,dissipativeboundaries)andbackwardEulertimediffer-

encing(to avoid divergenttransientsimulations).Bothgroupslateraddedself-consistency

to their WFM implementations[10, 11]. Jensenet al. furtheradvancedtheWFM by using

asecond-ordertimeandspatialdifferenceschemes[12, 13]. They thenusedthesefeatures

in quantumparticle-trajectorystudies[14, 15], self-consistent,transientRTD simulations

[16, 17], and field emission simulations [4, 18].

During just thepastfive years,Tsuchiyaet al. [19] implementeda position-dependent

effective masscapability. Gullapalli et al. correctedthis model[20], andalsoinvestigated

improvedspatialdifferenceschemes[21]. Miller andNeikirk demonstrateda multi-band

formulationof theWFM [22]. Wu andWu implementedtheWFM includingan in-plane

magneticfield [23]. Zhouetal. investigatedtheuseof quantummomentequationsderived

from theWignerfunctionformulation[24] (similar to derivationsbasedon theBoltzmann

transportequationfor classicalsystems).Finally, Mains and Haddad[25] recentlypro-

poseda significantlydifferent(andpurportedlymoreaccurate)numericalimplementation

of the WFM, although this approach has yet to be demonstrated.

The remainderof this chapterdescribesSQUADS’ implementationof the Wigner

function method of quantumdevice simulation. This implementsvirtually all of the

schemesusedby otherresearchers,but in a singlenumericaltool. Oneof theconclusions

of this chapteris the determinationof the relative strengthsand weaknessesof various

numerical implementations of the WFM.
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5.2 Analytical Description

This sectiondevelopsthetheoryandconceptsnecessaryto describetheWigner func-

tion method.It largely follows the approachusedin developing the backgroundfor the

transfermatrix methodin Section4.2. In several cases,the readeris referredto that sec-

tion, ratherthanrepeatingits detailshere.Somematerialis repeatedin orderto introduce

notation appropriate to the WFM.

5.2.1 The Wigner Function Transport Equation

In Chapter3, the Wigner function wasdenoted to differentiateit from the

classicaldistribution function , sincebothcanbewritten with thesameindepen-

dentvariables.Thereshouldbe no confusionin this andfuture chapters,so the Wigner

function will hereafterbe written as insteadof to simplify notation.With this nota-

tion, the fairly general1 3-D form of the Wigner function transportequation(WFTE) in

Equation (3.5) becomes:

. (5.1)

To assessthememoryrequirementsof solvingthediscreteWFTE,assume100pointsare

requiredin eachdimension(position and wavenumber)to adequatelyresolve physical

processes.2 With typical positiongrid spacingof 0.5 nm, this would allow thesimulation

of a 50 nm quantumregion. In thenumericalsolutionof theWFTE, thereis oneunknown

and equationfor eachnodepoint. A 3-D simulationwould then have 1006 = 1 trillion

equationsand unknowns. Even storing the Wigner function in this casewould

require8 TB, andthe equationswould requireat least100 timesasmuchstorage.Thus,

numericallysolvingthe3-D WFTE is beyondpresentcomputingtechnology. In 2-D, stor-

agerequirementsfor thenumericalequationswouldstill bein the100GB range.It is clear

why in Chapter3 this work waslimited to quantumsimulationin 1-D. Even in 1-D, the

WFTE is relatively formidableto solve numericallyfor quantumsystemsof interest,as

latersectionsof this chaptershow. It is thegoalof SQUADS to implementthosefeatures

that are both necessaryfor accuracy and feasiblefor numericalsolution on a scientific

1. This equationdoesmake two importantsimplifying assumptions:thateffectivemassis position-
independent, and that particles do not interact directly.
2. 100 points may be overkill for some dimensions, but it will be inadequate for others.
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workstation.This goaldemonstratestheclassicaccuracy-versus-efficiency trade-off. It is

the purposeof this sectionto introducethe form of the WFTE usedin SQUADS after

describingtheotherchoicesmadein implementingtheWFM in SQUADS basedonareal-

istic evaluation of this trade-off.

The derivation of the form of the WFTE usedin SQUADS is ratherinvolved,so the

details [2] will not be repeated here. The resulting equation is:

, (5.2)

where is the 1-D Wigner function (particles/cm2) at position , wavenumber ,

andtime ; is thereducedPlanckconstant.Also, , calledthenon-local

potential,is calculatedfrom the realpotential via a Fourier transform[2], which in

this case simplifies to:

. (5.3)

Finally, thescatteringterm almostuniversallyusedin WFM simulations(where

scattering is included at all) is the relaxation-time approximation:

, (5.4)

where  is the relaxation time, is carrier density, and “eq” indicates equilibrium.

Althoughthederivationof (5.2)will notbedetailedhere,it is necessaryto mentionthe

approximationsmade in this derivation. Theseapproximationsare describedin more

detail in [2].

• TheWFTE in (5.2)wasderivedfrom theeffective massform of theSchrödinger

equation - the same Schrödinger equation used in the transfer-matrix method.

• A single energy bandminimum and associatedeffective masswere assumed.

However, SQUADS correctly treats multiple, non-interacting energy bands.

• Carrierswereassumedto interactonly asa distribution. As a result, is

the scaledone-particleWigner function for a mixed state(i.e., a carrier in a

superposition of energy states).

• The effective mass was assumed to be position-independent.

• The scatteringratewasassumedto be governedby a single relaxationtime

throughoutthedevice.Scatteringthereforeis independentof theinitial andfinal

energy (i.e., wavevector).
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To easetheintroductionto theWFM, severaladditionalsimplificationsaremadein the

descriptionof theWFM in thischapter. First,self-consistency is notenforcedin thischap-

ter, althoughit is treatedin detail in Chapter6. Also, theboundaryconditionsaretakento

be fixed (time-independent),and given by the equilibrium Fermi-Dirac distribution.

Finally, althoughthescatteringtermis includedin thederivationsin this chapter, simula-

tions in this chapterassumezero scattering.Someexamplesof the importanceof this

effect are given in Chapters 6 and 8.

5.2.2 Gridding and the Potential Profile

As with the time-independentSchrödingerequation(4.1) usedin the transfermatrix

method,theWFTE (5.2) usedin theWigner functionmethodalsocannot besolvedana-

lytically for the kinds of potentialprofiles occurringin even the simplestquantum

devices, such as the resonanttunneling diode. Therefore,a numericalsolution of the

WFTE mustbe attemptedat a finite numberof positionpoints.SQUADS usesthe same

algorithmsin theWFM asin theTMM (seeSection4.2.2)to selectthepositiongrid points

, calculateelectrostaticpotential at thesepoints, and determinethe electrostatic

potential boundary conditions. These algorithms are summarized below.

SQUADS uses a uniform position grid with node points , where

, asshown in Figure5.1.Thetotal simulationwidth is . As

discussedin Section4.2.2, shouldbeequal(asnearaspossible)to the latticespacing

of thematerial.Noteby comparisonof Figures4.3 and5.1 that themostcommonly-used

namesfor the two contactsaredifferentin theTMM andWFM, andthatgrid regions(in

contrast to the grid nodes) no longer have a significant role in the WFM.
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Figure 5.1: SQUADS position grid scheme

SQUADS usesa uniform positiongrid, , at which pointsdevice parameters
(e.g.,bandoffset,doping)aresuppliedandsimulationresults(e.g.,carrierdensity, cur-
rent density) are calculated.
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Theelectrostaticpotential atgrid points mustbesuppliedto theWFM simulator

to performthenumericalsimulation.As discussedin Section4.2.2,SQUADS definesthe

Fermienergy at emittercontactasthereference,sothat thepotentialat thecollectorcon-

tact is set by the applied bias. Thus, contact potentials are:

, (5.5a)

, (5.5b)

where is theelectroncharge, is theFermienergy (relative to theenergy band)at the

emittercontact,and is thatat thecollectorcontact.Thepotentialvaluesat theinternal

grid nodesaresuppliedto the WFM simulatorby SQUADS usinga suitablealgorithm.

Theexamplesin this chapterusea linearprofile algorithm,leaving thediscussionof self-

consistency (i.e., consistency betweenthepotentialprofile andthecarrierdensityprofile)

to be presented in detail in Chapter 6.

5.2.3 Boundary Conditions

Anotherissueto besettledbeforeperforminga WFM simulationis thedetermination

of boundaryconditions(BCs). The WFTE (5.2) containsa first-orderspacialderivative,

meaningthat thesolution(i.e., theWF) mustbespecifiedat onepositionpoint (for all )

to make the WFTE solvable.However, thereare two systemboundarypoints to choose

from. The issueof how to specifytheBCs in a physically-basedmanner, while not over-

constrainingthesystem,hasbeendiscussedat lengthby several researchers[10, 26, 27].

As statedin Section3.3, the ability to useconventionalboundaryconditionswith the

WFM is one of its strongestadvantages.The almostuniversally agreedupon choicein

WFM simulationsis to implementidealohmiccontacts,with thecarrierreservoir on each

sideof the systembeingin equilibrium with the local potential.Only the distribution of

carriersenteringthesystemateachelectrodeis specified,while thedistributionof carriers

exiting the systemat eachelectrodeis determinedby the simulation,and is irreversibly

absorbedinto thecontactreservoirs. As indicatedin Section5.2.1,theBCsfor theWFM

will betakenassimply half of anequilibriumFermi-Diracdistribution3 at eachelectrode,

integratedover transversemomentato make themappropriatefor 1-D. TheseBCs were

first applied to the WFTE by Frensley [9]:

3. SQUADS alsoimplementsdriftedFermi-DiracBCs,whichautomaticallymaintaincurrentconti-
nuity at the contacts. No examples of these BCs are contained in this manuscript, however.
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, (5.6a)

, (5.6b)

where and aretheFermienergies(a.k.a.Fermilevels)at thecontacts(seeFigure

5.2),  is kinetic energy, and:

. (5.7)

To determinetheFermi level at eachcontact(or at any otherpoint, assumingequilib-

rium), SQUADS takestheJoyce-Dixonapproximation[28] asaninitial guess,andusesa

Newton iterationto determinethe exact value.At equilibrium, the Fermi level is correct

when the carrier concentration equals the doping density.4

5.2.4 Carrier and Curr ent Density

Having specifiedthepotentialprofile in thedevicegiventheappliedbias,andwith the

necessaryboundaryconditions,it is now possibleto solve theWFTEfor theWignerfunc-

tion . Thedetailsof solving theWFTE arecoveredin Section5.3.Assumingthe

Wignerfunctionhasbeencomputed,this sectionshows how to calculatefrom it theother

information needed about quantum device operation, namely current and carrier densities.

Section3.3 statedthatall observables(quantum-speakfor physicalquantities)canbe

calculatedfrom the Wigner function just asthey arefrom the classicaldistribution func-

tion. Thecarrierdensityandcurrentdensityaretwo examples.Sincetheclassicaldistribu-

4. SQUADS assumes full dopant ionization and no local electric fields in this calculation.
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Figure 5.2: Typical potential with applied bias and boundary conditions

SQUADS usestheemitterFermi level astheenergy reference( ), ratherthan
the emitter electrostatic potential [ ].
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tion function gives the density of carriers versus position and wavevector,

integratingover wavevectorgivesthecarrierdensity versuspositionalone[29]. Sec-

tion 3.1.2of theSquadsTechnicalReference[2] givesamorerigorousderivationof calcu-

lating the carrier density from the Wigner function, with the result:

. (5.8)

The analyticexpressionfor calculatingthe currentdensity from the Wigner

function is likewise given in [2], in Section3.1.3.Two approachesareusedtherein,the

lessrigorousof which calculatescurrentdensityas(charge)x (density)x (velocity), inte-

grating over velocity (wavenumber).The more rigorousderivation requiresthe steady-

state carrier density and current density to satisfy the continuity (or conservation of

charge) equation. In both cases, the current density is found to be

. (5.9)

Note that in steady-state,currentdensityis independentof position,sincecharge is not

accumulatingor depletinganywhere in the device. This fact will be usedin deriving

numerical expressions for current density.

This completesthe analyticaldescriptionof WFM simulation.In summary, a WFM

simulationinvolvesthreesteps:determinethe potentialprofile at the given appliedbias,

solve the WFTE (5.2) for the Wigner function, andcalculatedesiredquantitiessuchas

currentdensityfrom theWignerfunction.Thefollowing sectiondiscusseshow thesesteps

are implemented in SQUADS.

5.3 Numerical Implementation

As with the time-independentSchrödingerequation used in the transfer matrix

method,eventhesimplifiedWFTE in (5.2)canonly besolvedanalyticallyfor a few very

simplecases,suchasasingleelectronin aconstantpotential . For any useful

quantumdevice, the WFTE mustbe solved numerically, producinga numericalapproxi-

mation(ratherthana functionalexpression)for theWignerfunction.Thus,thethreesteps

describedabove of a WFM simulationmustbeconvertedinto numericalexpressionsand

algorithms suitable for execution on a digital computer.

At leasttwo generalapproacheshave beenappliedto solving the WFTE for useful
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quantumsystems:the methodof momentsand numericalsolution. With the moment-

method[24, 30], theWignerfunctionateachpositionis assumedto beaperturbedversion

of theequilibriumWignerfunction,andtheWFTE is simplifiedbasedon thisassumption.

Thisapproachmaybeusefulfor multi-dimensionaldevicesimulation.For essentially1-D

quantumsystemssuchastheRTD, themoregeneralandaccurateapproachof numerical

solution is feasible.By this approach,the solution of the WFTE (which is the Wigner

function)is soughtatadiscretesetof points.Theprocedurefor calculationof thepotential

at thegrid nodeswasdiscussedin Section5.2.2.Theremainingtwo stepsaredescribedin

this section,asimplementedin SQUADS. In particular, this sectiondescribesthe proce-

dureof calculatingtheWigner functionandotherdevice operationinformationon a dis-

crete domain.

5.3.1 Discretization of the Independent Variables

In numericalsimulationof physicalsystems,thefirst stepin solvingtherelevantequa-

tion(s) is discretizationof the problemdomain(i.e., all independentvariables).With the

(inherentlysteady-state)transfer-matrix method,therewere only two independentvari-

ablesin theproblemdomain:position andenergy . Thestatefunction5 in theTMM is

thequantumwavefunction, .6 Recallthattypically thousandsof wavefunctionshad

to besimulatedat closely-spacedenergiesto calculatecurrent.With theWigner function

methodof quantumdevice simulation,theWigner function is the single,aggre-

gatestatefunction,encapsulatingpositionandvelocity informationof all of thecarriersin

the system.However, it containsthreeindependentvariables:position , wavevector ,

andtime . Eachof thesevariablesmustbeconvertedinto asetof discretepointsatwhich

all functions[suchas the Wigner function ] will be computed.Frensley [9] has

doneanexcellentjob of describinghow thediscretizationof theseindependentvariables

is chosenfor the WFM. This section is an abbreviated presentationof the decisions

involved and the resulting discretizations.

Sections4.2.2and5.2.2havealreadyexplainedSQUADS’ useof auniform,1-D posi-

tion grid, with nodepoints , where and . In defin-

ing thewavevectorgrid below, anothermotivationfor usinga uniform positiongrid arises

5. The state function contains the state (e.g., location, velocity) of charge carriers in the system.
6. The energy-dependence of  was usually implicit in Chapter 4.
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in the WFM.

In order to specify the wavevectorgrid ( -grid), considerfirst the calculationof the

non-local potential (NLP) in (5.3), which is rewritten here:

. (5.10)

Whentheproblemdomainis discretized,theFourier transformabove becomesa discrete

Fourier transform(DFT). Propertiesof theDFT make thespecificationof the -grid and

-grid stronglyinterdependent.First, theDFT ideally takesa discretefunctiondefinedon

auniformgrid asinputandproducesthesameasoutput:boththe -grid and -grid should

beuniform.7 To minimizecomputationandmaximizereuseof values,a uniform -

grid is used,with .8 In fact,it wasarguedfor otherreasonsthat shouldbe

definedonly on a uniform -grid, sothis worksout perfectly. Thenumberof points in

the -grid is as yet unspecified. Thus, the-grid as defined so far is:

. (5.11)

Therange of the -grid is also determined by the properties of the DFT [31]:

. (5.12)

Oneis freeto choose or asappropriateto theproblem,sincea DFT functionis

periodicwith period . In this case,carriersflowing in bothdirectionsmust

bemodeled,andrecallingthatwavevectoris proportionalto velocity, SQUADS usesa -

range centered around 0:

. (5.13)

Notethatanunsuitablylargevalueof mayresultin a small -rangethatmissessome

high-energy carriers.To preventthis, mustbelargeenoughto producea small and

therebya largeenough to captureall of thesignificantcarrieraction.It turnsout that

with equalto thelatticespacingasdiscussedpreviously, is almostcertainlysuffi-

ciently large for an accurate simulation.

The numberof points in the -grid hasnot yet beenchosen.The only constraint

hereis thatadiscretefunctionandits DFT will havethesamenumberof points.9 Since

7. AlthoughDFTscanbecomputedon non-uniformly-spaceddata,thesimplicity andaccuracy of
the DFT calculation are greatly improved if the data is uniformly spaced.
8. Therelationship is universallyusedin WFM simulation,but its necessityis not mani-
fest.However, for implementingself-consistency via theNewtonmethod(seeChapter6), this rela-
tionship is even more difficult to avoid.
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is asyet unspecified, is selectedasdesired,and will bedeterminedby this choice.

The result is:

. (5.14)

For theactualvalues , SQUADS follows theanalysisof Frensley [9]. He observed that

solving the discretizedWFTE is more complicatedif is taken as one of the .

Thus, the -grid is designed to straddle 0, meaning that is even, and:

. (5.15)

The phase-space(i.e., position-velocity) grid schemeusedfor WFM simulationsin

SQUADS is summarizedgraphically in Figure 5.3 [9]. In addition to the position-

wavevectorgrid, Figure5.3 alsoshows the “incident-particle”boundaryconditionsused

for the WFM, as discussed in Section 5.2.3.

Thefinal independentvariablein theWFTE is time , which is only usedin transient

simulations.To performa transientsimulation,thesolutionat is first determinedby

solving theWFTE in steady-statemode(i.e., with the transientterm setto 0). The

solutionis thenis advancedin small time steps , with thetransienttermincluded,until

the completioncriterion for the simulation is reached(either steady-stateor time

steps).SQUADS usesa fixed , but the determinationof an appropriatevalue for

dependsstronglyon the form of the discretetransientterm, which issueis discussedin

Section5.3.3.5.Thediscretizedtime-domainusedin SQUADS, asfarascurrentlyknown,

is:

. (5.16)

5.3.2 The Discrete WFTE Matrix Equation

This sectionformalizesthe notationusedin writing the discreteWFTE. Statingthe

discreteWFTE in a standardform is a significantsteptowardsits solution,sincegeneral

solutionapproachescanthenbeapplied.For simplicity, thesteady-statecaseis considered

first.10 The steady-state WFTE is written:

9. Actually, they havethesamenumberof degreesof freedom. For example,if a functionis realand
its DFT is imaginary, theDFT functionwill haveonly points,althougheachpointhasrealand
imaginary parts. The DFT and IDFT are information-conserving operations.
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. (5.17)

In the discrete domain, the steady-state Wigner function becomes:

. (5.18)

Solving the steady-statediscreteWFTE meanscomputingthe valueof the Wigner func-

tion (arealnumber)ateachnodepoint in thedomain(seeFigure5.3).Thus,there

are unknowns to calculate.Of course,theremustbe oneequationfor each

unknown in orderto find auniquesolution.For example,a typicalquantumdevicesimula-

tion might have , resultingin 10,100equationsandunknowns! Thepro-

cessof converting(5.17)into oneindependentequationcorrespondingto eachpoint in the

domain is the essence of discretization.

10. Each time step in a transient simulation is virtually identical to a steady-state simulation.
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L

Figure 5.3: WFM phase-space grid scheme

The phasespace(i.e., position-wavevector)grid usedto discretizeandsolve the
WFTE is shown for thesimplecaseof . Thereis oneequationfor
eachinternal,unknown pair (opencircles).Theincomingboundarycondi-
tions areshown asfilled circles.The numberof positionpoints, , wavevector
points ( ), and the position grid spacing( ) are all independentlyspecified.
The k-grid includesboth positive and negative velocities,straddleszero due to
numerical concerns, and .
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Note that direct numericalsolution of multiple equationsand unknowns generally

requiresthat the equationsbe linear in the unknowns.11,12 Describingthe WFM thus

requirestheintroductionof theconceptsof solvinglargesetsof linearequations,calleda

linearsystem,aswell astheassociatedmatrix notation.This introductionis accomplished

usinga simplersetof equationsin theunknowns , where . A com-

plete set13 of linear equations in these unknowns can be written

, (5.19)

or

, (5.20)

where the  are constants. In matrix notation, (5.20) is:

, (5.21)

or:

. (5.22)

(5.22) formally introducesnotationusedthroughoutthis thesis:bold, upper-caseletters

representmatrices(2-D arrays),and bold lower-caseletters are vectors (1-D arrays).

Givena setof equationsin the form of (5.21),any of several linearsystemsolvingalgo-

rithms(suchasGaussianelimination)canbeappliedto thetaskof solving for the .

One or more of these algorithms will be used to solve the discrete WFTE.

Returningto thediscretizationof theWFTE,then,notethattheWignerfunctionrepre-

sentsa2-D arrayof unknowns: , with and . In

the form of (5.20), a complete set14 of linear equations in these unknowns is

, (5.23)

11. Linear equations can not involve the unknowns raised to any power other than zero or unity.
12. The indirect (iterative) solution of a non-linear WFTE is treated in Chapter 6.
13. Acomplete set of equations simply means that there is one equation for each unknown.
14. In this case,a completesetof equationsmeansthat theremustbeoneequationfor each
pair (i.e., each phase-space node).
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or in matrix notation:

. (5.24)

In (5.24), is a squarematrix of coefficientswith rows and

columns, is a vectorof unknown Wigner function valuesdenoted , and is a

vector with elementsdenoted containingany constantsin eachequation(e.g.,

boundaryconditions).Note from (5.23) that althoughthereare two indices, and , to

scanthrough,thereis no fundamentaldifferencebetweenthis caseandthesimpleroneof

the 1-D unknowns in (5.20).Onecansimply think of asa singleindex to step

through,solve for theunknowns as1-D vector, andconsiderthemasa2-D arrayafter-

wards. In Section5.4.1, it is shown to be advantageousto order the Wigner function

unknown valuesby successively setting , scanningthroughthe , andthenmoving to

. Basedon this,Figure5.4depictsthelayoutof theWFTE matrix equation(5.24)for

the very simple case of .

Theformal taskof discretizationof (5.17)is to determinethecoefficientsof thesquare

matrix in Figure5.4. Eachterm in (5.17) may contribute to eachcoefficient

A f b=

A ai j i ′ j ′,;, Nxk Nx 1+( )Nk≡

f Nxk f i j, b

Nxk bi j,

i j
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f i j,

xi k j

xi+1

Nx 2= Nk, 4=

f x1 k1,( )

f x1 k2,( )
=

f x0 k0,( )

i j,( )

Figure 5.4: Discrete WFTE matrix equation

Although the Wigner function hastwo independentvariables,its valuescan be
“unfolded” into a 1-D vector  for the purposes of solving the discrete WFTE.f i j,
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(i.e., in equation , andmultiplying unknown ). In addition to , the constant

vector in Figure5.4 mustbe specifiedto solve for . Comparing(5.17) and(5.24), it

appearsthat will bezero,sincethereareonly termsthatmultiply theunknowns.How-

ever, in generaltherewill beconstantsin someof the termson theRHSof (5.17)which

mustbemoved to theLHS of theequation(sincethey don’t multiply any unknown) and

thusbecometheconstantvector . By moldingtheWFTE into theform of Figure5.4and

(5.23), it has become a set of equationswhich are linear in the unknowns

. As mentionedpreviously, theseequationscanbesolvednumericallyusing

linearsystemsolvingalgorithms.Having formalizedthisplan,themotivationfor, andgoal

of, thediscretizationof theWFTE into a setof linearequationsshouldnow beclear. The

actual discretization is taken up in the following section.

5.3.3 Discretization of the WFTE

Thissectionfinally tacklesthediscretizationof theWFTE(5.17).Sincethediscretiza-

tion of eachterm hasits own complicationsandalternative discretizationschemes,each

termis treatedin summaryform in separatesectionsbelow. Most of thedetailsof thedis-

cretizationprocessaregivenin theSQUADSTechnicalReference[2]. To furtherminimize

thecomplexity of thispresentation,someshort-handnotationis first introducedin Section

5.3.3.1.The diffusion, drift, and scatteringterms are then treatedin Sections5.3.3.2,

5.3.3.3,and5.3.3.4 respectively. The transientterm,whosediscretizationis presentedin

Section5.3.3.5,addsperhapsthemostcomplexity andnotation.Significantobservations

about the WFTE discretization are given in Section 5.3.3.6.

5.3.3.1 Short-Hand Notation

To simplify thenotationin theremainderof this (andlater)chapters,a few additional

symbolswill be introduced.The following definesthe transientoperator , diffusion

operator , drift operator  and scattering operator:

, (5.25)

, (5.26)

, (5.27)

i j,( ) f i ′ j ′, A

b f

b

b

Nxk

f xi k j,( ) f i j,≡

T

K P C

T f x k t, ,( )[ ]
t∂

∂
f x k t, ,( )≡

K f x k,( )[ ] hk
m*
-------

x∂
∂

f x k,( )≡

P f x k,( )[ ] 1
h
--- k′d

2π
------- V x k k′–,( ) f x k′,( )∫≡
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. (5.28)

With these, the transient WFTE is

, (5.29)

and the steady-state WFTE (5.17) can be written

. (5.30)

5.3.3.2 Diffusion Term

The discretization of the diffusion term is tackled first. From (5.26):

. (5.31)

Several discreteforms of the diffusion term are possible,dependingon the difference

schemeusedfor thespatialderivative of theWignerfunction.However, in orderto couple

theincomingboundaryconditionsinto thesolution,but not theoutgoingboundaryvalues,

an upwind differencescheme(UDS) mustbe used,asarguedand implementedfirst by

Frensley [9]. Upwind differencingmeansusinga backwarddifferencefor anda for-

warddifferencefor . Frensley usedafirst-orderUDS(UDS1),while JensenandBuot

useda second-orderUDS (UDS2).SQUADS implementsbothUDS1andUDS2,aswell

asa third-orderUDS(UDS3),facilitatingadirectcomparisonof theaccuracy andcompu-

tational cost of each.

Thederivationof thediscreteexpressionsfor the threeUDS discretizationsaregiven

in [2]. The results are:

, (5.32)

, (5.33)

, (5.34)

where, from (5.15):

. (5.35)
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In spiteof thestrongcasemandatinganupwinddifferencescheme,it is possibleto use

a non-UDSat interior nodesaslong asthe boundaryconditionsarecoupledin correctly

with a UDS. At leasttwo groupshave taken this approach,becausethe UDS is not the

mostaccurateapproximationto thederivative at a point. Onegroup[10, 32] useda 2nd-

ordercentraldifferencescheme(CDS2),but changedto UDS1at theoutgoingboundary

nodes.Anothergroup[21] useda hybrid UDS2/CDS2scheme(denotedHDS22herein),

but usedUDS2 at the outgoingboundary. To enablethe investigation andcomparisonof

thesedifferenceschemesaswell UDS, SQUADS implementsCDS2,CDS4,andCDS6,

and also allows any hybrid combination of a UDS and a CDS:

. (5.36)

For detailson thesediscretizations,see[2]. Theerrorintroducedby changingthediscreti-

zationschemeneartheboundarieshasapparentlynot beeninvestigatedby otherresearch-

ers yet, so this will be a subject for investigation in Section 5.5.

It is worth recallingat this point that theWFTE (5.2)wasderivedwith thesimplifica-

tion of a position-independenteffective mass.TheWFTE for a spatially-varyingeffective

masshasamuchmorecomplicateddiffusionterm[2, 19,20]. As a result,this form of the

WFTE is not currently implementedin SQUADS. Also recall that TMM simulationsin

Chapter4 (seeFigure4.17)demonstratedtheimportanceof properlyincludingaposition-

dependenteffective mass.As an attemptto recover someof the physics of a position-

dependenteffective mass,Frensley [9] useda simple model which simply moved the

effective mass inside the discrete derivative. For UDS1, (5.32) becomes:

. (5.37)

To testits accuracy, this simpleposition-dependenteffective massmodelwasalsoimple-

mented in SQUADS (for all difference schemes), and will be investigated in Section 5.5.

5.3.3.3 Drift Term

Thediscretizationof thedrift term in theWFTE is summarizedin this section.From

(5.27), the drift term is:
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. (5.38)

Thederivationof thediscretedrift termis rathercomplicated,andis again detailedin [2],

with the following result:

, (5.39)

where the discrete non-local potential is:

. (5.40)

The derivation in [2] alsoshows that , which relationshipwasunknown when

the discretization of the independent variables was discussed in Section 5.3.1.

As with thediffusionterm,alternativesto thestandarddrift termhave beensuggested.

Jensen[33] proposeda Simpsonintegration rule (triangularsmoothing)for the discrete

integration,with the intentof makingabruptchangesin thepotentialprofile (i.e., hetero-

junctions)have a somewhatmutedeffect on thehigh-energy tails of theWigner function.

Gullapalli et al. [21] insteadproposeda rectangular-smoothedintegration,with theresult

that the real potential has a decreasingeffect on the NLP as

increases.In contrast,in the standardNLP calculation(5.41),the effect remainsin

full force to a distance , beyondwhich theeffect dropsimmediately

to 0. Thestandardcalculationassumesno scattering,andthecut-off distanceis somewhat

arbitrary. Frensley [27] discussesthe rationalesfor employing alternative NLP s from a

theoreticalperspective. To determineconcretelytheeffectsof theseapproaches,all three

drift term discretizationschemesareimplementedin SQUADS, andthe effectsof using

each are analyzed in Section 5.5.

5.3.3.4 Scattering Term

Comparedto that of the otherWFTE terms,the discretizationof the scatteringterm

derived in [2] is relatively simple,mostly becausethe investigation of alternative imple-

mentationsof scatteringin the WFTE have not yet beeninvestigatedwith SQUADS (or

apparentlyby any other researchers).From Section5.2.1,then,the analyticalscattering

term used in SQUADS is:
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. (5.41)

Theexpressionfor calculatingcarrierdensityfrom theWignerfunctionis givenin Section

5.3.4:

, (5.42)

so that (5.41) becomes

. (5.43)

5.3.3.5 Transient Term

Finally, this sectionpresentsthe discretizationof the transientterm. This task is

describedin detail in [2]. Unlike thediscretizationof theotherWFTE terms,thetransient

termcannot bediscretizedin isolation.Instead,transientdiscretizationresultsin a modi-

fied WFTE, althoughthe discretizationeffort for the other termscan still be used.For

comparison, the unmodified WFTE from (5.29) can be written:

, (5.44)

where  is the Wigner function at time , and one final operator has been defined:

. (5.45)

Supposethesolution at time is known, andthatat time is to

be determined.Five reasonableforms of the transient operator are implementedin

SQUADS, again to allow direct comparisonfor the purposeof determiningthe optimal

approach.In theearliestimplementationsof theWFM [5], bothfirst andsecond-orderfor-

ward (or explicit) Euler transient terms were tested. These give the following WFTEs:

• First-order forward Euler (first-order Taylor series expansion):

, (5.46)

. (5.47)

• Second-order forward Euler (second-order Taylor series expansion):

S f x k t, ,( )[ ] 1
τ
--- f x k t, ,( )

f
eq

x k t, ,( )

c
eq

x t,( )
-------------------------c x t,( )––≡

ci
∆k
2π
------ f i j ′,

j ′ 1=

Nk

∑=

S f i j,[ ] 1
τ
---

f i j,
eq

ci
eq

-------- ci f i j,–=

0
t∂

∂
f tn( )– L f tn( )[ ]+=

f tn( ) tn

L K P S+ +≡

f tn( ) tn tn+1 tn ∆t+=

t∂
∂ f

t tn=

f tn ∆t+( ) f tn( )–

∆t
-----------------------------------------≈ L f tn( )=

⇒ f tn ∆t+( ) 1 ∆tL+[ ] f tn( )=



128 Chapter 5.The Wigner Function Method

, (5.48)

. (5.49)

Implementationof thefirst two termson theRHSof (5.49)areobvious,giventhederiva-

tionsfor , , and above.However. theimplementationof is rathercomplicated,so

its full detail[2] will notberepeatedhere.Notethatthetwo forwardEulertransientforms

requireaninitial Wignerfunction,producedusinga steady-statesolutionof theWFTE or

a transfermatrix calculationof theWigner function,asdiscussedin Section4.3.5.How-

ever, forwardEulerapproachesarevery computationallyefficient, asthey do not require

the solutionof a matrix equationto determinethe Wigner function at the next

time step,but simply themultiplicationof a matrix andvector. Thestability (tendency to

diverge) of forward Euler approaches is always a concern.

Frensley laterargued[9] thatanimplicit (or backward)Eulertransienttermshouldbe

used,sinceonly suchhasa boundederrorwhich doesnot grow to infinity over long simu-

lation times,in contrastto theforwardEulerapproaches.Frensley useda first-orderback-

wardEuler, andSQUADS alsoimplementsa second-orderbackwardEuler, which appear

very similar to the forward Euler expressions above:

• First-order backward Euler (first-order Taylor series expansion):

, (5.50)

. (5.51)

• Second-order backward Euler (second-order Taylor series expansion):

, (5.52)

. (5.53)

Note that althoughthe forward and backward Euler equationsappearquite similar, the

former only requiresa matrix-vectormultiplication (computationproportionalto )

pertimestep,while thelatterrequiresthefull solutionof asetof linearequations(compu-

tation proportionalto ) per time step[9]. Solving the steady-stateWFTE always
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requires the full solution of a linear system of equations.

Finally, SQUADS alsoimplementsthesecond-orderCayley (a.k.a.Crank-Nicholson)

form of thetransientterm,which wasfirst proposedby JensenandBuot [13]. Ιn this case,

the WFTE is:

, (5.54)

, (5.55)

where . With the Cayley form of the transientterm, the matrix

equationis actuallysolved for . After doingso,theprevioussolutionis subtracted

out to get the new Wigner function, .

Frensley [9] discussedin somedetail theconsiderationsinvolved in theproperselec-

tion of the time step . Kluksdahlet al. [10] arguedthatstability of simulationsusinga

forwardEulerschemerequiresthat , where is thehighestvelocity of

any carriersin thesimulation,which oftenrequirestime stepssmallerthan0.1 fs. In con-

trast,thebackwardEulerapproachis inherentlystable(error is bounded),but a relatively

smalltimestep(typically 1 fs) will keeptheerrorsmall.Thenetresultis thatthetimestep

for a forwardEulersimulationmustoftenbeat least10 timessmallerthanthatof a back-

wardEulersimulation.However, exceptin specificcases,thebackwardEulersimulation

requiresa factor of (typically 50-200)more computation.Thus, the forward Euler

approachmay be computationallypreferablein mostcases,contraryto the argumentsof

Frensley [9]. Thecomputationalefficiency, aswell asthestabilityandaccuracy, of thefive

transient simulation approaches are investigated in simulations presented in Section 5.5.

5.3.3.6 The Discrete WFTE

This sectioncombinestheresultsof theprevioussectionsto describethefull discrete

WFTE.In thediscretedomain,theWFTEwill besolvednumericallyasamatrixequation:

. (5.56)

This sectiondiscusseswhich entriesin the coefficient array andconstantvector are

non-zero.For illustration,this sectionuses , , andUDS2for thediffusion

term. The steady-statecaseis consideredfirst, followed by a descriptionsof the minor

modificationsto thematrix equationfor solvingthetransientWFTE. ThediscreteWFTE
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for steady-state is:

, (5.57)

where , , andthenon-localpotential is givenin (5.40).Thenon-

zerocoefficientstructurefor thediscreteWFTE,to beexplainedbelow, is shown in Figure

5.5.

Understandingthematrix structurein Figure5.5 is non-trivial. Thedrift term sup-

plies non-zerocoefficients to every column where , resulting in solid

blocksof non-zerocoefficientsalongthemaindiagonal.Thescatteringterm contributes

to thesesamecoefficients.Thediffusionterm only hasnon-zerocoefficientsfor ,

andonly for . Thus,thediffusiontermproducescoefficientsalongthemaindiagonal

(thedashedline in Figure5.5) andon oneor moreout-lying diagonals,dependingon the

differenceschemeused.Finally, note that for the first two and last two blocksof equa-

tions,someof thesediagonalsof diffusioncoefficients“f all off theedge”of thecoefficient

matrix.Thissimplymeansthatthey arecoefficientsfor valuesof theWignerfunctionout-

sidethesimulationregion,whichvalueshavebeenspecifiedthroughboundaryconditions.

In otherwords,theseWigner functionvaluesareknown, so thecoefficient multiplied by

theWF valuemovesinto theRHSconstantvector . For thesteady-statecase,thesefew

boundary condition cases produce the only non-zero elements of.

Now considerthe discretetransientWFTE. For example,the first-orderbackwards

Euler WFTE is:

. (5.58)

The non-zerocoefficient structureof this equationis identical to that of the steady-state

WFTE. In the transientequationabove, the steady-statecoefficients (and the boundary

conditions)aremultipliedby , and1 is addedto eachcoefficienton themaindiagonal

of . Also from theprevioussolutionis addedto thecorrespondingelementof the

constantvector . TheCayley transientequationis nearlythesame,but insteadof solving

directly for theupdatedWignerfunction , theunknown vectorholds .
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Thesecond-orderEulerschemesaddadditionalnon-zeroterms,sothatblockswith outly-

ing half-diagonals in Figure 5.5 become nearly full  blocks, as described in [2].

5.3.4 Discrete Carrier and Current Densities

OncethediscreteWigner functionhasbeencalculated,othercarrier-relatedinforma-

tion canbecomputedfrom it, suchasthecarrierdensityandcurrentdensity. This section

presentsdiscreteexpressionsfor thesequantities.Deriving the discretecarrier density

expressionis straight-forward.Theanalyticalexpressionfor thecarrierdensitywasgiven

in (5.8):

Figure 5.5: Discrete WFTE coefficient matrix structure

Like the discretizationsof many differentialequations,the discreteWFTE hasa
bandedstructure,which enablestheemploymentof optimizedmatrix storageand
solutiontechniques.Thedrift andscatteringtermsin theWFTE producethecoef-
ficientblocksalongthediagonal,thediffusiontermproducestermsalongthemain
diagonal(thedashedline) andoneor moreout-lying diagonals.Thetransientterm
also adds to the main diagonal coefficients.
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. (5.59)

In the discrete domain, , and the integral becomes a summation:

. (5.60)

The derivation of the discretecurrentdensityexpressionis morecomplicated,so the

completedetailsareonly givenin [2]. Recalltheanalyticalexpressionfor currentdensity

in (5.9):

. (5.61)

SQUADS follows the approachof Frensley [9], who notedthat currentdensity, beinga

vector, is mostappropriatelyandaccuratelydefinedat the centerpointbetweenposition

grid nodes.Frensley also pointed out that the discreteexpressionfor current density

dependson the form of the diffusion operator . Sincethe diffusion operatoroptionsin

SQUADS arealmostinnumerable,only a few of the discretecurrentdensityexpressions

will be given.

. (5.62)

. (5.63)

.(5.64)

Becausethesignof currentflow is fairly arbitrary, SQUADS assumesthesignof thecur-

rent flow is the sameasthat of the biasappliedat the collector . Although this

goes against convention, there should be no confusion about device operation,since

SQUADS only models one carrier type (electrons or holes) in a given device.

5.4 Efficient Solution of the Discrete WFTE

Solutionof thediscreteWFTE in Figure5.5requirestheuseof a setof simplemathe-

matical operationsto transformthe coefficient matrix into the identity matrix (all ones

along the main diagonal,andzeroseverywhereelse).The RHS vector undergoesthe
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sameoperations.At the conclusion,the Wigner function valuescan be readfrom RHS

vector. For example, the first equation will then be:

. (5.65)

This section describes the procedures used to efficiently solve the discrete WFTE.

In spiteof the approximationsandsimplificationsmadein the derivation of the dis-

creteWFTE, asdiscussedin Section5.2.1,thenumericalsolutionof this equationis still

quitecomputationallydemanding,bothin termsof memoryrequirementsandCPUusage.

However, SQUADS’ implementationof the WFTE solution usestechniquesthat allow

bothof thesedemandsto begreatlymitigated,asdiscussedin thissection.An understand-

ing of thebasicconceptsandmechanicsof solvingsystemsof linearequations[34, 35] is

assumed.Throughoutthis section,a typical “test case”simulationwith

andUDS2 for the diffusion term will be usedto evaluatethe memoryandCPU require-

mentsof solving the discreteWFTE. For illustration purposes,the , ,

UDS2 example of Figure 5.4 will again be used.

5.4.1 Memory Management Schemes

A significantconcernduring thedevelopmentof theWFM in SQUADS wastherela-

tively high amountof computermemoryrequiredfor thesolutionof thediscreteWFTE.

Consider, for example,thememoryrequirementsof solving the testcasediscreteWFTE

matrixequationusedin thissection.Sincethereare unknown valuesof

theWigner functionto solve for, thereare rows andcolumnsof coefficientsin the

matrix.Solvingthis systemof equationsaccuratelyrequiresdouble-precisioncoefficients,

eachof which occupy 8 bytesof storage.Thus,for the testcasesimulation,solving the

discreteWFTE appearsto require MB of memory!Clearly, the

memoryrequirementsseemto make finding the Wigner function (andthussimulatinga

quantumsystem)infeasibleby theWFM. However, this sectiondescribesthematrix stor-

ageand solution schemesusedin SQUADS to reducememoryrequirementsto only a

small fraction of 800 MB, while still retaining full accuracy in the solution.

Thefirst job in minimizing thememoryusageof a matrix equationis to determinethe

structure(a.k.a.sparsity)of the coefficient matrix. In otherwords,which coefficientsof

thematrix areinitially non-zero,andalsowhichwill becomenon-zeroduringthesolution

of thesystemof equations?Thefewernon-zerocoefficientsasystemof equationshas,the

1.0( ) f 0 0, b0 0,=

Nx Nk 100= =
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Nx 1+( )Nk Nxk≡
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2
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smaller the memoryrequirementsand solution time of the system.For the illustration

example,the location of non-zeroand fill-in 15 coefficients in the matrix equationis as

shown in Figure5.6.Notethatmostof thecoefficientsin areinitially 0, andremainso

during solutionof the matrix equation.In fact, this examplegivesa fill factor16 of only

about 33%. For the larger (but typical sized) test case, the fill factor is only about 2%.

Obviously, thereis no point in storingcoefficientsthatarealwayszero.To avoid this,

sparsematrix storageschemesare devised to storeas few null coefficients as possible.

Whenthereis astructureor pattern(asopposedto randomness)to thenon-zerocoefficient

locations,this structurecanusuallybeexploitedto producenot only highly efficient stor-

15. Coefficients that become non-zero during a Gaussian elimination solution of the system.
16. Ratio of non-zero plus fill-in coefficients to total matrix size.
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Figure 5.6: Discrete WFTE matrix equation coefficient/fill-in structure

Fill-in (filled circles)for astandardastandardGaussianeliminationsolutionof the
discreteWFTE is shown. The bandwidthdoesnot increase,anddueto the struc-
ture of the initial non-zero coefficinets, fill-in is not too severe.
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age schemes,but also very efficient solution schemes.The most commonschemefor

improving the fill factorof “banded”matrices17 suchasthat in Figure5.5 is “diagonal”

storage,whereeachdiagonal(a.k.a.band)thatcontainsnon-zerocoefficientsis storedin a

successive columnof thestoragearray. ThediscreteWFTE coefficient matrix hasa band-

width of , althoughthebandwidthdependsstronglyon thediscreteform usedfor

thediffusionterm . Usingthediagonalstoragescheme,thecoefficientsfor atypical (i.e.,

not nearthe top or bottomof the coefficient matrix) block of equationswould be as

shown in Figure5.7.Note that thefill factorhasincreasedto roughly60%,andis essen-

tially independentof and (but not ). The full diagonalcoefficient matrix for the

WFTE has columnsand rows. Thus,total memoryusagefor the testcase

dropsto 32MB - still a largeamount,but certainlyacceptablefor ascientificworkstation.

A sideissuecannow beconsideredandput to rest.In Section5.3.1,it wasstatedwith-

out proof that it is advantageousto ordertheunknowns in thematrix equationby setting

, scanningthroughthe , andthenmoving to , asshown by theunknown vectorin

Figures5.5and5.6.If theoppositeorderingof unknownshadbeenused(i.e., insteadof

in the inner loop), the non-zerocoefficientswould be spreadacrossthe entirematrix,

makingthediagonalstorageschemeuseless.Eventhoughthesamenumberof coefficients

are initially non-zero,more coefficients would fill in during the solution of the matrix

equation,resultingin a coefficient matrix fill-f actorfor thetestcaseof , ver-

susjust over 2% previously. The CPU costof solution is even moreadverselyaffected.

17. Bandedsimply meansthat thereare1 or morediagonalsof non-zerocoefficients,usuallysur-
rounding the main diagonal, outside of which all coefficients are zero.
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Figure 5.7: WFTE coefficient matrix structur e with diagonal storage

A typicalblockof equationsis shown. Thereare suchblocksin thedis-
crete WFTE matrix equation. The main diagonal is shown as a dashed line.
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Theseobservationsadequatelyjustify theunknown orderingusedin SQUADS (andby all

other WFM researchers).

SQUADS usesdiagonalstoragefor sometypesof WFM simulation,aswill be dis-

cussedin Section5.4.2,but mostWFM simulationsusea moreefficient storagescheme.

Notefrom Figure5.5that,becauseof thediagonalstructureof thecoefficientmatrix,only

a relatively small“window” of rows interactat agiventime duringsolutionby having ini-

tial non-zerocoefficientsin agivencolumn.Thus,it is notnecessaryto calculateandstore

all of the coefficients before starting to solve the system.ConsiderFigure 5.8, which

shows the top portion of the coefficient matrix from Figure 5.5 after the Gauss-Jordan

elimination of all coefficients in first columns.Following this elimination step,the

remainingnon-zeroblocksof coefficientsin thefirst rowsarestoredfor useduringthe

back-substitutionphaseof matrix solution,theremainingcoefficientsin theWGE matrix

areshiftedup andleft by , and new rows of coefficientsarecalculatedandinserted

into thenewly-vacatedbottomrows.Theprocessrepeatsuntil all equationshavebeen

similarly eliminated,at which point, back-substitutionfollows on the storedcoefficients.

This windowed Gaussianelimination (WGE) schemereducesmemoryrequirementsto

just 8 MB for the testcase(plusa smallamountfor theWGE matrix). This is a factorof

100 improvement over storage requirements for the full coefficient matrix!

This sectionhasconsideredonly thediscreteWFTE matrix structurefor a UDS2dif-

fusionterm.It shouldbeclearfrom Section5.3.3thatSQUADS alreadyimplementsmany

discretizationschemes,andotherscouldbeaddedin the future.In general,eachdiscreti-

zationschemecanresultin adifferentnon-zerocoefficientstructure,andthereforerequire

adifferentstorageandsolutionscheme.Nevertheless,SQUADS’ goalis to producenearly

optimalperformanceandstoragerequirementsfor eachandevery discretizationschemeit

implements.In orderto accomplishthis, SQUADS waswritten in a flexible andgeneral

(asopposedto hard-wired)manner. In particular, beforethe matrix solution is initiated,

SQUADS takes the initial non-zerostructureof a block of rows of coefficients and

actuallyperformsa simulationto determinehow thecoefficient matrix will fill-in during

theWGEprocedure.Basedonthissimulation,optimalstorageandsolutionalgorithmsare

chosen for that WFTE solution.
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Nk Nk
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5.4.2 Computation Time and Accuracy

This sectiontakes up the issueof how to quickly and accuratelysolve the discrete

WFTE matrix equation.Froma userstandpoint,oncememoryusageis acceptablefor the

available hardware, minimizing computationtime and getting an accurateresult are

alwaysmoreimportantthanreducingmemoryusage.As it happens,almostevery effort

describedin theprevioussectionto reducememoryusageproduceda concomitantreduc-

tion in computationtime. CPU time decreasedbecausesmaller amountsof memory

neededto beappropriated,therewaslessswappingof memoryto andfrom disk, andthe

smallerworking blocksof datacould be handledmoreefficiently while in memory. Per-

hapsthemostimportantstepin this regardwastheadoptionof theWGEscheme,with the

resultthatvirtually all of thecalculationoccurredin arelatively smalldataarraythatcould

oftenfit entirelywithin the(very fast)level-2cachememoryonmany workstations.But in

addition to memoryusagereduction,thereare other issuesto considerand avenuesto

explorein theeffort to reducecomputationtime.Thesearediscussedbelow asthey relate

to the solution of the discrete WFTE in SQUADS.

One way to improve the speedof solving a matrix equationis to usepre-packaged

Figure 5.8: Windowed Gauss-Jordan elimination of discrete WFTE

With thisprocedure,only asmallwindow of thediscreteWFTEmatrixequationis
consideredat a time.Thecoefficientsin thefirst columnsarefully eliminated,
the remaining coefficients in the first rows are stored for the back-solve step,
theremainingcoefficientsin thewindow areshiftedup andto theleft by posi-
tions, and  new rows of coefficients are added to the bottom the the window.
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matrixsolvingroutines.Typically, agreatdealof time,effort, andknowledgegoesinto the

developmentof theseroutines,with theresultthat they achieve excellentspeedandaccu-

racy for a wide arrayof coefficient matrix structures.For this reason,oneshouldusually

employ the highestlevel pre-packagedroutinesthat are appropriateto the task.At the

highestlevel arecompletematrix solving packages.However, therearesomesignificant

disadvantagesto the useof suchroutines:enhancing/modifyingthemis often time-con-

sumingor illegal; they usuallycannot achieve theperformanceof specializedcodewhich

takesadvantageof the structureof the coefficient matrix; andthey requirestandarddata

storageschemes,suchas diagonalor full-block storage.The result for our caseis that

theseroutineswould require4-5 timesthe storage,andprobablytwice the CPU time, as

SQUADS’ optimizedscheme.In orderto retaintheWGE optimizedscheme,thehighest

level pre-packagedroutineswhichareappropriatearetheBLAS (basiclinearalgebrasub-

programs)routines.Typically, theseroutinesshipwith, andoptimizedfor, eachworksta-

tion. During compilation, SQUADS incorporatesBLAS if it is available, and uses

equivalent replacementroutinesotherwise.SQUADS simulationswhich useBLAS are

typically 20% faster than those which use the replacementfunctions. In fact, when

SQUADS wasconvertedfrom in-line codeto theBLAS replacementfunctions,a similar

speedgain was realized,mainly becausemore aggressive optimizationis possiblewith

smaller, self-contained code blocks.

Although the schemefor solving the discreteWFTE describedin Section 5.4.1

resultedin a muchsmallerandfastersolutionof this matrix equation,somedisadvantages

of thisschemeandtheresultingspecializedsolutionalgorithmshouldbementioned.First,

moreeffort mayberequiredin maintainingandupgradingthecodeascomparedto amore

generalmatrix equationsolver. Also, theoptimizedstorageandsolutionalgorithmsmust

bemodifiedif thesparsitystructurechanges.Actually, this taskis well automatedby the

fill-in simulationdiscussedin Section5.4.1.As a result,all thatmustbedoneis to supply

the correctnon-zerocoefficient structureto the WGE routine,and optimal storageand

solution algorithms will be used.

Oneimportanttechniquewhich is invariablyusedto helpassureanaccuratesolution

of a matrix equationis pivoting (exchangingtwo rows) [34, 35]. This techniquereduces

numericalerrorby re-arrangingequationsateachGEstepsuchthatmultipliersarealways

smallerthanunity. This requiresthat the coefficient on the diagonalat eachGE stepis
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larger than any below it in that column.18 For example, solving the two equation system

(5.66)

is morelikely to produceanaccurateresultif the two equationsareswappedbeforeper-

forming GE. In partial differentialequations(PDEs)that representphysical systems,the

initial coefficientmatrix for thediscreteform is usually“well-behaved”19, andthediscrete

WFTE is no exception.However, theGE processremovesany suchassurances,andcould

evenresultin a0 onthediagonal,atwhichpoint thematrixequationis unsolvablewithout

pivoting.

Theproblemwith pivoting is that, in general,it expandsthebandwidthof thecoeffi-

cientmatrix,resultingin higherstoragerequirementsandCPUsolutiontime.Considerthe

discreteWFTEcoefficientstructurein Figure5.5.If diagonalstorageis usedfor thisarray,

pivoting would, in general,expandthe bandwidthof the matrix. However, if pivoting is

restrictedto theremainingrows in eachblock of , thebandwidthdoesnot expandvery

much.In fact,with block storageandtheWGE algorithmdevelopedin theprevioussec-

tion, pivotingonly within thefirst rowsof theWGEmatrixdoesnot increasestorageor

computationatall (seeFigure5.8).Testsimulationsindicatedthatpivotingby thisscheme

wasonly undertakenabout5%of thetime,which indicatesthatthediscreteWFTEis quite

well-behaved.However, theprobabilisticinevitability of near-zerodiagonaltermsmakes

the useof pivoting essentiallymandatoryto assurenumericalaccuracy. SQUADS there-

fore implementsthelimited pivotingschemedescribedabove.For particularlyill-behaved

simulations,SQUADS allows thespecificationof moreaggressive pivoting, althoughthe

computation time increases dramatically.

Another standardmatrix equationsolution techniquewhich hasnot yet beenmen-

tioned is lower-upper decomposition(LUD) [34], which is an alternative to Gaussian

elimination.Thisapproachis usefulwhenafixedcoefficientmatrix canbemanipulated

onceto thenquickly solve a seriesof systems with differentRHSvectors . The

questionis, arethereany situationswhere is fixedbut changesfrom oneWFTE solu-

tion to thenext? It turnsout thatthereare,but only underratherrestrictive circumstances.

18. This is actuallypartialpivoting. Completepivoting swapsrows andcolumnsto put the largest
remaining coefficient below and to the right of the current pivot coefficient into the pivot position.
19. That is, it has relatively large coefficients in the pivot position on the main diagonal.
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Somerestrictionsareeasilymet:that , , andthediscretizationschemesof all WFTE

termsmust not changebetweensuccessive solutions.This would normally be the case

anyway, sincechangesin any of thesewould requirea lot of overheadeffort. A moresig-

nificant restrictionis that the relaxationtime mustbe fixed (if scatteringis included).

This is assumedin SQUADS anyway. The one “problem” restrictionis that the energy

bands(i.e., thepotentialprofile)mustremainfixedbetweensuccessivesolutions.This last

restrictionis met by only transientsimulationswhereself-consistency (seeChapter6) is

not enforced,and wherethe appliedbias remainsfixed for several time steps.The two

typesof WFM simulationswhich fall in this category areGaussianwave packet simula-

tions (which currentlyassumefixed energy bands)andswitchingsimulations(wherethe

biasis switchedat andthesystemis allowedto evolvewith thisfixedappliedbias).

For both cases,the transientterm of the WFTE is the sourceof the varying RHS vector,

since  holds the previous WFTE solution (see Section 5.3.3.5).

Thetestcasesimulationwill beusedto comparetheCPUandstoragerequirementsof

theLUD andWGE solutionapproaches.For a UDS2simulation, FLOPS(float-

ing-point operations)are required for each LUD solve (after the first), comparedto

FLOPSfor theWGEsolution(andfirst LUD solve).For thetestcasesimulation,

theWGE approachis thereforeabout27 timesslower thanLUD! Themaindisadvantage

of theLUD approachis thatit requiresstorageof all non-zeroandfill-in coefficientsin .

For LUD simulations,SQUADS usesa block-diagonalstoragescheme,requiring32 MB

for thetestcasesimulation,a factorof 4 largerthanthatusedby theWGE approach.The

speedadvantageof the LUD approachis sufficient justification for its extra storage

requirements,but only for simulationswhich meetits restrictions.Thus,SQUADS imple-

mentsboth theLUD andWGE solutionschemes,andautomaticallyusestheappropriate

onefor thesimulationtype.Onefinal noteis that,becausethecoefficient matrix for tran-

sientsimulationsis inherentlydiagonally-dominant,20 theoverheadof checkingfor pivot-

ing makeslittle sense,andis thereforenot implementedwhentheLUD approachis used.

This allows higherorderBLAS routinesto beusedin theLUD approachthancanbeused

with theWGEapproach,improving therelativecomputationalefficiency of theLUD even

further.

20.Thatis, thediagonaltermis muchlargerthantheothersoneachline, in thecaseof thetransient
WFTE, because all other terms are multiplied by.

Nx Nk

τ

t 0=

b

51

2
-NxNk

2

11

2
-NxNk

3

A

∆t



5.5. Simulation Results 141

5.4.3 Other Solution Schemes

Two otherresearchershave developedalternatealgorithmsfor minimizing thestorage

requiredto solve thediscreteWFTE,andthereforemight serve asalternativesto theopti-

mized schemedescribedin the previous sections.Jensenand Ganguly’s approach[4]

requiresthe sameamountof memoryas SQUADS’ optimizedscheme.However, it is

somewhatmorecomplicatedto describeandimplement,andit would not meshwell with

the LUD solution (i.e., it haslesscodeoverlap).However, it doesallow for the useof

higherlevel matrixsolutioncodes,whichusuallyimplieseasiermaintenanceandupgrade-

ability. Invariably, “higher level” alsoimpliesnot takingfull advantageof thematrixstruc-

ture, resulting in higher CPU time to solution. Therefore,Jensen’s approachwas not

implemented in SQUADS.

Another approachto reducingmemoryusagewas usedby Jansenet al. [36]. This

methodusesan iterative conjugate-gradient(CG) algorithmto find the steady-statesolu-

tion of thediscreteWFTE.Althoughthisapproachrequiresthesameorderof computation

time asthenon-LUD approachin SQUADS, it only requires bytesof storagefor

DSO = 1, comparedto for the algorithmusedin SQUADS. Sincethe CG algo-

rithm cannot beusedto directly find thetransientresponse,it hasnot beenimplemented

in SQUADS. However, SQUADS hasalreadybegun to usespecializedcodefor various

simulationmodes(e.g., theLUD approachfor non-self-consistent,transientsimulations),

and the CG approachwould be an excellent candidatefor further specializationof

SQUADS for steady-state (including self-consistent) simulations.

5.5 Simulation Results

This section demonstratesmany of the basic capabilitiesof the Wigner function

methodof quantumdevice simulationin SQUADS, asdescribedin precedingsectionsof

this chapter. This demonstrationis accomplishedthroughthe investigationof severalkey

implementationdetailsof the WFM. First, Section5.5.1describesthe simulationof the

evolution of a Gaussianwave packet (like a charge packet) in bulk semiconductor. This

scenarioalsohasananalyticsolution,enablingthecomparisonin Sections5.5.2and5.5.3

of themeritsof alternativediffusionandtransienttermdiscretizationschemesdescribedin

this chapter. Theoptimaldiscretizationapproachis thenappliedin theremainingsimula-

tionsof thischapter. Section5.5.4thendescribesthequantumdevice(aresonanttunneling

48NxNk

4NxNk
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diode)andsimulationparametersusedin furtherWFM simulationinvestigations.Several

steady-state(Section5.5.5)andtransient(Section5.5.6)WFM simulationsfor this RTD

produceotherconclusionsaboutaccurateWFM simulation.Finally, Section5.5.7com-

paresWFM and TMM simulationsof this RTD with experimentalmeasurements,and

attemptsto explain the absencein the literatureof direct comparisonsbetweenquantum

device simulations and experimental measurements.

5.5.1 Gaussian Wave Packet Simulations

A seeminglyinfinite selectionof discretizationoptions for the WFTE have been

implementedin SQUADS anddiscussedin previoussectionsof this chapter. This section

investigates,asefficiently aspossible,whichdiscretizationapproachis “optimal”. In other

words,which discretizationapproachoffers thebestcombinationof accuracy, efficiency,

androbustness?21 Publishedresultsof suchcomparative investigationsarerare,in contrast

to the claims [9, 12, 19-21, 25-27] of the relative superiority of one discretization

approachover another. Of thethreemeasuresof merit, efficiency is relatively lessimpor-

tant,sinceanincorrectsimulationresult(dueto pooraccuracy or robustness)is useless,no

matterhow quickly it wascomputed.Further, thecapabilitiesof computationalhardware

continueto increaserapidly, andcomputationtasksthatareunacceptablyexpensive today

will lik ely become feasible in the near future.

Thebestway to judgerelative accuracy of numericalcalculationsis to simulatea sys-

tem that alsohasan analyticsolution.Any differencebetweenthe numericandanalytic

resultsis dueto numericalerror in thesimulation.Oneof thefew non-trivial caseswhere

an analytic solution to the WFTE exists is the propagation of a Gaussianwave packet

(GWP) in bulk semiconductor22 [10, 32, 37]. Although this scenarioseemsunrelatedto

Wigner functionsimulationof quantumdevicessuchastheresonanttunnelingdiode,the

only significantdifferencesin termsof the computationarethe initial conditionandthe

boundaryconditions.The computationof the Wigner function proceedsidentically in

either case.

Note that with flat potentialGWP simulations,no comparisonof variouspotential

term discretizationscan be accomplished.However, there are few position-dependent

21. “Accuracy” indicatesnearnessto the correctresult,while robustnessindicatesthe reliability
that a vastly inaccurate and physically incorrect result will not be produced.
22. A flat potential  is assumed throughout the simulation region.U x( ) 0=
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potentialsfor which theWFTE is analyticallysolvable.Further, afterscatteringelastically

(as opposedto dissipative scattering)off a position-dependentpotential, the resulting

GWP is invariably too “noisy” (lots of fine structure) to assignany significanceto

numeric/analyticdiscrepancies.Also, sincescatteringis not includedin theanalyticcalcu-

lation, it must be turnedoff in the numericalsimulation.GWP simulationsare able to

comparethe theoreticalaccuraciesof the diffusion and transientterms,however. These

terms have many alternatives, and are otherwise very difficult to accurately compare.

From [38] the wavefunction for a GWP is:

, (5.67)

where  is the average velocity,  is the minimum position spread, and

. (5.68)

For generality, SQUADS alsoallows thecenterof theGWPto beat a locationotherthan

 at  by replacing  with  in (5.67).

For a GWP, thewavefunctionalreadyrepresentsa mixedstate(i.e., it hascomponents

atmany energies),sothewavefunctionanddensitymatrixareidentical.TheWignerfunc-

tion for a GWPis calculatedfrom thedensitymatrix via a Fouriertransform,asdescribed

in [2], with the final result:

, (5.69)

where is the position-centerof the GWP at . Note that the initial condition

( ) for a GWP simulation is:

. (5.70)

Startingfrom this initial condition,the GWP will spreadanddecreasein amplitudewith

time.

The GWP simulationsin the Sections5.5.2and5.5.3use in (5.69),where

is thepositiongrid spacing.GaAsis theassumedmaterial,so it is appropriateto take
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nm (to make thegrid spacingequalto thephysicalatomicspacing,for rea-

sonsdiscussedin Section4.2.2).The simulationsalsouse . The basic

approachin this investigation is to comparesimulatedand analytic resultsfor various

WFTE discretizationschemesafter 20 fs of GWP evolution. As an example,Figure5.9

shows the GWP at  and  fs (twenty 1 fs steps) from a typical simulation.

5.5.2 Diffusion Term Discretization Comparison

The diffusion term discretizationschemesimplementedin SQUADS weredescribed

in Section5.3.3.2.To comparetheaccuracy andcomputationalefficiency of thesediscret-

ization approaches,Cayley discretizationwill be usedfor the transientterm,with a 1 fs

time stepfor all simulations.Table5.1 summarizestheresultsof 45 simulationscompar-

ing every diffusion term discretization implemented in SQUADS23 for three cases:

1) GWPcenteredat with zerogroupvelocity. This simulation

23. Fifteendiffusion term discretizationschemesare implementedin SQUADS. In thesesimula-
tions, the hybrid difference schemes are formed as HDS = UDS + 2 CDS (  in (5.36)).
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Figure 5.9: Gaussian wave packet simulation typical result

Theinitial ( ) andfinal ( fs) GWPsarecombinedin this plot. Theini-
tial GWP wascenteredat andtraveling in the + directionwith average
wavevector . After 20 fs theGWPis approachingtheoppositeendof
thesimulationregion,andthefasterandslowercomponents(i.e., higherandlower
wavevector, respectively) have spreadthe GWP out in the -dimension.The rip-
ples and negative regions in the final GWP are the result of numerical error.
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allows a determinationof the optimal diffusion term discretization

absent the complications of interaction with the boundary conditions.

2) GWPinitially centeredat , with a groupvelocity equivalent

Table 5.1: WFTE diffusion term discretization scheme accuracy, efficiency
Themaximumpercenterror is shown (determinedfrom theanalyticresult)aftera
20 fs WFM simulationof a Gaussianwave packet using variousdiscretization
schemesfor the diffusion term of the WFTE. For thesediscretizationschemes,
UDS = upwinddifferencescheme,CDS= centraldifferencescheme,andHDS =
hybrid differencescheme(combinationof a UDS anda CDS).Trailing numbers
indicatethe order of the differencescheme.The simulationsare 1) a stationary
GWPin thecenterof thesimulationregion, 2) a moving GWPwithin thesimula-
tion domain,and3) a moving GWP interactingwith both boundaries.Motion of
theGWPintroducessignificanterrorinto thesimulation,while interactionwith the
boundariesdoesnot. HDS22 is the optimal diffusion term differenceschemein
terms of accuracy and computational efficiency.

Diffusion
Term

Discretization

Relative
Compute

Time

Memory
Usage
(MB)

UDS1 10.7% 40.0% 47.3% 1.0 25

UDS2 6.18% 23.2% 29.3% 2.4 41

UDS3 4.34% 19.1% 37.9% 4.7 57

CDS2 2.90% 16.7% 38.4% 1.5 33

CDS4 3.81% 15.7% 36.5% 3.4 49

CDS6 3.83% 15.6% 36.5% 6.1 65

HDS12 4.58% 21.8% 31.7% 1.0 25

HDS14 5.02% 22.0% 30.8% 2.4 41

HDS16 5.03% 22.0% 30.8% 4.7 57

HDS22 3.86% 15.6% 35.9% 2.4 41

HDS24 4.58% 17.1% 34.1% 2.4 41

HDS26 4.61% 17.1% 34.1% 4.7 57

HDS32 3.35% 17.0% 38.4% 4.7 57

HDS34 3.98% 16.7% 36.9% 4.7 57

HDS36 4.00% 16.7% 36.9% 4.7 57

x0 L 2⁄=

k0 0=

x0 L 4⁄=

k0 kmax 4⁄=

x0 0=

k0 kmax 2⁄=

x0 L 4⁄=
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to . This allows a determinationof the effect of high-

speed carrier motion on WFM simulation efficiency.

3) GWP initially centeredat , with a groupvelocity equivalentto

. This shows thesignificanceof theinteractionwith both

the incoming and outgoing boundaries.

Fromthedatain Table5.1,theseGWPsimulationsindicatethatonaverage,HDS22is

theoptimaldiffusiontermdiscretizationapproach(low errorandcomputationalcost),fol-

lowed by CDS2andHDS12.The simulationsalsoshow that error improveswith higher

order UDS, but not with higher order CDS. Also note that error increasessignificantly

whentheaveragevelocity of theGWPis non-zero.In UDS1,this errormanifestsitself as

excessive spreadingand amplitude decay of the GWP, while in other discretization

approaches,a large part of the error is dueto oscillations(including regionsof negative

values)that form in theGWP. Therelatively largeerrorof UDS1makesit unsuitablefor

accurate quantum device simulation, making a second-order scheme a minimum.

Recallfrom Section5.3.3.2thatboththeCDSandHDS discretizationsrequirechang-

ing the differenceschemeat outgoingboundaries.Frensely[27] arguedthat this could

introducesignificantadditionalerror in WFM simulations.However, thesesimulations

indicate that error does not significantly increasedue to changingthe discretization

approachat theboundary. Finally, notethaterrorfor eachof thesesimulationsis relatively

high. Clearly, moreeffort shouldbeappliedin the future to understandingthesourcesof

thisnumericalerrorin thestandardWFM implementation(usedin SQUADS andall other

WFM code to date).

5.5.3 Transient Approach Comparison

In addition to the many diffusion term implementations,SQUADS also implements

severalapproachesfor accomplishingtransientsimulations.Thesetransienttermdiscreti-

zationsincludefirst-orderandsecond-orderforwardEuler (FE1andFE2),first-orderand

second-orderbackwardEuler (BE1 andBE2), andCayley (a.k.a.Crank-Nicholson).This

sectionusesGaussianwavepacketsimulationssimilar to thosein theprevioussection,but

this time thegoalwill beto determinetherelativeaccuraciesof thetransientdiscretization

approaches.To this end,HDS22discretizationwill be usedfor the diffusion term in all

simulations,andthetransienttermdiscretizationwill bevaried.Notefrom Section5.3.3.5

k0 0.25kmax=

x0 0=

k0 0.5kmax=
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thatFE2andBE2 includeasecond-orderpositionderivative.For theassociateddifference

scheme,SQUADS implementsUDS1,UDS2,CDS2,CDS4,andthecorrespondingHDS

schemes[2]. A seriesof simulationssimilar to thosein theprevioussectionindicatedthat

UDS1wastheoptimaldifferencescheme(low computationalcostanderror) for thesec-

ondderivative term.Therefore,all FE2andBE2 simulationsin this sectionuseUDS1for

the second derivative.

Thefollowing GWPsimulationswereusedin this investigationof theaccuracy of the

transient term discretization schemes:

1) GWPin thecenterof thesimulationregion with zeroaveragevelocity

( , ),

2) GWP enteringthe simulationregion with a moderateaveragevelocity

( , ), and

3) Repeatsof theabove simulationswith thetime incrementreducedby a

factorof ten( ) andthenumberof time stepsincreasedby a

factor of ten ( ).

The numericalresults(error comparedto the exact analyticalresult) for eachof the five

transientdiscretizationsareshown in Table5.2.Theconclusionfrom theseresultsis very

clear:theCayley discretization,first usedby JensenandBuot [12], is optimalover a wide

rangeof simulationconditions.It strengthis dueto its unitarynature[26], which attribute

tendsto maintainthe total numberof carriersin the GWP betterthanthe othertransient

approaches.Frensley [27] suspectedthattheCayley discretizationwasmoreaccuratethan

the morewidely-usedfirst-orderbackward Euler, but thesesimulationsprovide the first

hardproof.They alsoshow thesuperiorityof Cayley over FE1andFE2,which wereused

in some early WFM simulations [10, 32] due to a relatively low computational cost.

Note that the useof a smallertime stepdramaticallyreducedthe error of all simula-

tions. Theseresultssuggestthat 0.1 fs shouldbe considereda reasonabletime step in

WFM simulations.Due to thehigh computationalcostandthe lack of concreteevidence

prior to thesesimulations,all transientWFM simulationsexceptthosein [10] have useda

time stepof 1 fs or larger. Computationalcostconcernsalsoresultedin theuseof a 1 fs

time stepin this work, althoughthe rapidly increasingpower of scientific workstations

should make the use of a 0.1 fs time step quite feasible in the near future.

Another conclusionfrom theseand similar GWP simulationsis that FE1, FE2, and

x0 L 2⁄= k0 0=

x0 0= k0 kmax 4⁄=

∆t 0.1fs=

NT 200=
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BE2 arenot robust,having a tendency to diverge (error grows exponentially)after some

lengthof time.Usingsmallertimestepswill delaydivergence,but this reducesthecompu-

tational advantageof the forward Euler approaches.It is not apparentbeforerunning a

simulationwhattime stepwill berequired,althoughguidelineswerediscussedin Section

5.3.3.5.Theonly wayto makecertaina transientsimulationis notdiverging is to runaddi-

tional time steps.Finally, implementationof the second-ordertransientschemesis much

morecomplex thanCayley. For all of thesereasons,Cayley discretizationis recommended

for the transient term in WFM simulation. In fact, Cayley is used in the remaining simula-

tions of this section and in all later chapters of this work.

5.5.4 WFM Simulations of RTDs with SQUADS

Furtherinvestigationof theWFM implementationin SQUADS requiresthesimulation

of actualquantumdevices,ratherthanthebulk semiconductorregionsusedin theGauss-

ian wave packet simulationsabove. This sectiondiscussesthe selectionof a quantum

device to beusedfor thesimulationspresentedin theremainderof Section5.5,aswell as

Table 5.2: WFTE transient term discretization scheme accuracy
Themaximumpercenterror is shown (determinedfrom theanalyticresult)aftera
20 fs WFM simulationof a Gaussianwave packet using variousdiscretization
schemesfor the transientterm of the WFTE. The discretizationschemesinclude
first- andsecond-orderforwardEuler(FE1andFE2),first- andsecond-orderback-
wardEuler (BE1 andBE2), andCayley. Thesimulationsare1) a stationaryGWP
in the centerof the simulationregion, 2) a moving GWP startingat the
boundary. Both 1.0 fs and0.1 fs time stepsaresimulated.Note thatFE1andFE2
are unreliable (may diverge). Cayley is the optimal transient term difference
schemein termsof accuracy andcomputationalefficiency. A time stepof 0.1 fs
seems necessary for accuracy, but it entails a huge computational cost.

x 0=

Transient
Scheme

FE1 14.2% 5.16e10 0.790% 31.5%

BE1 7.32% 49.3% 1.073% 15.4%

Cayley 3.86% 15.8% 0.516% 3.20%

FE2 75.3% 8.11e23 0.684% 7.09%

BE2 6.48% 47.1% 0.693% 8.03%

∆t 1.0fs= NT, 20= ∆t 0.1fs= NT, 200=

x0 L 2⁄=

k0 0=

x0 0=

k0 kmax 4⁄=

x0 L 2⁄=

k0 0=

x0 0=
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thechoiceof simulationparametersusedin thesesimulations.In Section2.3.4,theRTD

wasselectedasthe default quantumsimulatortestdevice. Oneimportantreasonfor this

choicewasthefactthatRTDs have a wealthof experimentalmeasurementsto which sim-

ulationscanbecomparedfor accuracy. Several factorsmustbeconsideredin choosinga

particularexperimentallymeasuredRTD for comparisonto aWFM simulation.Of course,

theRTD musthavebothastructureandamaterialsystemthatareaccuratelyknown. Also,

the distancebetweencontactsof the device (denoted in this work) shouldbe small as

possible,so that WFM simulationsof the structurearecomputationallyfeasible.Finally,

the RTD musthave adequatelyreportedmeasurementdetails(e.g., ambienttemperature,

contact parasitics, and circuit model of measurement apparatus) and results.

Basedontheseconsiderations,theexperimentalRTD describedin [39] waschosenfor

this investigation of WFM quantumdevice simulation,having met mostof the require-

mentslistedabove.Thelayerstructureandenergy bandoffsetsof thisGaAs/Al0.3Ga0.7As

RTD aredepictedin Figure5.10.TheRTD lateralareais givenas1 - 5 µm diameter, with

a typical diameterof 3 µm. The experimentalmeasurements(and thus all simulations)

werecarriedout at 100 K. Unlessstatedotherwise,scatteringis includedin the simula-

tionsbelow, usinga relaxationtime constantfor GaAsat 100K of 441fs.24 The30%alu-

minum contentof the barriersproducesa conductionbandoffset of approximately0.23

eV [40]. Exceptwherestatedotherwise,this chapterassumesthat effective massis not

position-dependent.Sincemostof the device is GaAs,the GaAsbulk effective mass(in

the Γ band)of 0.067mo wasused.Finally, the relative permittivity wastaken as13.1 in

GaAs and 10.06 in AlAs, with a linear variation with respect to aluminum fraction [41].

Finally, theWFM simulationparameterswill belisted.Theoptimaldiffusionandtran-

sienttermdiscretizationswerefoundto beHDS22andCayley, respectively. As discussed

in Section5.3.1, the position grid spacingshouldbe equalto the lattice spacingof the

material,giving nm for GaAs. Somelength of the heavily dopedcontact

regions must be includedin the simulationdomain in order that the assumedclassical

boundaryconditions(seeSection5.2.3)arefaraway from thestrongquantumeffectsnear

thetunnelbarriersandquantumwell. Thesesimulationsused26.3nmcontactregionsgiv-

ing . All simulationsused . Thechoiceof transientsimulationparam-

24. Therelaxationtime is estimatedusinglogarithmic interpolationbetweentwo valuesfor GaAs
given in [15] at 77 K and 300K.
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eters will be discussed in Section 5.5.6.

In orderto comparethe WFM simulationresultsto experimentalmeasurements,it is

necessaryto useanenergy bandprofile thatcloselymatchestheexperimentalcase.

Theproperway to achieve this is by enforcingself-consistency, but this addedcomplica-

tion is not discusseduntil Chapter6. Instead,the simulationsin this chapter(like the

TMM simulationsof Chapter5) assumea linearpotentialprofile acrosstheactive region

of the device, with flat energy bandsin the contacts,as indicatedin Figure 5.10. To

approximatelymirror theexperimentalenergy bandprofile, theactive region in thesesim-

ulations is defined to include a 3 nm accumulation region and a 12 nm depletion region.

5.5.5 Steady-State Simulations

Up to this point, this chapterhastaken a conceptualapproachto the discussionof

quantumdevice simulationusingon theWigner functionmethod.That approachmoder-

Figure 5.10: Conduction band profile of RTD used in WFM simulations

Theconductionbandof theRTD usedin all remainingsimulationsof this chapter
is shown at a biasof 0.16 V. To approximatethe experimentalconductionband
profile, a 3 nm accumulationregion anda 12 nm depletionregion arespecified.
Thepotentialis droppedlinearlyacrossthe“active” region.TheRTD is composed
of a 5 nm GaAsquantumwell between5 nm AlGaAs tunnelbarriersand26.3nm
GaAscontactlayers,giving a total simulationwidth of = 67.6nm.Contactlayer
doping is  = 1018/cm3; the other layers are undoped.
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atesbeginningin this section,assimulationsof a realquantumdevice, theRTD described

in theprevioussection,arepresentedandanalyzed.This morepracticalapproachbegins

with a plot in Figure5.11of theWignerfunctionfor this RTD at 1 V bias.This relatively

highbiaswaschosenfor thisplot sothatthebeamof carrierstunnelingthroughthedouble

barrierstructureandpropagatinginto theleft contactwaslarge(dueto ahighcurrentflow)

andmoredistinct from theequilibriumcarriers(dueto a high energy separation).Figure

5.11canbecomparedto theTMM-computedWigner function in Figure4.10,andshows

that the WFM captures the basic quantum physics of RTDs.

Anotheressentialquantumdevicesimulationresultis thecarrierdensityprofile,which

in WFM simulationis calculatedby integratingtheWigner functionover thewavevector

domain,asdescribedin Section5.3.4.As a typical exampleFigure5.12shows thecarrier

densityfor thesimulatedRTD at a biasof 0.16V, which is nearresonance(peakcurrent)

for thisRTD. Notethequantumexclusionof carriersnotonly from thebarrierregions,but

alsofrom the regions just outsidethe barriers,even on the accumulationregion side(in

this case,on theleft). By contrast,a classicalsimulationwould predicta high carrierden-

sity all thewayupto theemitterbarrier. Also notethatthereis asubstantialdensityof car-

riers in the quantumwell at this bias,sincethe discretequantumwell stateis still above

theemitterminimum.Thus,carriersareableto tunnelfrom theemitterinto thequantum
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Figure 5.11: RTD Wigner function at high bias

The simulatedWigner function is shown for an RTD at 1 V bias. The
Wigner function shows the numberof carriersversusposition and wavevector
(proportionalto velocity) in the device. The beamof carrierstravelling at high
velocity into the right contact have tunneled through the RTD.
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well state and then to the collector.

Having demonstratedin the above discussionthat the WFM reproducesthe basic

quantum(andclassical)physicsof RTDs, the remainderof this sectionsummarizesthe

resultsof first-time investigationsof threeaspectsof WFM simulation.Thefirst seeksto

ascertainthe significanceof inelastic scattering(i.e., energy dissipation) in quantum

device operationand simulation. To this end, Figure 5.13 shows simulatedRTD I-V

curvesbothwith andwithoutscattering.Theconclusionis thatscatteringis very important

beforeresonance(peakcurrent).In this region of operation,the Fabry-Perotresonance

effect [42] enhancestunnelingcurrentif carriersmaintainphasecoherencethroughthe

entiretunnelingprocess.Theability to includescatteringis oneof themainadvantagesof

theWFM over theTMM, thelatterstill beingthemainstayof quantumdevice simulation.

In spiteof the importanceof scatteringin accuratequantumdevice simulation,evenwell

below roomtemperature(thesesimulationsusea 100K device temperature),thedevelop-

mentof moreaccuratescatteringmodelsthantherelaxationtime approximationhave not

Figure 5.12: RTD carrier density profile near resonance (peak current)

The conductionbandprofile is also shown (dashedline). Quantumexclusion of
carriersis evident in thebarriersandin theaccumulationregion (in this case,just
outsidetheleft barrier).However, thesubstantialdensityof carriersin thequantum
well at this bias indicatesthat the discretequantumwell stateis still above the
emitter minimum, and being filled by carriers from the emiter.

0 10 20 30 40 50 60
Position (nm)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

E
le

ct
ro

n 
D

en
si

ty
 (

10
18

/c
m

3 )
C(x)
U(x)

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

E
nergy (eV

)



5.5. Simulation Results 153

beenattemptedin theWFM. Basedontheresultsin Figure5.13,thisoversightshouldcer-

tainly be addressed in the future.

Thenext WFM investigationconcernsthe inclusionof a position-dependenteffective

mass(PDEM). For reasonsthat will shortly be apparent,the simulationsin this chapter,

andmostWFM simulationsby otherresearchers,assumea position-independenteffective

mass.As discussedin Section5.3.3.2,the correctderivation and implementationof a

PDEMis quiteinvolved[19, 20], andis thereforenot implementedin SQUADS. However,

thesimplePDEMmodelusedby Frensley [9] wasimplementedin SQUADS to determine

its efficacy in reproducingthe effectsof a PDEM. The RTD I-V curve with this PDEM

modelis shown in Figure5.14,clearlydemonstratingthattheFrensley PDEMis unaccept-

ablefor accuratequantumdevice simulation.Thus,in orderto incorporatea PDEM, the

correct(andvery complicated)implementationmustbeused.Oneadvantageof theTMM

over theWFM is thatcorrectlyimplementingaPDEMis mucheasier. In fact,oneconclu-

sion from the TMM simulationsin Chapter4 (seeFigure 4.17) was that including a

Figure 5.13: Simulated RTD I-V cur ves with and without scattering

The I-V curvesshow that the inclusionof scatteringin simulationssignificantly
reducescurrentwhenthe RTD is operatingin the Fabry-Perotregime (up to and
includingthecurrentpeak).After resonance,scatteringhaslittle effect on current,
sincecoherenceis irrelevant.PVR is thepeakto valley currentratio,animportant
figure of merit for RTDs.
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PDEM is necessary for accurate quantum device simulation.

Variousoptionsfor implementingthediffusionandtransienttermsof theWFTE have

beendiscussedandcompared,andonly a singleapproachis commonfor implementing

the scatteringterm. The remainingterm of the WFTE yet to be investigatedis the drift

term. Therefore,as a final investigation of the steady-stateWFM, recall from Section

5.3.3.3that threedifferentalgorithmshave beenusedto calculatethenon-localpotential

(NLP) in thedrift term.Only thestandardmodelis mathematicallycorrect,25 but themod-

ificationswereproposedto addressotherconcerns,suchassmoothingout abrupttransi-

tions in thepotentialprofile. Figure5.15givessimulatedRTD I-V curvesfor eachof the

NLP models.Note thatscatteringwasnot includedin this simulation,so thatdifferences

in thesimulationresultswouldnotbeobscured.Evenso,thedifferencesbetweenthethree

I-V curves are not large. Thus, the NLP modificationsshouldnot significantly degrade

accuracy, and thusmay be usedwithout undueconcern.Whetherthey accomplishtheir

25. See the caveat in Section 5.5.7.

Figure 5.14: RTD I-V cur ve with simple variable effective mass model

This simulationis identical to the I-V curve in Figure5.13 including scattering,
exceptthat theFrensley position-dependenteffective massmodelhasbeenturned
on here.The regionsof negative current(power production)clearly demonstrate
thatthismodelis notacceptablefor accuratequantumdevicesimulation.Thesim-
ulation does assume a more conventional appearance at biases above 0.5 V.
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ancillary purposesis well worth further investigation, but this questionwill not be

addressed here.

5.5.6 Transient Simulations

In additionits ability to includedissipation,anotherimportantadvantageof theWFM

over theTMM is its transientsimulationcapability, which will bediscussedanddemon-

stratedin this section.Sincenumeroustransientsimulationsaredetailedin Chapters6-8,

only a cursorylook at transientWFM simulationwill begivenhere.In particular, thetra-

ditional transientRTD simulationsof switchingfrom peakto valley andvice-versawill be

described.For the RTD being investigated in this chapter, the peakand valley applied

biasesare0.16V and0.28V, respectively. Figure5.16shows the position-averagedcur-

rentafter instantaneouslyswitchingtheRTD betweenthesetwo biases.Note thatsteady-

stateis essentiallyreachedin about600fs whenswitchingfrom peakto valley, while the

oppositeswitchingeventtakesabout800fs. Thecurrentpulseandhigh-frequency oscilla-

Figure 5.15: RTD I-V cur ves for differ ent drift term implementations

Comparedto theeffectsof alternativediffusion,transient,andscatteringterms,the
alternative drift terms[basedon modifiednon-localpotential(NLP) calculations]
producerelatively little quantitative differencein the simulatiedI-V curve. Thus,
thealternative (rectangle-andtriangle-smoothed)NLP formscanbeusedwithout
undue concern about introducing a large error in the simulation result.
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tions will be discussedin detail in Chapters7 and8, respectively. The simplemessage,

however, is thatRTDsandsimilarquantumdevicescanoperateat veryhighspeed,aswas

claimed in Section 2.3.4.

5.5.7 Comparison to Experiment

It hasbeenstatedseveral timesin this work that the raisond’etre of electronicdevice

simulatorsis to predicthow electronicdevices(whetherexistingor proposed)will operate.

In orderto determinehow well a simulationtool meetsthis goal, its predictionsmustbe

comparedto experimentalmeasurementsof realelectronicdevices. And yet, in a literature

review of WFM simulationpapers,only onepaper[10] out of roughly 50 provided both

experimentalandWFM simulationresults(I-V curves) for the samedevice. It happens

that this is the samedevice describedin Section5.5.4andusedin the RTD simulations

above. In that paper, the simulationresultsappearto agreequite well with experimental

measurements.Theobviousquestionis: why arecomparisonsbetweenWFM simulations

andactualdevice measurementsnot published?Theanswerwill beequallyobviouswhen

Figure 5.16: Transient current after switching RTD between peak and valley

The simulatedRTD is switchedinstantaneouslyat from 0.16V to 0.28V
appliedbias(peakto valley operation)andvice versa.TheRTD takesonly 600to
800 fs to essentiallyreachsteady-state,demonstratingthat RTDs are inherently
fastdevices.Theorigin of thecurrentpulseafterswitchingis discussedin Chapter
7, and the cause of the high-frequency oscillations is discussed in Chapter 8.
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the experimental and simulation results for the RTD used in this chapter are juxtaposed.

Figure 5.17 gives the experimentalI-V curve from [39] as well as I-V curves from

both WFM andTMM simulations.Note that the simulatedI-V curveshave beenscaled

down by a factorof ten.Thus,the simulatedpeakcurrentsaremorethana factorof 10

largerthantheexperimentalvalue.26 Two othervaluesof interest,thepeakandvalley volt-

ages,are100 mV (about33%) larger in the experimentalmeasurements.Thus,although

the simulationshave correctlyreproducedthe basicphysicsof the RTD, the quantitative

accuracy of the simulationsleavesmuchto be desired.It is for this reasonthat compari-

sonsbetweenWFM simulationsandexperimentalresultsarenot published:thecompari-

son would call into question the usefulness of the simulator.

26.Notethatthelateralareaof theexperimentalRTD wasnot directly specifiedin [39]. Therange
of sizeswasgivenas1-5 µm diametermesas,with a typical diameterof 3 µm. Figure5.17calcu-
latescurrentdensityfrom totalcurrentassumingthetypicaldiameter. Also, whenaposition-depen-
dent effective mass is included in the TMM, the simulated peak current is a factor of 3 smaller.

Figure 5.17: Comparison of experimental and simulated RTD I-V cur ves

Wigner function method(WFM) andtransfermatrix method(TMM) simulations
areshown (eachscaleddown by a factorof 10)alongwith theexperimentalcurve.
The simulatedpeakcurrentsaremorethanan orderof magnitudelarger thanthe
experimentalvalue.Someof the discrepancy canbe attributedto inaccuraciesin
the simulationmethods(especiallythe WFM), and someis undoubtedlydue to
non-idealities in the experimental device and measurement.
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In order to improve the agreementbetweenquantumdevice simulationsandexperi-

ment,bothexperimentalistsandsimulationtool developerswill have to cooperate.On the

experimentalside,thestructureof thedevice mustbeaccuratelydeterminedandreported.

For example,in RTDs, even single atomic layer error or variation in the tunnel barrier

widthsproducesa hugecurrentchange,sincetunnelingcurrentvariesexponentiallywith

barrierwidth. Similarly, aninexactlyknown quantumwell width will changethepeakand

valley voltages.Otherimportantintrinsic device characteristicsarethedopingprofile and

the lateral area.For example,sincea range of sizeswas given for the RTD simulated

above,thecurrentdensityin theexperimentaldevicewasunknown by afactorof 25.Also,

the measurementdetailsmustbe accuratelydescribed.For example,device temperature

maydiffer from theambient,theremaybesignificantparasitics(inductance,capacitance,

andresistance)in themeasurementcircuit,27 andtheremaybeparasiticsassociatedwith

thedevice itself (suchassurfaceleakagecurrentonthesidesof amesa,or asurfacepoten-

tial on the sides of a mesa, which would reduce the effective lateral area of the device).

On thesimulationside,quantumdevice simulationsmustbeableto accountfor exter-

nal parasitics.Sincequantumdevicesareinherentlyvery small,andthusvery sensitive to

externalconditionsandnon-idealities,theeffectslistedin thepreviousparagraphmustbe

accountedfor in, andstudiedwith, simulation.This canbe accomplishedby deriving an

equivalentcircuit model for the quantumdevice, asis donein Chapter8, andusingthis

modelin a larger circuit simulationincluding suspectedor known parasitics.In this way

the significance of the parasitics can be understood and their effects mitigated.

SincetheTMM is a well-behavedandwidely acceptedsimulationapproach,muchof

thediscrepancy betweensimulationandexperimentis likely to bedueeitherto non-ideal-

ities in theexperimentalsystem,or functionality(suchasscattering)thatcannotbeimple-

mentedin aTMM simulation.TheWFM, on theotherhand,is still at a formativestageof

development,and its discrepancy with the TMM (aswell asexperiment)are likely due

largely to inaccuraciesin theWFM. Many advancementscanbemadein theWFM which

shouldproducebetteragreementwith experiment,as detailedin Section9.3. Someof

theseincludea fundamentallydifferentandmoreaccurateimplementationof the WFTE

[25, 27], simulationswith a muchhighernumberof wavevectorpoints,interbandinterac-

27. The fact that the experimentalpeakandvalley voltageswereat higherbiasesthanin simula-
tions, even when self-consistency (see Chapter6) was enforced,indicatesa seriesresistance
between the measurement probes and metal contacts, or between the contacts and the device.
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tions,and2-D simulationcapability. In spiteof thediscrepanciesbetweentheWFM and

TMM, the two quantumdevice simulationapproachesstill producequalitatively similar

results.A comparisonof theWignerfunctionsproducedby eachsimulationmethodfor an

RTD at high bias (Figures 4.10 and 5.11) fully verifies this.

In summary, althoughthereis presentlya significantquantitative discrepancy between

quantumdevice simulationsandexperiment,it is still importantto make direct compari-

sonsbetweenthe two. Throughthis exercise,the accuracy of quantumdevice simulators

will improve morequickly, enhancingits usefulnessin quantumelectronicsresearchand

development.

5.6 Summary

This chapterhasdescribedtheWignerfunctionmethodof quantumdevice simulation

and its implementationin SQUADS. As discussedin Section3.5.3,the capabilitiesand

potentialof the Wigner function methodcomplimentthoseof the TMM in SQUADS.

Whereasthe TMM is well-suited to efficient, wide-rangingsimulations,the WFM is

requiredfor transientquantumdevice simulations,andfor any simulationswherescatter-

ing is to beincluded.To theuser, thefunctionalityof a simulatoris largely determinedby

therangeof outputinformationit canproduce.By thismeasure,theWFM asimplemented

in SQUADS caninvestigatetheoperationof a quantumdevice at a singlebias,with plots

of theWignerfunction,carrierdensityprofile,andpotentialprofile;overarangeof biases,

with I-V andQ-V plots (charge in eachdevice region versusbias); andundertransient

operation,includingtime-logsof terminalandaveragecurrents,3-D plotsof currentden-

sity and charge densityversusposition and time, and Q-T plots (charge in eachdevice

region versustime).Most of themoreadvancedfeaturesof theWFM in SQUADS will be

used in the investigations in Chapters 6-8.

As discussedin Section3.5.5andamplydemonstratedin this Chapter, SQUADS was

designedto allow the investigation of quantumdevice simulators, as well as quantum

devices. As a result,a wide rangeof alternative implementationsof the discreteWigner

function transportequation,which is the basisof the WFM, areavailable in SQUADS.

Theimplementationandcomparisonof thesealternativesenabledthedeterminationin this

chapterof their relative accuraciesandefficiencies.From Gaussianwave packet simula-

tions,optimalWFTE diffusionandtransienttermimplementationsweredetermined.Fur-
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ther simulations of resonanttunneling diodes showed the importance of including

scatteringin the simulation.Finally, the threeproposeddrift term implementationswere

shown to producelittle differencein the simulationresult,so that alternateforms canbe

used as desired without a large increase in simulation error.

Another importantcontribution of this chapterderives from the ratherunimpressive

comparisonbetweensimulation(bothWFM andTMM) andexperimentalI-V curvesfor

anRTD. To date,theunder-reporteddarksecretof quantumdevice simulationis that it is

not quantitatively accurate.Publicationsshow quantumdevice simulationresultswhich

look qualitatively reasonable,but which invariablymake no comparisonto measureddata

for thesamedevice.Thereasonis thatthequantitativematchis currentlyverypoor. How-

ever, unlessand until comparisonsbetweensimulationand experimentare made,there

will beno way to judgetheaccuracy of thesimulator, andno public discussionandinves-

tigationof how theaccuracy mightbeimproved.As a result,theimprovementof quantum

device simulationwould bemuchslower thannecessary. By disclosingthecurrentlimita-

tions of quantumdevice simulation beyond the few groupswho pursuethis endeavor

directly, this work shouldhelp to acceleratethe processof quantumdevice simulation

development.

Finally, in spiteof the quantitative disagreementbetweenthe WFM andTMM, both

simulationapproacheshave demonstratedtheir ability to provide qualitative insight into

quantumdevice operation.With this understanding,Chapters6-8 describethreein-depth

investigations,basedmainly on the WFM capabilitiesof SQUADS, of quantumdevice

simulation and the operation of RTDs.
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Chapter 6

Quantum Self-Consistency

Self-consistency in electronicdevice simulationmeansensuringthat the carrierden-

sity profile in the simulateddevice is consistentwith its potentialprofile, asdictatedby

Poisson’s equation.In previous simulationsin this dissertation,the potentialprofile was

approximatedby somesimple algorithm, and no attemptwas madeafter solving the

Wigner function transportequationor Schrödingerequationto assurethat the resulting

carrierprofile wasconsistentwith the assumedpotential.However, to accuratelymodel

real quantumdevices, enforcing self-consistency is essential.This chapterdetails the

implementationof self-consistency in SQUADS, anddemonstratesits significanteffecton

device operationpredictions.For two reasons,mostof this chapteris dedicatedto self-

consistency in Wigner functionmethod(WFM) simulation.First, scatteringmustalsobe

includedfor accurateself-consistentsimulations,andonly theWFM canincludescatter-

ing. Second,SQUADS implementsfour alternative implementationsof self-consistency

for the WFM, while only one of these approaches is possible with the TMM.

The organizationof this chapteris as follows. Section6.1 presentsthe background

informationnecessaryfor anunderstandingof theimplementationof quantumself-consis-

tency. The next threesections(6.2-6.4)presentthe analyticalformulationandnumerical

implementationof eachof the four WFM self-consistency approaches.Section6.5 then

simulatestheself-consistentI-V curve of anRTD asa testcaseto comparetheefficiency

(computationalcost),accuracy (ability to correctlyreproducedevice physics),androbust-

ness(reliability) of theseiteration methods.Finally, Section6.6 describesbriefly the
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implementationof self-consistency in TMM simulation,andgivesa few associatedsimu-

lation results.

6.1 Background

As describedin Chapter5, theWignerfunctionmethodof quantumdevice simulation

modelsa quantumsystemby computingthe evolution of the Wigner function

according to the Wigner function transport equation (WFTE):

. (6.1)

To enforceself-consistency in the WFM [1-5], the Poissonequation(PE) relating the

potentialprofile to the carrier densityprofile must be satisfiedsimultaneouslywith the

WFTE. In 1-D, the PE can be written:

, (6.2)

where is permittivity, is the (Hartree,or mean-field)potential, is the electronic

charge, is the free electrondensity, and is the fixed charge density (e.g., ionized

dopants). The conduction band minimum is calculated from the potential:

, (6.3)

where is the(fixed)heterostructurebandoffsetand is thepotentialusedin calcu-

lating thenon-localpotential in theWFTE. To completetheWFTE - PE interde-

pendence, the carrier density is calculated from the Wigner function using:

. (6.4)

Conceptually, aself-consistentsimulationsproceedsasfollows: thePEusesthecarrier

density profile to determinethe energy band profile of the device, and the

WFTEuses to determine(amongotherthings) . Therelationshipbetweencarrier

densityandenergy bandsis non-linear. Finding the simultaneoussolutionof the WFTE

andPE thereforerequiresiteration.Section5.4 describedthe high computationalcostof

solving the WFTE, so an n iterationsolutionof the WFTE will be n timesasexpensive.

The result is that the computationalefficiency of the WFM self-consistency iteration

methodis critically important.To investigateandcompareefficiency andotherstrengths

andweaknesses,SQUADS implementsfour basicself-consistency iterationmethodsfor
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the WFM: steady-stateGummel,transientGummel,steady-stateNewton, and transient

Newton.

Dueto thedifficulty of implementingandmaintainingmultiple self-consistency itera-

tion approachesin a numericalsimulator, mostresearchersusingtheWFM rely on a sin-

gle implementation,usually the steady-stateor transientGummel approach,in their

quantumdevice research.Testcasesimulationsin Section6.5 illustratethedangersof this

practice,andshow how to take advantageof thecomplementarystrengthsof bothsteady-

stateand transientiteration methodswhere appropriate.SQUADS’ modular structure

makes it ideally suitedto the implementationand comparisonof alternative simulation

approaches,suchasthecomparisonof self-consistency iterationmethodsin this chapter.

Only by presenting the theory, numerical implementation, and simulation examples for all

of these simulation alternatives in a cohesive framework is this comparison possible.

In selectingspecificsimulationexamplesfor thiscomparison,obviouslyonly transient

iterationmethodsaresuitablefor time-dependentinvestigations,suchasswitching,small-

signal,or large-signalsimulations.However, for the very basicelectronicdevice simula-

tion taskof tracingthecurrent-voltage(I-V) curve,steady-statemethodsarealsosuitable.

Therefore,theaccurategenerationof theI-V curve for the“prototypical” quantumdevice,

the resonanttunnelingdiode(RTD) [6-8], served asthe testcasefor evaluatingthe four

self-consistency iterationmethods.In fact, this device andsimulationtaskhave beenthe

mostcommonin the Wigner function simulationliterature.Figure6.1 shows a “typical”

measuredRTD I-V curve [7]. Somefeaturesof notein this I-V curveareanegativediffer-

entialresistanceregionandabistableregion.The“plateau”shapein thenegativedifferen-

tial resistanceregion is actually the time-averageof a very fast oscillating current.The

ability of the variousself-consistency iterationmethodsto efficiently andreliably repro-

duce these features will be the basis for their comparison.

6.2 Discretization of the Poisson Equation

To solve the WFTE - PE system,the simulationdomainmust be discretized,and,

accordingly, thesetwo equations.Detailsof WFTEdiscretizationaredescribedin Chapter

5. This sectiondescribesmostof the PE discretization,leaving only thosedetailswhich

differ betweenthe self-consistency iterationmethodsfor the following sections.The PE

hasbeendiscretizedin two waysby researchersinvestigatingtheWFTE - PEsystem:the
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direct form [9] andthedifferential(a.k.a.Newton) form [3]. Theappropriateform of PE

dependson the self-consistency iteration method,as discussedin Sections6.3 and 6.4.

Both forms are described here.

Recallfrom Chapter5 that thepositiondimensionof theWFM simulationdomainis

discretized as:

, (6.5)

where is thewidth of thesimulationregion. With this discretization,thedirectPoisson

equation can be written, for a position-dependent permittivity:1

, (6.6a)

. (6.6b)

Details of the derivation of (6.6a) are given in [10].

TheNewton form of thePEis morecomplicatedbut moreflexible. Newton equations

1. For theposition-independentpermittivity assumedin thesimulationsof Section6.5, , and
the discrete PE (in both direct and differential forms) is even simpler.

Figure 6.1: Experimental RTD I-V cur ve

ExperimentalRTD I-V curve [7] showing the characteristicnegative differential
resistanceregion andplateaustructurebetween0.8 V and1.3 V. Theplateaucur-
rent is actuallythe time-averageof a high-frequency oscillatingcurrent.[Permis-
sion to reprint data given by T.C.L.G Sollner.]
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areinherentlyiterative,seekingto find thesolutionto a non-linearsystemby successively

betterapproximations.To derive theNewton PE,first definethe“Poissonfunction” ,

which is basedonthePEandmustevaluateto 0 whentheself-consistentpotentialandcar-

rier density are supplied as input. From (6.2):

. (6.7)

In (6.7), is the iterationindex (which for transientsimulationsis alsothe time step).A

Newton iterationis a 2-stepprocess.First, the Newton PE systemof equationsis solved

for , thechange in the potential:

. (6.8)

Then the potential is updated:

. (6.9)

If the Newton iterationconvergesto the self-consistentsolution, convergesto 0,

and thereforeso will the updates, . The converged self-consistentpotential will be

denoted .

In discrete form, the Newton PE becomes:

, (6.10a)

, (6.10b)

where:

, (6.11)

, (6.12)

and is the Kronecker delta function.2 Note that is left unspecifiedfor now

sinceits valuedependson which self-consistency iterationmethodis used.It is not diffi-

cult to show [10] that the direct PE, (6.6a), is a specialcaseof the Newton PE, where

. SQUADS implementsthedirectPEusingthis specialcaseof thedifferential

2. TheKronecker deltafunction is unity whenthetwo subscriptsareequal,andzerootherwise.In
(6.12), for example,  is unity where column  equals row , and zero otherwise.
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PE.To make theadmittedlyabstractNewton PE(6.10a)a little moreconcrete,Figure6.2

shows the discrete, direct PE in differential (i.e., Newton) matrix form for .

As discussedabove,enforcingself-consistency (i.e., finding thesimultaneoussolution

of theWFTE andPE) is an iterative process.SolvingthePEwith thecarrierdensitypro-

file asinputyieldsanupdatedpotentialprofile . SolvingtheWFTEwith

this updatedpotentialproducesa new carrierprofile . However, it is oftenpossi-

ble to predict approximatelyevenwithout solvingthefull (andvery expensive)

WFTE.An inexpensively computedpredictioncouldbeusedto make closerto

theself-consistentsolution , andthusallow to be foundwith fewer iterations

(andsolutionsof theWFTE). In fact,this inexpensive predictionis exactly thepurposeof

the term.That is, the term (which shouldbe basedon a distillation of the

WFTE) providessomecorrective feedbackto achieve fasterconvergenceto theself-con-

sistentoperatingpoint. By taking , the directPE doesnot attemptto usethis
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Figure 6.2: Discrete, direct Poisson equation in matrix form

Theexampleabove assumes . Becausethe feedbacktermis zero
in the direct PE, the coefficient matrix is constant(iteration independent),so the
iterationsuperscriptis omittedfor this term.Also notethat since and are
fixed boundaryconditions, , and equationscorrespondingto
these points do not appear in the discrete PE.
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prediction, while the Newton PE does, with .

An unresolved issueis what shouldbe usedfor the initial potentialprofile in the

first solutionof theNewton PEandtheWFTE at eachbiaspoint in an I-V curve simula-

tion. For steady-stateI-V curve simulations,SQUADS useslinear extrapolationfrom

at theprevioustwo biaspoints.3 TransientI-V curve tracingis onecontinuoussim-

ulation,so thefinal potentialprofile at onebiaspoint is usedto compute at the

next. In particular, when the bias is incrementedin a transientsimulation,the potential

profile is incremented linearly across the entire device (see Section 7.1).4

Thecombinationof theWFTE andPE,whendiscretizedfor numericalsolution,con-

stitutesa non-linearsystemof equations.The self-consistency iterationmethodsoffer a

meansof solving this non-linearsystem(which can’t be solved directly) by iteratively

solving a setof linear equations(which can be solved directly). The following two sec-

tionsdetail theremainderof thenumericalimplementationof four self-consistency itera-

tion methodsfor theWFTE - PEsystem.Becausethemathematicsof thesteady-stateand

transientapproachesof eachmethod(Gummelor Newton) aresimilar, the two Gummel

approachesaredescribedtogetherin Section6.3,andthetwo Newton approachesin Sec-

tion 6.4.However, tracingtheself-consistentoperatingpointsalongtheI-V curve, which

taskhasbeenchosenfor this iterationmethodcomparison,is very differentfor the tran-

sientandsteady-stateapproaches.Thesteady-stateapproachestry to locatetheself-con-

sistentoperatingpoint in asfew iterationsaspossible,while thetransientapproachesseek

to follow theactualtime-dependentoperationof thedeviceuntil it evolvesto steady-state.

Therefore,whenrunningsimulations,theconversepairingis moreappropriate,soin Sec-

tion 6.5 the two steady-statemethodsareconsideredtogetherfollowed by the two tran-

sient methods.

6.3 Gummel (Plug-in) Approach

The Gummel (a.k.a. plug-in) approach[11] to solving the WFTE - PE systemis

almostuniversallyusedto addself-consistency to theWFTE.This is dueto thesimplicity

of theGummelapproach,sincethe two equationsaresolved independently[12], andthe

3. At thefirst biaspoint, linearbandbendingis used,andat thesecond,a linearpotentialis added
to  at the first bias point.
4. Again, linear band bending is used to initialize the potential profile at the first bias point.
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PEis numericallymuchsimplerto implementandsolve thantheWFTE. For thesteady-

stateGummelmethod[2, 3], thesteady-stateWFTE andthePEareiteratively andalter-

natelysolved,plugging-inoneequation’ssolutionasinput for theother. WhentheWigner

functionandpotentialstopchanging(within specifiedconvergencecriteria),theself-con-

sistentoperatingpoint hasbeenreached.For the transientGummelmethod[1, 13] the

only mathematicaldifferenceis thatthetransientWFTE is used,sothateachiterationis a

timestep.Thatis, onealternatelytime-stepstheWFTEandupdatesthepotentialusingthe

PE until steady-stateoperationis reached(again, within specifiedconvergencecriteria).

The transientGummel iteration is initiated by solving the WFTE once in steady-state

mode.

Now considerwhetherthe direct or Newton form of the PE (i.e., zero or non-zero

termin (6.12))shouldbeusedfor thesteady-stateandtransientGummeliteration

methods.Test simulationsshowed that a steady-stateGummel iteration often diverges

(consecutive Wigner functionand solutionsoscillatewildly) unlesssomecorrective

feedbackis suppliedthrougha non-zero . Thus,the Newton PE mustbe usedfor

thesteady-stateGummelmethod.In general,thereis noexact,closed-formexpressionfor

for a quantumsystem.This is why theWFTE is solved- it accountsfor quantum

effectssuchastunnelingandreflection,alongwith non-equilibriumcarrier transport,to

relatethe energy bandsto carrier concentration.So, an approximateform for is

soughtthatis easyto computebut still producesself-consistency convergence.To thisend,

SQUADS usesthe classical,equilibrium expressionfor . Any justificationfor the

choiceof mustbebasedon thetransportequation.In this case,theboundarycon-

ditionson theWFTE supplycarriersto thedevice accordingto theclassicalrelationship,

eventhoughquantumprocessesandnon-equilibriumtransportwill distortthis relationship

as the distancefrom the contactsincreases.Also, scattering(usually included in the

WFTE in self-consistent simulation) tends to produce the classical result.

Thestandardapproach(cf. [3]) in deriving is to assumeequilibrium,classical

Maxwell-Boltzmann statistics:

, (6.13)

. (6.14)

Underthis assumption,the carrierdensity at a given position dependsonly on the

c u∂⁄∂

u x( )

c u∂⁄∂

c u∂⁄∂

c u∂⁄∂

c u∂⁄∂

c u∂⁄∂

c u∂⁄∂

c u( ) Ncexp u u0–( ) kBT( )⁄[ ]=

u∂
∂c c u( )

kBT
---------=

ci xi



6.3. Gummel (Plug-in) Approach 173

potential  at the same point. Thus, the discrete form of (6.14) is:

. (6.15)

In otherwords,the termin (6.12)only modifiesthemaindiagonalelementsin the

coefficient matrix of Figure 6.2. Using (6.15) as the feedbackterm in the Newton PE

results in relatively slow but reliable convergence to the self-consistent operating point.

Note that the boundaryconditionsin (5.6a)and (5.6b) for the WFTE are basedon

Fermi-Diracstatistics,not Maxwell-Boltzmannstatistics.Test simulationsshowed that

usingFermi-Diracstatisticsto derive cansignificantlyacceleratetheconvergence

speedof thesteady-stateGummelmethod.SQUADS usestheJoyce-Dixonapproximation

[14] to relate and accordingto Fermi-Diracstatistics.To determine , we write

, derive , and invert. Thus:

, (6.16)

, (6.17)

, (6.18)

. (6.19)

Although the term in (6.19) is morecomplicatedthanthat in (6.15), it still only

modifies the main diagonal elements in the Newton PE coefficient matrix of Figure 6.2.

Test simulationsalso showed that using Joyce-Dixon termsabove doesnot

improve convergencespeed.In fact, in caseswhere for oneor morepositionnodes

, includinghigherordertermsmayrenderthesteady-stateGummelmethodnon-conver-

gent.Therefore,SQUADS usesathird-orderJoyce-Dixonapproximationby default. If the

iterates arenot converging towards0, the iterationdropsbackto Maxwell-Boltzmann

statistics(zeroth-orderJoyce-Dixonapproximation)until progresstowardsconvergenceis

maintainedfor several iterations. The algorithm by which the Joyce-Dixon order is

dynamically chosento accelerateconvergenceof the steady-stateGummel methodin

SQUADS is now rathercomplicated,beingbasedmoreon experiencethantheory. Only

thestandard(i.e., Maxwell-Boltzmann)form of hasbeenusedin previoussteady-

stateGummeliterationsof theWFTE - PE system.Section6.5.5shows that theacceler-
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atedconvergencealgorithmdescribedabove greatlydecreasesthe computationalcostof

the steady-state Gummel iteration method.

In contrastto thesteady-stateGummelmethod,thetransientGummelmethodseeksto

follow theexactevolutionof thedevice.Sincethereis noclosedform for in agen-

eralquantumsystem,andbecausetheapproximationstypically used(suchasthoseused

with the steady-stateGummelmethod)areonly heuristicallycorrect,using them in the

transientGummelmethodis morelikely to createphysicsthanto modelit. To avoid this,

the direct PE ( ) mustbe used.For the transientGummelmethod,then,each

iterationstartswith the exact potentialprofile for the carrierdensityat the currenttime

point, thesystemis evolvedonetime stepwith thetransientWFTE,andthenthepotential

is adjustedfor thenew (but only slightly different)carrierdensity. Theresultsof particular

transient and steady-state Gummel simulations are presented in Section 6.5.

6.4 Full Newton Approach

With theGummelapproachto solving theWFTE - PEsystem,two independent(i.e.,

uncoupled)setsof linearequationsarealternatelysolved,onederivedfrom theWFTEand

resultingin an updatedWigner function,andthe secondderived from PE andproducing

an updatedpotential.With the full Newton formulation [15], a combined(i.e., coupled)

WFTE - PE linear systemis solved to producesimultaneousupdatesof both the Wigner

functionandpotential.Theadvantageof the full Newton approachis thatchangesin one

solutiondirectly affect theoutcomeof theother, sothecorrective feedbackthathadto be

approximatedin thesteady-stateGummelmethodis inherentin theNewton formulation.

This tendsto producemuchfasterconvergencewith a steady-stateNewton methodthan

with the steady-stateGummelmethod.Like the transientGummelmethod,the transient

Newtonmethodseeksto follow theexactevolutionof thequantumsystem,soit evolvesto

thesteady-stateoperatingpoint only asquickly asa realdevice would.However, thetran-

sientNewton methodshouldbemoreaccuratethanthetransientGummelmethod,though

by how much is not yet clear.

Useof theNewton formulationfor quantumself-consistency [16] requiresthedefini-

tion of aWFTEfunction , analogousto thePEfunctiondefinedin (6.7).For thispur-

pose, simply use (5.29):

. (6.20)
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The Newton formulation for the WFTE - PE system solves the following system:

, (6.21)

wherethe left-mostmatrix is theJacobianand is thePoissonfunctiondefinedin (6.7).

After each solution of (6.21), the unknowns are updated as:

, (6.22a)

. (6.22b)

As with theGummeliterationmethods,convergencetowardsthesteady-state,self-consis-

tent operatingpoint with the Newton iterationmethodsis determinedby monitoringthe

progress of the Poisson function  and update  iterates towards 0.

Theupdatescalingfactors and in (6.22a)and(6.22b)areusedonly for thesteady-

stateNewtonmethod.BecausethetransientNewtonmethodattemptsto exactly follow the

transientoperationof the device, one must not modify the updatesthat are computed.

Even for the steady-stateNewton method,theseupdatefactorsare ideally unity, though

they canbe reducedto somefraction whenthe iteratesarenot converging. Frensley [4]

used and . However, for the simulationsreportedherein, in the few

caseswhenthesteady-stateNewton methodcouldnot locatetheself-consistentoperating

point, reducing and did not help,andin fact usuallymadeconvergencelesslikely.

Thus,thesimulationsin this work alwaysused . Instead,whereconvergence

wasnot occurringwith the steady-stateNewton method,SQUADS usesthe steady-state

Gummelmethoduntil the iteration begins converging again. Finally, sincethe Newton

updatein (6.22a)requiresa Wigner function to updatefrom, both steady-stateandtran-

sientNewton simulationsbegin with a singlesteady-stateGummelsolutionof theWFTE.

Initialization of the potential profile was discussed in Section 6.2.

Thefull Newtonequation(6.21)mustbediscretizedfor numericalsolution.In discrete

form (6.21) is:
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. (6.23)

Expressionsfor and weregivenin Section6.2.TheJacobianblockshaveyet

to be determined.Actually, the Jacobianblock for is identical to the coefficient

matrix usedfor theWFTE solutionof a Gummeliteration,althoughtheunknowns in the

Newton formulationare insteadof . Theonly differencebetweentheGum-

mel WFTE coefficient matrix andtheNewton Jacobianblock is thattermswhich

becomeboundaryconditionswith theGummelformulationarezerowith theNewton for-

mulation,since is zero.Thus,thesetermsdonotappearin theright-hand-sidevector

as in the Gummel methods.

The Jacobianblock is alsoslightly different thanthe PE coefficientsusedin

theGummelformulation.In particular, with theNewton formulation,thereis no needto

approximatethe effect of the changein potential on the carrier concentrationthrough

. This relationship is taken care of exactly through the off-diagonal Jacobian

blocks. The  block is therefore the same as that used for the direct PE:

. (6.24)

The more interestingJacobianblocks in this caseare the off-diagonalones,if only

becauseexpressionsfor thesehave (to our knowledge)never beenpublished,although

Frensley hasusedthe steady-stateNewton methodto solve the WFTE - PE system[4].

The block is somewhat complicated,dueto the convolutedway in which the

enterinto the computationof the non-localpotential,asshown in (5.40).Note from the

relationship between the band edge and the potential energy  in (6.3) that

. (6.25)

After some effort [10], the  Jacobian block is:

, (6.26a)

. (6.26b)
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TheJacobianblock for is muchsimpler. Recallingfrom (6.4)how carriercon-

centration is calculated,and using the definition of the discretePoissonfunction in

(6.11):

. (6.27)

Combiningall of theseresults,Figure6.3givesanexampleof thestructureandsizeof

thediscretefull Newtonequationfor . Sincethe Jacobianblock is

identical in the GummelandNewton formulations,andbecausethis block is by far the

largestin theJacobianmatrix,onemightexpectthatsolvingtheWFTE- PEsystemby the

two approachesshouldrequireroughly thesamestorageandCPUtime. This is not at all

the case,especiallyin SQUADS, wherethe storageand solution of the discreteWFTE

(andthusthe Jacobianblock) have beenhighly optimized.The result is that the

Newton formulationrequirestypically twice thestorageandfive timesasmuchCPUtime

per loop asthe Gummelformulation.Performancedataarepresentedin the next section

for all self-consistency iteration methods along with simulation results.

6.5 Results and Discussion

6.5.1 Simulated Device and Parameters

Simulationsin this chapter(andChapters7 and8) usethe RTD device structureand

simulationparametersof JensenandBuot [9] asa testcase.ThesimulatedRTD, depicted

in Figure6.4atequilibrium,is composedof a5 nmundopedGaAsquantumwell between

3 nm undopedAl0.3Ga0.7As tunnelbarriersand3 nm undopedGaAsspacerlayers.The

GaAscontactlayersare19 nm each,giving a total device width of nm.Theelec-

tron effective massis assumedconstantat 0.0667 , andthepermittivity is alsotakenas

constantat 12.9 . Finally, thesesimulationsassumed , , fs,

and  fs [17] at  K.

6.5.2 Convergence Criteria

The choiceof convergencecriteria for the WFTE - PE iterationpresentsa dilemma:

too looseof criteria andthe predictedself-consistentoperatingpoint is not trustworthy;

too tight andthenumberof iterationsrequiredfor convergencemayrisedramatically. This
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work errson thesideof too muchcomputationratherthantoo little: convergencecriteria

were relatively strict.

For steady-statesimulationsthe properconvergencecriterion is simply to verify that

the (direct) Poisson equation is satisfied to a high degree. These simulations required that:

. (6.28)

This convergencecriteria,althoughnecessary, is not sufficient in all cases.To assurethat

consecutive solutionsarenot oscillatory, andfor steady-stateNewton simulationswhere

is alwaysverysmall(if updateconstant is unity), it is alsonecessaryto requirethat

the potential update at any point be very small:

. (6.29)

Theserelatively strict convergencecriteriaarefeasiblefor thesteady-stateiterationmeth-

odsbecauseconvergencetendsto bevery fast.Someresearchers[3] haveusedcriterialike

(6.29)astheir only indicationof self-consistency, but this is not sufficient. It is possible,
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especially with an approximateiteration method such as the steady-stateGummel

approach,for the potentialupdatesto be small without actuallyhaving reachedthe self-

consistent solution.

Theconvergencecriteria in (6.28)and(6.29)arealsoenforcedfor the transientitera-

tion simulationsin this work, but they are inadequateto guaranteethat the steady-state,

self-consistentoperatingpointhasbeenreached.The criterionis notespeciallyreveal-

ing in a transientsimulationbecauseof theapproximateproportionalityof to thetime

step, . [A small time stepgives little time for carriersto move, resultingin a corre-

spondinglysmall changein the potential.] Also, becausetransientsimulationstend to

oscillatearoundthe steady-stateoperatingpoint as they relax towardsit, satisfyingthe

criteriondoesnotguaranteethatasimulationhasreachedsteady-state.A moredefin-

itive convergencecriterion for transientsimulations,alsousedby JensenandBuot [5], is

basedon the fact that thediscretecurrentdensityfor theWFTE is definedsuchthat it is

position-independentatsteady-state,asdiscussedin [10]. Thus,aWFTEtransientsimula-

tion canbesaidto have reachedsteady-statewhenthevariationin currentdensity over

Figure 6.4: GaAs RTD used in self-consistency simulations

Shown aretheequilibriumself-consistentconductionband,Fermilevels,anddop-
ing. The0.3 eV Al0.3Ga0.7As tunnelbarriersare3 nm thick, andtheGaAsquan-
tum well width is 5 nm. The center17 nm of the device (including 3 nm outside
each tunnel barrier) are undoped.
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thewidth of thedevicedropsbelow somerelatively smallvalue.In thiswork, currentden-

sitieswereon theorderof 105 A/cm2, sothefinal transientsimulationconvergencecrite-

rion is:

. (6.30)

This criterion is lessstrict thanonemight prefer, but tighteningit resultsin excessively

long simulationtimes.When (6.30) is satisfiedin a transientsimulation,a steady-state

simulationusingthefinal potentialprofile usuallydiffersfrom theactualsteady-statecur-

rentdensityby lessthan . Therefore,whenit is necessaryto verify controversial

transientsimulationresultsin this work, transientsimulationswill be run in which all

three convergence criteria are several orders of magnitude tighter.

6.5.3 Steady-State Iteration Method Simulations

Onepurposeof this chapteris to examinewhenthe(physically-based)transientitera-

tion methodsarerequiredto accuratelyreproducetheoperationof anRTD, andwhenthe

computationallymore efficient steady-stateiteration methodsmay be used. The test

device for this work wasselectedbecauseof the very interestingI-V curve simulatedby

JensenandBuot [5], who usedthe transientGummelmethodto implementself-consis-

tency. Their simulationsproducedanI-V curve similar in shapeto theexperimentalcurve

in Figure6.1(althoughfor a differentRTD). In fact,they evenobservedpersistentcurrent

oscillationsfor all biasesin theplateauregionof theI-V curve,concludingthat[5] “intrin-

sicoscillationshaveadominantinfluenceon theplateaulikestructureandhysteresisin the

I-V characteristics.” Subsequentwork by Buot andRajagopal[18, 19] describedthephys-

ics behind this behavior.

Basedon theresultsobtainedby JensenandBuot, it wasnotclearthatthesteady-state

GummelandNewton iterationmethodsimulationswould converge in theplateauregion,

sincepersistentoscillationsindicatethat no stable,self-consistentoperatingpoint exists.

Althoughunstableequilibriumpointsshouldexist in this region,anotherwiseconvergent

steady-stateiterationmethodcouldberenderednon-convergent.In fact,both theacceler-

atedGummelandthe Newton simulationswereunableto converge at somechallenging

points in the plateau.However, by automaticallyusing the standardGummel iteration

methodin thesecases,thesteady-stateiterationmethodsdid find self-consistentoperating

pointsover theentiresimulatedbiasrange.TheresultingI-V curve (Figure6.5)wasvery

δJ Jmax Jmin–( ) 1000A/cm
2<≡

10A/cm
2
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similar to thatof JensenandBuot (alsoshown), andidenticalfor thetwo steady-stateiter-

ationmethods.Thehysteresisloop in theI-V curverequiredthesimulationof boththeup-

trace (0.0 V to 0.4 V) and the down-trace (0.4 V to 0.0 V).

It seemscontradictorythat thesteady-stateiterationmethodsfoundsteady-stateoper-

atingpointsin theplateau(0.24V to 0.31V on theup-traceand0.25V to 0.24V on the

down-trace),while the transientsimulation of Jensenand Buot did not. One possible

explanationis that theseoscillations,althoughpersistent,are not perpetual.Jensenand

Buot’s conclusionthat oscillationsarerequiredfor the plateauto occurseemto rule this

out. If the oscillationsareperpetual,the simultaneousWFTE andPE solutionsfound by

the steady-stateiteration methodsmust be unstableequilibrium operatingpoints.Thus,

given any impulseor even numericalnoise,a systempreparedaccordingto the steady-

statesolutionwill begin to oscillatein a transientsimulation.Determiningwhetheroneor

both of theseexplanationsarecorrectcanonly be accomplishedwith transientiteration

simulations, which are described in the following section.

Beforemoving on to transientsimulations,oneconclusioncanalreadybedrawn based

Figure 6.5: Steady-state simulated RTD I-V cur ve

Both Gummel and Newton steady-stateself-consistency iteration methodsare
shown. JensenandBuot’s up-trace[5] (wheredifferent)anda non-self-consistent
(linearpotential)I-V curve areshown for comparison.[Permissionto reprintdata
given by K. L. Jensen.]
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on the RTD I-V curves in Figure6.5. Also shown in Figure6.5 is a non-self-consistent

simulatedI-V curve for theRTD of Figure6.4.This simulationassumeda linearpotential

dropacrosstheundoped(central)regionof theRTD, andthereforedid not requiresolution

of thePE,andonly asingleWFTEsolutionperbiaspoint.ComparingthesesimulatedI-V

curveswith theexperimentalonein Figure6.1 (for a differentRTD structure),it is clear

that althoughthe linear potentialsimulationwas able to predict a negative differential

resistanceregion, thatis aboutthelimit of its usefulness.On theotherhand,thesimilarity

betweenthesimulatedself-consistentI-V curve theexperimentalcurve clearlyshows that

enforcingself-consistency is necessaryto reproducesomeof the salientphysicsof real

RTDs.Theopenquestionat this point is whetherthecomputationallyexpensive transient

iteration methods can add any further detail.

6.5.4 Transient Iteration Method Simulations

To compareself-consistency iterationmethods,andnow to investigate the natureof

theplateauoperatingpoints,thetransientGummeliterationmethodwasusedto simulate

the I-V curve of the RTD in Figure6.4 over the samebiasrangeasfor the steady-state

simulations.A maximumof 4,000iterations(4 ps)perbiaspoint wasallowed.If thetran-

sientsimulationdid not convergein this time (e.g., dueto sustainedoscillations),thesim-

ulation moved to the next bias point anyway. Surprisingly, although the current

oscillationsobserved by JensenandBuot did occurin the plateauregion, the simulation

convergedfor all biaspointsexceptthefirst threein theplateau(0.24V, 0.25V, and0.26

V). Further, the resultingI-V curve (exceptfor thosethreepoints)wasindistinguishable

from the steady-statecurve, asonewould expect(assumingthe convergencecriteria are

strict enough).

The oscillationsin the plateauregion were progressively more persistentat lower

biases.Whereasonly 1,300iterationswererequiredto reachconvergenceat 0.31V, fully

3,800iterationswererequiredat 0.27V. The0.26V biaspoint wasapparentlyon course

to convergenceat 4,000iterations.Indeed,further evolution resultedin full convergence

after a total of 7,008iterations.To demonstratetheseoscillations,Figure6.6 shows the

completeplot of collectorcurrentversustime at 0.26V on theup-trace.Both theoscilla-

tion amplitudeandtheconvergencecriteriadecreasedvery regularlyover thecourseof the

simulation, with a decay constant of 0.2/ps. For example, for the oscillation amplitude:
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. (6.31)

Although the ultimate fatesof the remainingpoints,0.24 V and 0.25 V on both curve

traces,wereinconclusive after 4,000iterations,extrapolationfrom the resultsandtrends

for the otherplateaupointssuggestedthat their oscillationswould simply be even more

persistent, but not perpetual.

TheexpectationthatthetransientRTD simulationwould eventuallyreachsteady-state

for 0.24V and0.25V turnedout to be incorrect.Furtherevolution (in eithercurve-trace

direction)led to oscillationsof constantamplitudeby about8,000iterationsatbothbiases.

For example,Figure6.7showsthetransientcurrentat0.24V ontheup-trace.Thesesimu-

lationswereallowed to run for several thousandmoreiterationsto make certainthat the

oscillationswerenot slowly decreasing,ashadbeenexpected.Dataon the final oscilla-

tions at these two points (independent of the trace direction) are given in Table 6.1.

One additionaltest was employed to assurethat the 0.24 V and 0.25 V bias points

wereunstable.As suggestedin the previous section,transientGummelsimulationswere

run startingfrom thefully-convergedsteady-stateGummelsolutionat 0.24V and0.25V.

Now the expectationwas that the simulationswould diverge (i.e., oscillationamplitude

A t( ) 0.8
5×10 e

0.2t 1ps⁄( )–
A/cm2≈

Figure 6.6: Damped oscillatory current in quasi-stable plateau region

Shown is the simulatedtransientcollectorcurrentasRTD evolvesto steady-state
after switching from 0.25 V to 0.26 V, showing that the RTD is stable at this bias.
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would increase).This wasindeedtheresult.Thecollectorcurrentversustime for the0.24

V simulationis shown in Figure6.8. The result for 0.25V wassimilar. Divergencewas

very regular, with adecayconstantof -0.4/psat0.24V and-0.2/psat0.25V. For theoscil-

lation amplitude at 0.24 V:

Figure 6.7: Unstable operation in NDR region of plateau

Simulatedtransientcollectorcurrentafterswitchingfrom 0.23V to 0.24V, show-
ing sustained oscillations.
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Oscillation Parameter 0.24 V 0.25 V

Amplitude (105 A/cm2) 1.98 1.08

Period (ps) 0.413 0.374

Frequency (THz) 2.42 2.67

Time-average (105 A/cm2) 4.18 4.06

Steady-state current (105 A/cm2) 4.50 4.10

Table 6.1: Oscillation statistics for unstable operation

Collectorcurrentfinal oscillationdata(after10 ps)at appliedbiasesof 0.24V and
0.25V. Currentdensityfrom thesteady-statesimulationsis appendedfor compari-
son.
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. (6.32)

Of course,the oscillationamplitudewill be bounded,just asit wasin Figure6.7. These

resultsprove that this RTD is inherentlyunstableat thesebiases.To modelthis behavior,

BuotandJensendescribeanequivalentcircuit modelfor theRTD [20] thatreproducesthe

bounded instability depicted in Figures 6.7 and 6.8.

The resultsat 0.24 V and 0.25 V call into questionthe conclusionabove that the

remainderof theplateauis stable.Theconvergencecriterionin (6.30)is perhapsnot strict

enoughto justify this conclusion.In particular, it leavesopenthepossibility that theRTD

might oscillateperpetuallywith anamplitudeof lessthan . To verify that the

upperportion(0.26V - 0.31V) of theplateauis stable,simulationswererun at thelower

end(0.26V), middle(0.29V), andtop (0.31V) of this region with four ordersof magni-

tudestricterconvergencecriteria.Most importantly, thecurrentvariation wasrequired

to belessthan for convergence.Throughoutthesesimulations,theoscillations

continuedto decayregularly at all three bias points, reachingconvergenceat 27,906,

10,424,and7,522iterationsrespectively. To illustrate,Figure6.9shows a plot of thecur-

A t( ) 6.31e
0.4t 1ps⁄( )

A/cm2≈

Figure 6.8: Unstable RTD diverging from steady-state

Simulatedtransientcollectorcurrentstartingfrom a fully-convergedsteady-state
Gummeliterationsimulationat 0.24 V, showing that the RTD is unstableat this
bias.
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rent variation versus time for the 0.26 V simulation.

Basedontheabovetransientsimulations,theplateauin thesimulatedRTD’s I-V curve

is composedof two parts:anunstableregion(0.24V - 0.25V) in whichtheRTD oscillates

forever, anda stableregion (0.26V - 0.31V) wherepersistentoscillationseventuallydie

out. Actually, theseregionsaresimply theresultof a monotonicincreasein theexponen-

tial decayconstant[see(6.31)and(6.32)] from -0.4/psat 0.24V, through0 at about0.255

V, andup to about0.67/psat 0.31V. The unstableregion agreeswith JensenandBuot’s

resultsshowing perpetualoscillationsin the plateau,while the stableregion contradicts

their conclusionthat theseoscillationspersistthroughouttheplateauandarerequiredfor

theplateauto occur. In fact,theseoscillationshave only a minor effect on thevalueof the

I-V curve in the unstableregion of the plateau(seeTable6.1), andno effect at all else-

where.Furtheranalysisof JensenandBuot’swork [5] suggeststhattheir incorrectconclu-

sions resultedfrom the prematureterminationof transientsimulations,the use of an

accelerated convergence technique, or both.

The above discussionof transientself-consistency simulationsdid not mention the

Figure 6.9: Curr ent variation vs. time for marginally-stable operation

Currentvariationversustime afterswitchingfrom 0.25V to 0.26V. is thecur-
rentvariationand is theconvergencecriterionof . Thesimulation
convergesregularly, showing that theRTD is stableat this bias.Thespikesin the
curve are due to the decaying oscillations.
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transientNewton iterationmethod.In fact,only partial I-V curve traces(5 - 10 pointsin

either direction and someplateauregion points) were run using this iteration method.

Thesesimulationsshowed that the RTD evolved almost identically with the transient

Newton methodas with the transientGummelmethod.For example,Figure 6.10 com-

paresthecollectorcurrentfrom the I-V curve simulationsat 0.06V for the two transient

iterationmethods.AlthoughthetransientNewtonmethodsometimesconvergedafew iter-

ationsfaster, for the biaspoint shown in Figure6.10,the transientGummelandNewton

methods converged in exactly the same number of iterations (629).

From theseobservations,it wasapparentthat performinga full I-V curve tracewith

the transientNewton methodwould provide no additionalinformation.Thus,althoughin

theory the transient Newton approachis more accuratethan the transient Gummel

approach,for the relatively small time stepusedhere,the improvementin accuracy was

found to beequallysmall.The transientNewton I-V curve simulationwasalsonot com-

pletedbecauseit would have requiredanunreasonableamountof CPUtime,asdiscussed

in the following section.

Figure 6.10: Comparison of transient Gummel and Newton results

Simulatedcollector current for transientGummeland Newton iteration method
simulationsafterswitchingfrom 0.05V to 0.06V. This indicatesthattheGummel
approachis effectively asaccurateat theNewton approachfor thechosensimula-
tion parameters.
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6.5.5 Computational Efficiency

The simulationsin Sections6.5.3 and 6.5.4 showed that essentiallyidentical I-V

curvesareproducedfor theRTD in Figure6.4by all four self-consistency iterationmeth-

ods.It is reasonablein suchacaseto usethemostefficient iterationmethod.Thus,therel-

ative efficienciesof the iterationmethodsis anotherimportantpoint of comparison.As

onecansurmisefrom theforegoingdiscussions,thecomputationalcostsof thefour itera-

tion methodsarevastlydisparate.Thenumberof WFTE solvesandtotal CPUtime used

by eachof theiterationmethodsfor the2-traceI-V curve is summarizedin Table6.2.Data

for the non-self-consistentsimulationshown in Figure6.5 is alsogiven for comparison.

Also includedaredatafor thestandardsteady-stateGummelimplementation(seeSection

6.3), for comparison to the accelerated implementation used in this work.

Somenotesregardingthedatain Table6.2 arein order. Thecurrentwassimulatedat

0.01V biasincrementsin bothdirectionsover therange0.0 to 0.4 V, giving a total of 82

bias points plus the equilibrium solution neededfor scatteringcalculations.The 140

steady-stateGummeliterationsdoneduringthecourseof thesteady-stateNewtonsimula-

tion werea resultof theNewtonmethod’s inability in somecasesto locatetheself-consis-

Simulation Type
(Iteration Method)

WFTE Solves
(i.e., Iterations)

CPU time
(hours)

Linear (non-self-consistent) 84 0.28

Steady-state Gummel (std) 4,300 14.3

Steady-state Gummel (acc) 1,450 5.0

Steady-state Newton 410N + 140G 7.2

Transient Gummel 96,500 330

Transient Newton ~96,500 ~1,650

Table 6.2: Computational cost of self-consistency methods

Numberof WFTE solvesandtotal CPUtime requiredfor 2-traceI-V curve simu-
lation for eachself-consistency iterationmethod.Datais given for both the stan-
dardandacceleratedsteady-stateGummelapproaches.The steady-stateNewton
simulationrequiredseveral Gummelloops in somedifficult cases.The transient
Newton data is estimated. CPU times are for a DEC Alpha 3000/300 LX.
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tent operatingpoint as it enteredor exited the plateauregion. The transientsimulations

used100 fs biasslewing (ratherthanchangingthe appliedbias in a singletime step)to

mitigatethe“shock” of biaschangesandthusto minimizeconvergencetime.Thetransient

simulationsfurtherassumethatthefour oscillatingoperatingpoints(0.24V and0.25V in

bothtracedirections)wereterminatedat 8,000iterations,while all otherbiaspointswere

run to full convergence.Sincea completetransientNewton I-V curve simulationwasnot

conducted,thedatain Table6.2for this iterationmethodareestimates,but shouldbevery

close, based on the arguments at the end of the previous section.

Notethatthesimulationsfor this work werecarriedout on severalplatforms.TheI-V

curvesfor whichdatais reportedin Table6.2wereproducedon independentprocessorsof

anSGIChallengeXL computerandonDECAlpha3000/300LXworkstations.Theseplat-

formswereroughlyequivalentin performance,requiringabout12CPUsecondsperGum-

mel loop and60 secondsperNewton loop. A CrayC-90supercomputerwasusedfor the

longer, single-biasinvestigations(e.g., the detailedinvestigationsat 0.24V and0.25V).

The Cray required only 1.05 CPU seconds per Gummel loop.

Severalfactorsdeterminetherelativecomputationalcostsof theself-consistency itera-

tion methods.Consideringjust the steady-stateGummelsimulations,the importanceof

usingthe acceleratedconvergenceimplementation(seeSection6.3) is clear. In fact, the

CPUtime advantageof usingFermi-Diracstatisticsis oftenevenmoredramaticthanthe

roughly 3:1 ratio shown in Table6.2. Outsidethe plateauregion, the averagenumberof

iterationsrequiredfor convergenceto the self-consistentsolutionwas41 usingthe stan-

dardapproach,but only 7 usingtheacceleratedapproach.However, for all iterationmeth-

ods,mostof the iterationstook placein thechallengingplateauregion of the I-V curve.5

For the acceleratedGummelsimulation, locating operatingpoints in the plateauoften

requireddroppingbackto themorereliablestandardapproach.Theresultwasonly a2.2:1

advantagein CPU time over the standardapproachin the plateauregion. With its faster

convergence,theadvantageof theacceleratedGummelimplementationincreasesascon-

vergence criteria become more strict.

A moregeneralfactorinfluencingthe relative computationalcostsof the self-consis-

tency iterationmethodsis themuchgreaterCPUtime requiredfor a Newton loop thana

Gummelloop. In this work, theratio was5:1. In spiteof this, thefull steady-stateNewton

5. One result of this was that the up-trace always took more CPU time than the down-trace.
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simulationrequiredonly 44% moreCPU time thanthe acceleratedsteady-stateGummel

simulation,andonly half thetime of thestandardGummelsimulation.This recoupby the

steady-stateNewton methodwasa resultof yet anotherfactorin theefficiency equation:

the Newton method’s more sophisticatedsolution updatealgorithm (seeSection6.4),

meaningthat fewer iterationswererequiredfor convergence.In spiteof thestrict conver-

gencecriteria used,asidefrom the plateauregion, almostall biaspointsrequiredonly 3

steady-state Newton iterations to meet these criteria.6 Again, the faster convergence of the

steady-stateNewton approachimprovesits favorability in comparisonto thesteady-state

Gummel approach as convergence criteria become more strict.

By far the most significantfactor in the computationalcostequationis whetherthe

iterationmethodusesthe steady-stateor transientapproachto finding the self-consistent

operatingpoint. The mathematicaldescriptions,andthus the CPU time per iteration,of

thesteady-stateandtransientmethodsarevery similar for eachformulation(Gummelor

Newton).However, Table6.2shows thatthetransientiterationmethodsrequireroughly2

ordersof magnitudemore iterations(on average)than the steady-statemethodsto con-

verge to theself-consistentoperatingpoint. Thereasonfor thehugedifferenceis that the

transientiterationmethodsattemptto follow theexactevolution of thedevice asit relaxes

towardssteady-stateaftera biaschange,sothey musttake aslong (in simulationtime) as

a real device would to reachsteady-state.Becauseof the extremecomputationalcostof

thetransientiterationmethod,to completethetransientGummelsimulationin anaccept-

ableamountof real time,severalsectionsof eachtracewereexecutedconcurrently, using

a steady-stateGummel-converged solution for the initial condition (except for the two

points on each trace which did not converge).

6.5.6 Discussion

This sectiondiscussesthestrengthsandweaknesses,in termsof efficiency, accuracy,

and robustness,of the four self-consistency iteration methodsconsideredin this work.

From previous sections,the obvious strengthof the steady-statemethodsis their relative

computationalefficiency. And ashasalsobeenstated,the main strengthof the transient

methodsis their direct physical basis,andtheir resulting“exact” adherenceto the time-

6. Therelatively few numberof iterationsrequiredby bothsteady-stateiterationmethodswasmade
possible by the initialization algorithm for , as discussed in Section 6.2.u

0
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dependentoperationof the device being simulated.Theseare clearly complementary

strengths,so that both the steady-stateandtransientapproacheshave importantuses.In

particular, asteady-stateiterationmethodis recommendedfor wide-ranginginitial investi-

gations(e.g., to tracethe I-V curve), therebygaining the insight necessaryto narrow the

focusof amoredetailedinvestigationwheretransienteffectsareinherent(e.g.,switching)

or suspected(e.g., oscillations). Strangely, the literature is roughly equally divided

betweenuseof transientandsteady-stateGummelapproaches,with apparentlyno group

simultaneouslyusing the information and advantagesprovided by both. Hopefully this

work will help to end that unnecessary exclusivity.

If a main strengthof the steady-statemethodsis their relative efficiency, their main

short-coming,at leastin somecases,is accuracy. Theinability of thesteady-stateiteration

methodsto show thetransientoscillationspredictedby thetransientiterationmethodswas

to beexpected:only transientsimulationscanmodeltime-dependenteffects.Much more

of a concernwasthefactthatthesteady-statemethodsofferedno concreteindicationthat

an unstableoperatingcondition existed, and thus that a transientsimulationshouldbe

used.For thesimulationsin this work, if oscillationshadn’t beenexpectedin theplateau,

onecouldeasilyhave assumedthatthesteady-statesimulationstold theentirestoryabout

this RTD’s I-V curve. Admittedly, theactualI-V curve wasonly slightly differentat two

points, but the physics underlying those small differences was quite important.

Another short-comingof the steady-stateiteration methodsis that convergenceto a

simultaneoussolutionof thesteady-stateWFTE andthePEcannot beguaranteed.There

are several potential causesof this lack of “robustness”or reliability. First, there are

almostcertainly“pathologic” operatingconditionsfor somequantumdeviceswherethe

steady-statemethodswill beunableto converge.Evenif a device is stableat a givenbias,

theoperatingpoint maynot befoundif thepreviousWFTE andPEsolutionsarefar away

from it. Incrementingthebiasacrossabistableoperatingpoint,of which therearethreein

Figure6.5,is theusualculprit here.Bistableoperatingpointswere,in fact,problematicfor

both thesteady-stateNewton methodandthe(accelerated)steady-stateGummelmethod.

However, SQUADS detectsnon-convergent behavior during steady-stateself-consistent

simulationsandautomaticallyswitches(temporarily)to thestandard(andmorerobustbut

slower) steady-stateGummelapproach.In this way, potentialdivergenceproblemsof the

steady-state iteration methods were completely avoided in this work.
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Justasblind faith in theresultsof steady-stateself-consistentsimulationsis not advis-

able,so too is completerelianceon transientself-consistentsimulations.Admittedly, the

basictransientmethodsarealwaysadequatein termsof reliability andaccuracy (i.e., abil-

ity to correctlyreproducedevice physics).However, their extremecomputationalcosthas

someharshconsequences.Thefirst is thatonecannot afford to undertake transientsimu-

lationssuchasthosepresentedin this work without a goodreason(anda very fastcom-

puter).Theproblemwith this is thatoftenthereis no concretereasona priori for running

a simulation- only a vaguenotion of how the device might behave. Certainly it is cur-

rently completelyunfeasibleto run multiple week-longtransientself-consistentI-V curve

simulationsto examinetheeffectsof varyingsimulationor deviceparameters.In contrast,

thedecisionto run thesamesteady-statesimulations(in a few hourseach)hardlymeritsa

second thought.

The oppositesideof the tendency for doing too few transientself-consistentsimula-

tions is trying to do too many. A good reasonto limit relianceon transientsimulation

where appropriateis that inadequatecomputingresourcesinvite unnecessarycompro-

misesto bemadein theimplementationof thesimulatoror in theexecutionof thesimula-

tion. For example,fewer biaspointsor time stepsmay be simulatedthannecessary, the

time stepor convergencecriteria may be larger than accuracy dictates,and so on. One

compromisemadein this work thatseemsjustified(asdiscussedin Section6.5.4)wasthe

useof the transientGummelmethodinsteadof the theoreticallymoreaccurateNewton

method.On theotherhand,thechoiceof slew ratein this work, basedsolelyon achieving

fastconvergenceratherthanmodelingreality, is not soeasilyexcused.In fact, investiga-

tionsusinga lowerslew rate[21] show thattransientcurrentpredictionslike thatin Figure

6.6maybearlittle resemblanceto whata realRTD woulddoundertest.However, in acir-

cuit of RTD-likedevices,100fs biasslewing maybereasonable.SincegeneratingtheI-V

curve wasthe test-casefor this work, thedetailsof theevolution to steady-statecouldbe

ignoredhere.In general,any compromisesin implementationor executionshouldbecon-

sideredcarefully, so that they do not conspireto weakenthedirectphysical link which is

the main advantageof the transientiteration methodsover the steady-stateapproaches.

Thebestdefenseagainstthesecompromisesis to focuscomputingresourceson a limited

set of transient simulations that are expected to add value to the steady-state results.

The argumentsabove have advocatedusing the various self-consistency iteration



6.5. Results and Discussion 193

methodsin a hierarchicalmanner. An efficient steady-stateapproachshouldbe usedto

investigatea broadrangeof operatingconditions,andto narrow thescopefor moreexact-

ing (and expensive) transientsimulations.To implementthis approach,one must find

cluesin steady-statesimulationsthat indicatedevice operatingconditionsfor which tran-

sientsimulationmight bewarranted(i.e., wheresustained,significant,or interestingtran-

sient effects might occur). Some of theseclues are obvious. A negative differential

resistanceregion is a known causeof oscillations,whetherintrinsic to the device or a

result of the device interactingwith the (simulatedor real) measurementapparatusor

externalcircuit. Also, any operatingpoint at which thesteady-statesimulationhassignifi-

cantdifficulty converging shouldraisea red flag. Obviously, if the steady-stateiteration

methodcompletelyfails to converge at a particularbias point, a transientsimulationis

necessaryto determinedevice operation.Of course,only a transientiterationmethodcan

be usedfor inherentlytransientself-consistentsimulations,suchasswitching,small-sig-

nal, or large-signal investigations.

Finally, the relevanceof the discussionandconclusionsin this sectionto the simula-

tion of conventionalelectronicdeviceswill be assessed.Certainly, the goalsof conven-

tional device simulationareidentical:to achieve reliably accuratesimulationsat the least

computationalcost.Further, therelativecostsof thevariousiterationmethods(Gummelor

Newton,steady-stateor transient)areessentiallythesame,whetherthey areusedto solve

theWFTE for quantumdevice simulationor, for example,a three-dimensionaldrift-diffu-

sionequationfor conventionaldevicesimulation.Thus,in conventionaldevicesimulation,

steady-statemethodswill be lesscostly thantransientmethods,so a combinationof the

two shouldbeusedto maximizetheutility of availablecomputingresources.However, the

conclusionthat the steady-stateGummelmethodis preferredfor its efficiency andade-

quatereliability over the Newton methodfor quantumdevice simulationis not sharedin

conventionaldevice simulation.As discussedin [22], when the interactionbetweenthe

two carrier typesis strong(with high concentrationsof both carriersin a given region,

leading to recombination,generation,scattering,and charge interactions),the Newton

methodis essentialfor locatingthe self-consistentoperatingpoint. As long asit is accu-

rateto characterizea quantumdevice asa singleenergy band(or multiple non-interacting

bands),simulatingquantumdeviceswill besimplerin this sensethantheir classicalcoun-

terparts.
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6.5.7 Other Iteration Methods

As a final note,the Newton andGummelmethodspresentedabove arecertainlynot

theonly possiblewaysto solve theWFTE- PEsystemandtherebyimplementself-consis-

tency, althoughthey are perhapsthe most basic.Many variationson the Gummeland

Newton methodsarepossible[22], andothernon-linearsystemsolving approachesmay

beused.For example,Jansenet al.[23] usedtheconjugate-gradient(CG) methodto com-

putetheself-consistentI-V curve for anRTD. Accordingto theiranalysis,theCGmethod

is aboutanorderof magnitudefasterthanthetransientGummelapproach,makingit about

anorderof magnitudeslower thanthesteady-stateGummelandNewton iterationmethods

describedherein.However, the CG methodhasthe distinct advantageof a muchsmaller

memoryfootprint. This would be useful for WFM simulationswhich areotherwisetoo

largefor availablehardware.Dueto theCGmethod’s limitation to steady-statesimulation,

its lower speedthanthesteady-statemethodsimplementedin SQUADS, andthefact that

memoryusagefor solvingtheWFTE- PEsystemhasbeenhighly optimizedin SQUADS,

the CG method has not been implemented in SQUADS.

6.6 Self-Consistency and the TMM

6.6.1 Intr oduction

Up to this point, this chapterhasdescribedthe implementationandsimulationresults

of self-consistency in the Wigner function methodof quantumdevice simulation.Self-

consistency canalsobeimplementedin thetransfermatrixmethod.Themainrequirement

for implementingself-consistency is theability to calculatethecarrierdensityprofile from

thequantumcalculation.In theTMM, thecarrierdensityis computedasa sumover all of

the wavefunctionsfor electron (or hole) beamsfrom each contact of the device, as

describedin Section4.3.4.This sectiondescribesin moredetail how self-consistency is

implementedfor TMM simulations,andit alsopresentsthefirst self-consistentTMM sim-

ulations of this dissertation.

Themain differencebetweentheWFM andthe TMM in termsof self-consistency is

relatedto thenatureof their respective statefunctions.TheWigner function is anaggre-

gatestatefunction,containingall of theinformationaboutcarriersin thesystematagiven

time.In particular, thecarrierdensityis calculateddirectly from theWignerfunction,This
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makes the useof the Newton iteration methodpossible,sincethe off-diagonalNewton

blocksarebasedonfindingsuchadirectrelationship.In contrast,thereis notasinglestate

functionin theTMM, but ratheronewavefunctionfor eachenergy beam(typically 1000-

10,000)incidentfrom eithercontact.DuringaTMM calculation,onecalculates,uses,and

discardstheamplitudesfor eachwavefunction,sincestoringamplitudesfor all wavefunc-

tionsat every positionnodewould take away themainadvantageof theTMM: computa-

tional efficiency. But unlessall wavefunctionamplitudesareunknownsin a simultaneous

systemof equations,a Newton iterationapproachto implementingself-consistency in the

TMM is impossible.However, a Gummeliteration for self-consistency is still possible,

wherethe Schrödingerequationis solved asusual,and the Poissonequationis updated

afterwards.SincetheTMM is inherentlytime-independent,a transientGummelapproach

is also not possible, leaving only the steady-state Gummel approach.

6.6.2 Implementation in SQUADS

The steady-stateGummel approachto enforcingself-consistency has beenusedin

TMM simulationby many researchers[24-29]over thepastdecadeandmore.Thesteady-

stateGummel approachfor the WFM is well describedin Section6.3. This section

describesthefew changesin theimplementationfor theTMM. Actually, thereis only one

significantdifference:thecalculationof thecarrierdensityasinput for thesolutionof the

Poissonequation.Of course,the WFM calculatesthe carrier density profile from the

Wigner functionasdescribedin Section6.2.ThestandardTMM approachcalculatesthe

carrier density profile as described in Section 4.3.4.

ThestandardTMM calculationdoesnot allow theinclusionof scattering.However, in

most real devices, scatteringplays an important role in producing the self-consistent

energy bandsand resultingdevice operation,as will be illustratedin Section6.6.3 and

Chapter8. Fortunately, it is possibleto approximatelyincorporatescatteringin self-con-

sistentTMM simulations.The “trick” is to use the classical,equilibrium relationship

(6.13) to calculatethe carrier profile from the energy bandprofile. More precisely, the

classicalcarrierdensitycalculationis usedin thecontactregionsup to thetunnelbarriers,

andzerocarrierdensityis assumedin theremaining“active” device region.Theclassical

carrier density inherently includesscattering.Using this carrier densityprofile requires

only minor modificationsin settingup the tri-diagonalPoissonequationmatrix andRHS
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vector of Figure 6.2 (mainly, ignoring the carrier density/feedbackterms for position

nodescorrespondingto theactive region). This approachfor includingscatteringin self-

consistentTMM simulationsgivesbetteraccuracy in caseswherescatteringis high (e.g.,

high temperature),but it excludessomequantumeffects,andit incorporatesdevice-spe-

cific code.

6.6.3 Results and Discussion

For comparisonto theWFM simulationsin Section6.5, theTMM simulationsin this

sectionusethesameRTD device structure(seeFigure6.5).Figure6.11shows theTMM

simulatedI-V curve for thisRTD for threecases:non-self-consistent(linearpotentialdrop

acrosscenter17nm of RTD, hereaftercalledTMM0), self-consistentwith standardTMM

carrierprofile computation(hereaftercalledTMM1), andself-consistentusingtheclassi-

cal carrier density in the contact regions (hereafter called TMM2).

Severalpointsarenoteworthy in Figure6.11.First, justasin theWFM simulation(see
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Figure 6.11: Self-consistent TMM I-V curve simulation of RTD

Shown alongwith thestandardTMM simulation(dashedcurve) arethenon-self-
consistentTMM result for a linear potentialdrop in the active region (thin solid
curve) andthe self-consistentTMM simulationusingthe classicalcarrierdensity
to implementself-consistency (thick solid curve). The standardTMM simulation
(with quantumcarrierdensityandno scattering)breaksfrom expectedoperation
after resonance, where current increases roughly by a factor of 10.
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Figure 6.5), enforcingself-consistency moves the peakand valley conditionsto higher

biases.This is dueto thequantumwell statenotbeingpulleddown (w.r.t. theemitterband

minimum) asquickly with increasingappliedbiasin the self-consistentcasesincea sig-

nificant portion of the appliedbias is acrossthe collector depletionlayer. In fact, both

TMM0 andTMM1 gave virtually the samepeakandvalley appliedbiasesasthe analo-

gousWFM simulations.However, currentsarea factorof 2 - 3 lower in the TMM I-V

curvesthanin theWFM I-V curves(a factorof 4 whentheWFM doesn’t includescatter-

ing). Testsimulationsshow that this lastobservationcanbetracedmainly to inaccuracies

in the WFM simulation, as discussed in Section 5.5.7.

Also notethat the interestingRTD behavior (I-V plateau,hysteresis,andbistability)

seenin the self-consistentWFM I-V curve arenot seenhere,even in the self-consistent

TMM1. Thebehavior in TMM1 is morein line with expectations,asdiscussedin Chapter

8. However, theTMM2 simulation(i.e., usingthequantumcalculationof carrierdensity)

hasits own interestingbehavior. Beforethe peak(resonance)condition,the TMM1 and

TMM2 follow roughlythesamebehavior, andtheself-consistentenergy bandsandcarrier

density profiles are very similar, as indicated by Figure 6.12.

However, in TMM2, when the quantumwell stateis pulled below the emitter band

minimum(i.e., atappliedbiasesgreaterthan0.21V), theRTD sufferssomekind of break-

down. Thatis, currentincreasesby abouta factorof 10,ratherthandecreasingby this fac-

tor, asin theothertwo TMM simulations.Thecauseof thiscurrentriseis indicatedin Fig-

ure 6.13,which shows the carrierdensityandenergy bandprofilesfor TMM2 at 0.22V

appliedbias (i.e., just after resonance).Becausethe standardTMM simulationdoesn’t

include scattering,it is difficult to form the strong accumulationlayer in the emitter

required to accommodatelarge biasesin the normal way (i.e., with an electric field

betweentheaccumulationanddepletionlayers).Theonly way for thebiasto beaccom-

modatedis by depletingthe emitterandcharging the emittercontact,which situationis

indicated in Figure 6.13.

Both TMM1 andTMM2 have drawbacks.TMM1 ignoresall quantumeffects in the

calculationof thecarrierprofile.As a result,TMM1 cannot, for example,simulateintrin-

sic bistability due to charge storagein the quantumwell. On the other hand,TMM2

includesno scattering,makingit susceptibleto erroneousresultsat high biases.A simple

compromiseis to usea classicalcarrierdensitycalculationin the contactregionsanda
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quantumcalculationin the “active” (barrierandquantumwell) region (seeFigure6.12).

This hybrid carrier density model, hereaftercalled TMM3, is also implementedin

SQUADS,7 andhasbeenimplementedby at leastoneothergroup[24]. Figure6.14shows

aplot of theTMM3 I-V curvesimulationof theRTD usedabove.Notethatbistabilitydue

to charge storagein the quantumwell at resonanceis predictedby this simulation.Also

shown in Figure6.14is theI-V curve from Figure6.11usingtheclassicalchargedensity

model.The two I-V curvesdiffer accordingto the amountof active region charge in the

hybrid case (active region charge is taken to be zero in the classical model simulation).

Othermodelsfor thecarrierdensityin a self-consistentTMM simulationarecertainly

possible,but thelack of anaccuratemeansto includescatteringis probablythemostseri-

ouslimitation in self-consistentTMM simulation.Note that if scatteringwerenegligible

in an RTD, and the contactswere accuratelymodeledas ideal ohmic contactsto metal

7. Due to the sharedcodestructureof SQUADS, both the classicalandhybrid classical-quantum
carrierdensitycalculationscanbeusedin self-consistentWFM simulationsaswell. However, since
theWFM includesscatteringin a moreaccurateway, thereasonfor usingthis capabilityin general
is not obvious, in contrast to their manifest usefulness in TMM simulations.

Figure 6.12: Self-consistent TMM-simulated RTD at peak current

At 0.21V appliedbias,both the standard(quantum)andclassicalcarrierdensity
profilesareshown, aswell asthe energy bandprofile from the quantumcalcula-
tion. In spiteof the marked differencein carrierdensityin the quantumwell, the
energy bandsfor thetwo carrierdensitiesarevery similar. [Energy bandsfor clas-
sical C(x) simulation are not shown.]
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electrodes,theunexpectedenergy bandprofile in Figure6.13wouldoccurexperimentally,

producingtheveryhighcurrentoperationsimulatedin TMM2. However, thisbehavior has

not beenobservedexperimentally, suggestingagain that includingscatteringis important

for accurate RTD simulation.

6.7 Summary

This chapter reviewed the theory and numerical implementationof four basic

approachesto implementingself-consistency in theWignerfunctionapproachto quantum

device simulation. Theseapproachesinclude steady-stateand transientGummel, and

steady-stateandtransientNewton. This is thefirst time thatall of theseapproacheshave

been describedin a single mathematicalframework and notation. In the processof

describingthenumericalimplementationsof theseiterationmethods,expressionsfor the

off-diagonalJacobianblocks in the Newton formulation were given, apparentlyfor the

first time. Also, an acceleratedconvergencealgorithmwasdescribedfor the steady-state
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Figure 6.13: Self-consistent TMM-simulated RTD after peak current

Whenthe quantumwell statedropsbelow the emitterbandminimum, the TMM
simulationusingthe quantumcarrierdensitycalculationgivesunphysical behav-
ior, indicated by a strongly charged emitter contact. Since scattering is not
included,it is not possibleto form an accumulationlayer in the emitter. Instead,
the applied bias is accomodated by a depleted emitter and charged emitter contact.
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Gummelapproachwhich makesit themostefficient meansof generatingtheself-consis-

tent I-V curve for an RTD.

The strengthsandweaknessesof the variousself-consistency iterationmethodswere

alsoreviewed. A large part of that analysisconcernedrelative computationalcosts.The

computationalefficiency of the steady-statemethodsmakesthemideal for wide-ranging

initial investigations,suchas full I-V curve traces.Thereare undeniabledifficulties in

using the steady-stateiteration methods,suchas lack of robustnessin the Newton and

acceleratedGummelmethods,andthe relatively slow convergenceof thestandardGum-

mel approach.Theseproblemsmay have discouragedthe useof steady-stateapproaches

in the past.This work hasdemonstratedhow theseproblemscanbe avoided,and it has

shown the excellent resultsand efficienciesthat the steady-stateiteration methodscan

achieve.

This work showedthateven if a steady-stateiterationmethodconvergesto a simulta-

neoussolutionof thesteady-stateWFTE andPE,thereis no guaranteethatthis is a stable

Figure 6.14: Self-consistent I-V curve for RTD with hybrid carrier ddensity

This TMM simulationusestheclassicalcarrierdensityC(x) in thecontactregions
of the RTD andthe quantumvalue in the active region. The resultingI-V curve
shows bistability andhysteresis,dueto significantenergy bandadjustmentswhen
thequantumwell chargesor dischargesin transitionbetweenpeakandvalley oper-
ation.This I-V curve divergesfrom that usingthe classicalC(x) accordingto the
amount of quantum well charge.
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operatingpoint.Transientiterationmethodsareinherentlymoreaccurateandreliable,and

are requiredto treat time-dependentsituations(suchasunstableoscillations).However,

steady-statemethodsare just as important in practice in the investigation of quantum

device physics.Efficient steady-statesimulationscanbeusedto determinethebasicoper-

ationof thedevice (e.g., I-V curve,possibleunstableregions),allowing oneto narrow the

scopeof (expensive) transientsimulations.Thosetransientsimulationswhich are done

canthenbeimplementedandexecutedwithout seriouscompromisessothatthey will cor-

rectly model device physics and add value to the steady-state results.

Finally, theimplementationof self-consistency in thetransfer-matrix methodof quan-

tum device simulationwasdescribedanddemonstrated.Due to the natureof the TMM,

only the steady-stateGummel iteration approachis suitablefor enforcingself-=consis-

tency in thiscase.Implementingthisself-consistency iterationin theTMM is almostiden-

tical to thatin theWFM, themainexceptionbeingthecalculationof thecarrierdensity. In

fact, several different charge densitymodelsare implementedfor self-consistentTMM

simulationsin SQUADS. The standardmodeldoesnot includescattering,andcalculates

carrierdensityin theusualTMM manner. In contrast,theclassicalmodelincludesscatter-

ing in the electrodes,while the hybrid classical/quantummodelalsoincludesthe TMM-

calculatedcarrierdensityin the active region of the device. A significantresultwas the

conclusionthatscatteringis requiredto produceaccurateself-consistentTMM simulation

results.
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Chapter 7

Applied Bias Slew Rate

Quantumelectronicdevices have beenproposedas a possiblesuccessorto conven-

tional electronicdevices in part becausethe inherentlysmall size of quantumdevices

makesit possiblefor themto operateatveryhighspeeds.ThetransientWFM capabilityin

SQUADS canbe usedto investigatethe transientoperationandspeedpotentialof quan-

tum devices.Unfortunately, a typical transientWFM simulationmight requirethousands

of time-steppedsolutionsof theWFTE.Theresultis eitheraveryhighcomputationalcost

or compromisesin accuracy (e.g., dueto using longer time steps)in an effort to reduce

computationtime.Thischapterinvestigatesatechniquefor transientWFM simulationthat

improvesboth accuracy and efficiency: usinga finite appliedbiasslew-rate (the rateat

which the appliedbiasis changedwith respectto time). Exceptfor the investigationsin

Chapter6, all transientWignerfunctionsimulationsof quantumdevicesto datehave used

instantaneouschangesin the appliedbias. Suchswitching could never be achieved in

physical systems.This investigation found that instantaneousswitchingproducessignifi-

cantly inaccurate quantum device simulations.

To introducethisslew rateinvestigation,Section7.1providesanoverview of thephys-

ics of transientbiaschangesin electronicdevice simulation.Section7.2 thenpresentsthe

investigationof whetherandto whatextentquantumdevice operationandWFM simula-

tion cost are affected by variations in applied bias slew rate.
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7.1 Physics of Transient Bias Changes

Beforediscussingslew ratesdirectly, the physicsof transientbiasswitchingin elec-

tronic device simulationwill be consideredin somedetail [1]. In a transientsimulation,

appliedbiaschangesarecompletedduringa timestep(i.e., betweenconsecutivesolutions

of the system).Changingthe appliedbiasacrossa device requiresa currentpulsein the

external circuit, essentially“communicating”the new bias to the device. If the applied

biasis changedtoo quickly for freecarriersin thedevice to respondto this currentpulse,

the biaschangeis effectively instantaneous,andthe externalcurrentsimply chargesthe

contacts,producinganelectrostaticfield acrossthedevice. In otherwords,thedevice acts

likeacapacitor. For aone-dimensional“capacitor”of area , width , andpermittivity ,

the external current density  necessary to cause a voltage change  in time  is

. (7.1)

occursentirely within the time step . Following a biaschange,free carrierswill

respondover time to the electricfield asthey redistribute,enter, andleave the device to

accommodate the changed applied bias.

To maintainphysicalcorrectness,SQUADS implementstheabove describedbehavior

in self-consistent,transientsimulations.That is, becausetime stepsare typically on the

orderof 1 fs, appliedbias changesof any magnitudeduring a time stepareeffectively

instantaneous,andthereforeinitially appearaselectrostaticfieldsacrosstheentiredevice.

SQUADS computesandprints the averageexternalcurrent requiredto producethe

specifiedbiaschangein a singletime step,althoughthis currentdoesnot appearin any of

the simulatedinternal device currents.Enforcing self-consistency through the Poisson

equationnaturallycausesfreecarriersin thedevice to respondappropriatelyover time to

theelectricfield betweenthedevicecontacts.Notethatslewing theappliedbiasis accom-

plishedsimply by makingmany small, “instantaneous”biaschangesduring consecutive

small time steps.1 Given the above descriptionof how transientbiaschangesshouldbe

implementedin a device simulator, the investigation in Section7.2 demonstratesthesig-

nificance of the choice of applied bias slew rate in transient Wigner function simulations.

1. In this dissertation, “instantaneous” means “single time step”.
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7.2 Effect of Slew Rate Variation

7.2.1 Simulated Device and Operation Summary

Resonanttunnelingdiodes(RTDs) arean excellentquantumdevice simulationtest-

bed,for reasonsdiscussedin Section2.3.4,andwill beusedin thisslew rateinvestigation.

In particular, theRTD usedin Chapter6 (seeFigure6.4) is again usedherebecauseof the

strong transienteffects it displays.2 Figure 7.1 (a refinementof Figure 6.5) shows the

steady-stateself-consistentI-V curve for this RTD assimulatedby SQUADS. Transient

simulationsin Section6.5.4showedthat this RTD is stableat all pointson this I-V curve

except in the plateau(0.239V - 0.313V on the up-traceand0.254V - 0.239V on the

down-trace).Wherethe two tracescoincidein theplateau(0.239V - 0.254V), perpetual

high-frequency (~2.5THz) currentoscillationsoccur. In the remainderof the plateauon

the up-trace,the RTD is only marginally stable(it approachessteady-statein a weakly-

dampedoscillatoryfashion).Sincethemostinterestingtransientphenomenaoccurin the

plateauregion of the I-V curve, transientsimulationsof this region offer a very effective

means of analyzing the effects and importance of slew rate variation.

All transientsimulationsin this work usedtheCayley transientoperator(seeSection

5.3.3.5)with a 1 fs time step.TheGummeliterationmethod(seeSection6.3)wasusedto

implementself-consistency. For I-V curve simulations,operatingpointsweretakenevery

10 mV. Theeconvergencecriteria(seeSection6.5.2)usedto determinewhensteady-state

hadeffectively beenreachedafter appliedbiaschangeswere:potentialchangelessthan

eV, Poissonequationsatisfiedto lessthan eV, andcurrentvariationacrossthe

device of less than 1000 A/cm2.

7.2.2 Instantaneous Bias Switching

To determinetheeffectsof slew rateon simulationresults,a transientI-V curve simu-

lation wasconductedusingthestandardapproachof instantaneousbiasswitching.Thus,

startingfrom a steady-statesolutionat onebias,theappliedbiaswaschangedto thenext

biaspoint in asingletimestep,andthesystemwasallowedto evolve to steady-state.After

eachbiasswitch,a largecurrentpulseof about A/cm2 peakamplitudeandabout

2. Obviously, theusefulinvestigationof a transientsimulationtechnique,in this caseappliedbias
slewing, requires a device exhibiting significant transient effects.

10
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50 fs durationoccurred.Theamplitudeof this currentpulseoftenexceededboththestart-

ing andendingcurrents.For example,Figure7.2 shows the transientposition-averaged

currentandthecollectorcontactcurrentin theRTD after instantaneousswitchingfrom 0

V to 10 mV.3 Note that the peakcurrentis 7-8 timesthe final steady-statevalue.During

the down-trace,the currentpulsewasnegative, but with essentiallythe sameamplitude

and duration.Basedon the consistency of the currentpulse in amplitudeand duration

throughoutthe I-V curve trace(exceptat bistablepoints),simplecomputations[2] deter-

minedthat the pulseresultedfrom charging of the accumulationanddepletionlayersto

accommodate the 10 mV change in applied bias between bias points.

Theorigin of thecurrentpulsedescribedabovehasbeenthesourceof someconsterna-

tion in thepast.For example,Tsuchiyaetal. [3] attemptedto explain thecurrentpulsein a

transientWigner function simulationafter a bias switch acrossthe negative differential

resistance(NDR) region of theI-V curve in termsof thedischarging of thequantumwell

3. Hereafter, all currentswill be position-averagedvalues,sincethis is the currentinducedin the
external circuit.

Figure 7.1: Self-consistent, steady-state RTD I-V cur ve

Effectsshown includenegative differentialresistance,hysteresis,bistability, anda
plateauin theI-V curve.TheRTD is unstable(oscillatesperpetually)in theplateau
between0.239 V and 0.254 V, and it is marginally stable(oscillateswith slow
damping) in the remainder of the plateau.
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andthepropertiesof theelectrodes(emitterandcollectorlayers).Similarly, Kluksdahlet

al. [4] suggestedthat“The overshootprobablyarisesfrom arapiddischargeof thetrapped

chargein thepotentialwell”. Simplecalculations[2] show thatthequantumwell chargein

thesecaseswasmuchtoo small to producetheobservedcurrentpulse,while therequired

changein accumulationanddepletionchargewasaboutright. Useof a finite slew ratein

theseinstances(or switchingthebiasoutsidetheNDR region) would have shown thatthe

currentpulsewas largely due to the charging of the accumulationanddepletionlayers.

Thus,instantaneousbiasswitchingin transientWigner functionsimulationsmayobscure

device operation to the extent that incorrect conclusions are drawn.4

Much worsethanthe internalcurrentpulsefrom a practicalstandpointis theexternal

circuit current requiredto changethebiasby 10 mV in a singletime step(although

4. Notethatin theearlierwork of Frensley [5], non-self-consistent,transientWignerfunctionsimu-
lationsalsoshowedacurrentpulseafterswitchinganRTD acrosstheNDR region.However, in this
caseFrensley’s conclusionthat the pulsewasdueto the charging or discharging of the quantum
well wascorrect.SinceFrensley did not enforceself-consistency, therewould beno accumulation
and depletion charges.

Figure 7.2: Transient current after instantaneous 10 mV bias change

The position-averagedcurrent(plain curve) and collector contactcurrent(circle
curve) areshown after an instantaneousbiaschangefrom 0.0 V to 10 mV. Note
that the peak of the current pulse is 7-8 times the final value.
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does not appear in any simulation results). Using (7.1), with nm,

, mV, and fs, theexternalcurrentdensityis

A/cm2 for this RTD. This is at leastthreetimeslargerthanany currenttheexternalcircuit

mustsupplyfor steady-statedevice operationanywherein the simulatedbiasrange(see

Figure7.1). In summary, theuseof instantaneousbiasswitchingin self-consistentquan-

tum device simulation producesa huge current pulse within the device, and it would

requirean even larger currentspike from the driving source.Neitherof theserepresent

practical quantum device behavior in real measurement or circuit environments.

7.2.3 Realistic Slew Rates

The above simulationsshow that instantaneousbias switching in transientWigner

function simulationspresentsa huge“shock” to the quantumdevice, resultingin a large

internalcurrentpulseanddampedoscillationsthereafter, asshown in Figure7.2.To more

accuratelymodeltheoperationof realquantumdevicesandcircuits,a finite appliedbias

slew rate must be used.Basedon the simulation resultsabove, RTD-type devices can

respondandchangestatein about100 fs, so 100 fs biasslewing seemsappropriatefor

studyinghow anRTD might operatein a circuit of its peers.A secondtransientI-V curve

simulationwasthereforeconductedwith a slew rateof 10 mV/100 fs (100 V/ns). As an

example,Figure7.3shows thetransientcurrentfor theslewedswitchfrom 0 V to 10 mV,

alongwith the sameplot for instantaneousswitching.Note that the accumulation/deple-

tion charging currentpulse(which musthave thesameintegral over time, or total charge

transfer)of A/cm2 is much lessseverewith slewed switching.Also, (7.1)

givesanexternalcurrentof only A/cm2. Neitherof thesearelargecom-

paredto normaloperatingcurrentsof thedevice,which confirmsthat this slew ratecould

reasonably occur in a quantum circuit.

Theuseof 100V/ns slewedswitchingin transientWignerfunctionsimulations,while

improving the accuracy of the simulation,had the ancillary benefitof reducingits very

high computationalcost.The shockof instantaneousbiasswitchingrequireda relatively

long transientsimulationbeforethe convergencecriteria weresatisfied(i.e., steady-state

was reached).Slewed switching lessenedthe shock,so that, althoughreachingthe next

biastook longer, total time to steady-statewasmuchless.For example,for the0 V to 10

mV switching simulationshown in Figure 7.3, steady-statewas reachedin 330 fs with

Jext L 55=

ε 12.9εo= ∆V 10= ∆t 1= Jext 2.1
6×10=

JDA 4
4×10≈

Jext 2.1
4×10=
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slewing, versus550 fs without. On average,convergencewasreachedabout20% faster

with slewed switching,even in the critical plateauregion (wherethousands,ratherthan

hundreds,of femtosecondswere required for convergence).Needlessto say, a 20%

improvementin computationtime is very significantin a several-hundredhoursimulation

task.5

The100V/ns slew ratewaschosento modelanRTD drivenby anequallyfastdevice.

If simulationresultsareto becomparedto RTD measurementsby a device tester, aneven

lower slew rateis appropriate.Fastoperationalamplifiers(which might serve asthefront

endfor a device tester)arecapableof perhaps2000V/µs slew rates[6]. Taking1 V/ns as

potentiallyfeasiblevalue,this is a factorof 100 lower thantheslew rateusedabove, and

wouldrequire10ps(10,000timesteps)to changetheappliedbiasby 10mV. Thequestion

is, is it necessaryto go to sucha hugeexpensein orderto simulateexperimentaldevice

5. Note that if transienteffectsarenot specificallyof interest,the morecomputationallyefficient
steady-state simulation methods can be used, as discussed in Chapter 6.

Figure 7.3: Transient current after slewed 10 mV bias change

Transientcurrentafterswitchingfrom 0.0 V to 10 mV. Theplain curve shows the
transientcurrentwhenthebiasis switchedinstantaneously;thecircle-curve shows
thesamewhenthebiasis slewed from 0.0 V up to 10 mV over 100 fs. Note that
the slewed switchingsimulationreachessteady-statesignificantly fasterthanthe
instantaneous switching simulation.
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testconditions(e.g., to testsimulatoraccuracy)? In otherwords,given the instantaneous

switching and 100 V/ns slewing simulationresults,can lower slew rate effects be esti-

matedby extrapolationor even neglected(i.e., steady-stateoperationassumed)?In this

case,the answeris no. Simulationresultsin the following sectionindicatethat whenthe

detailsof this device’s operationarebeing investigated,therearecaseswhereeven a 1

V/ns slew rate is too high.

7.2.4 Intrinsic Oscillations

As statedearlier, themostinterestingtransienteffectsfor thechosenRTD occurredin

theplateauregionof its I-V curve.Theeffectsof slew ratevariationin this regionof oper-

ation were thereforeinvestigatedin moredetail. In tracing the I-V curve in the plateau,

both instantaneousand100V/ns slewedswitchinginitiatedoscillationsthatpersistedfor

thousandsof femtoseconds(at 1 fs per time step).Theseoscillationswereso persistent

thatJensenandBuot [7] concludedthattheRTD oscillatedperpetuallyat all biasesin the

plateau,andthat theseoscillationswerenecessaryfor the plateau’s existence.However,

Section6.5.4showed that this RTD is only truly unstablein the plateaubetween0.24V

and0.25V.6 Abovethis rangein theplateau,theoscillationseventuallydecayedto steady-

state.For example,Figure7.5showsthecurrentafterinstantaneousswitchingfrom 0.26V

to 0.27V. SincetheRTD is stable(albeitmarginally so)at appliedbiasesabove 0.254V,

theseoscillationswereapparentlyinitiatedby theabruptbiaschanges.A 1 V/ns slew rate

(10,000time stepsper10 mV) simulationfrom 0.26V to 0.27V wasconductedto verify

this.Theresultis shown in Figure7.5.Eventhis simulationshows very smalloscillations

afterthe(abrupt)startandendof slewing. Presumably, evenlower slew rateswould avoid

oscillationsentirely. Thus,onceagain theuseof aninfinite slew rate(by JensenandBuot)

hasbeena culprit in producingsimulationresultswhich led to invalid conclusionsabout

device operation.

A furthersetof simulationssoughtto determinetheeffect of slewing theappliedbias

smoothlythroughtheunstableregionof operation.Thismightoccurin thesimulationof a

device with an unstableregion that is smallerthanthe chosenbiasstep.In this case,the

existenceof oscillationswould probablybemissedentirely. Transientsimulationsstarting

at0.23V andslewing thebiascontinuouslyto 0.26V servedto investigatethispossibility.

6. Further simulations marked the unstable region more precisely at between 0.239 V and 0.254 V.
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Figure 7.4: Damped oscillations after abrupt switching in plateau

Transientcurrentafter instantaneousswitchingfrom 0.26V to 0.27V in the pla-
teau.Although the differencebetweeninitial andfinal currentis lessthan
A/cm2, theoscillationamplitudestartsat 10 timesthis value.Theoscillationsare
initiated by the abrupt switching
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Figure 7.5: Nearly smooth transition with slewed switching in plateau

Transientcurrentduringandafter10 psslewing from 0.26V to 0.27V in thepla-
teau(slew rate:1 V/ns). Although small oscillationsoccureven at this low slew
rate, the oscillation amplitude is less than 1/100th of that in Figure 7.4.
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Theresultsareshown in Figure7.6.At 1 V/ns (10,000time stepsper10 mV), thedevice

slewed throughthe unstableregion too quickly for oscillationsto begin. The resultswas

the sameat 0.5 V/ns, (20,000time stepsper 10 mV). Finally, at 0.2 V/ns (50,000time

stepsper 10 mV), the RTD wasableto achieve the conditionsnecessaryfor oscillations

(seeChapter8). The oscillationspersistedduring the continuousslewing, albeit with

decreasingamplitude,until shortlyaftertheunstableregionwasexited.Theseresultsindi-

catea relatively very slow responsetime for a device which is otherwisesofast.The les-

sonis thateventheuseof a relatively low slew ratemaystill allow somedevicephysicsto

be missed.

Sincesimulationresultsin theplateauregion of theI-V curve dependstronglyon the

slew rateused,it is again importantto considerwhatmight happenin anactualcircuit or

testenvironment.Device analyzers(suchastheHP 4145)traceanI-V curve by sweeping

theappliedbiasin astep-wisefashion,sothatanew biasis established,adelaytime (typ-

ically a few milliseconds)elapsesto allow thedevice to settleto steady-state,andthecur-

Figure 7.6: Slewing across an unstable region of RTD operation

Traceof unstableregion of I-V curve. Continualslewing at 1 V/ns (or 10 ps/10
mV) and0.5V/ns (or 20ps/10mV) aretoo fastto allow theRTD to begin oscillat-
ing beforeit leavesthe unstableregion at 0.254V. Continualslewing at 0.2 V/ns
(or 50 ps/10mV) is slow enough.Only thepeaksof theoscillationareshown, so
that the other curves are not obscured.
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rentis measured.Thus,with anidealdevice tester, oscillationswoulddefinitelybeseenin

the unstableregion (assumingat leastone bias point fell there),since therewould be

plentyof time for thedevice to evolve to theunstableconditions.In themarginally stable

region, sincethe slew ratewould be lessthan1 V/ns andslewing would start andstop

moresmoothly, no oscillationswould occurafter0.254V. However, device testersarenot

ideal.Externalinductanceandcapacitancein themeasuringapparatuscouldeasilychange

a marginally-stableRTD into anunstableone,causingtheRTD to oscillateeverywherein

theplateau.Basedon the100V/ns simulationresults,this RTD would certainlyoscillate

throughout the plateau in a fast-changing RTD circuit.

7.2.5 Bistable Regions

Bistableregions poseyet anotherhazardfor instantaneousbias switching. When a

transientsimulationis usedto tracethe steady-stateI-V curve (e.g., to searchfor latent

transienteffects),for this RTD, instantaneousswitchingproducedthe sameI-V curve as

the steady-statesimulationand the slewed-switching,transientsimulation.However, it

wasnot difficult to devise a transientsimulationthat did not follow the steady-stateI-V

curve.For example,a transientsimulationstartingfrom steady-stateat0.23V andswitch-

ing instantaneouslyinto thebistableregion at 0.26V, ratherthanconverging to the “cor-

rect” higher current state,converged to the lower current state.In contrast,the same

simulationwith a10V/nsslew rateconvergedto thehighercurrentstate.Theseresultsare

shown in Figure7.7.Thestandardslew ratein this work of 100V/ns wasalsotoo fastto

convergeto theupperI-V curve trace.In general,theshockof instantaneous,or evenfast,

biasswitchingmay causea device to “leap the rails” onto anothertracein a bistableor

multi-stableregion of operation.It shouldbe notedthat switching to the “wrong” state

might be a useful function (e.g., to achieve a higher effective NDR value or producea

multi-statedevice). By varying the slew rate in simulations,it is possibleto investigate

how fast the device must be switched in order to produce this type of device operation.

7.2.6 Bias Slewing in Non-Quantum Device Simulation

Virtually all of this slew rate investigation appliesequallywell to the simulationof

conventional(i.e., non-quantum)electronicdevices.For example,transientbiaschanges

in conventionaldevice simulationareaccomplishedin the samesingle-time-step,incre-
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mentalmannerdescribedin Section7.1.Thetime stepusedin conventionaldevice simu-

lations may be ordersof magnitudelarger than that usedin a typical quantumdevice

simulation,but the biaschangeper time stepmay alsobe larger. Further, asindicatedin

this chapter, the appropriateslew ratedependson the inherentspeedof the device being

simulated,the intendedapplication,andthedesiredfunction.Thus,thecritical slew rates

whereconventionaldevice function may changewill be muchlower thanthosefound in

this chapter for quantum devices.

7.3 Summary

This work hasdemonstratedtheimportanceof usinga finite appliedbiasslew rate(as

opposedto instantaneousswitching)to betterapproximateexperimentalquantumdevice

conditions,andthusproducemoreaccuratetransientWigner functionsimulationresults.

In fact,theproperslew ratefor anyelectronicdevice simulationdependson device speed,

intendedapplicationconditions,anddesireddevice function.Severalinstanceswerehigh-

Figure 7.7: Switching or slewing into bistable region of operation

Transientcurrent after switching from 0.23 V to 0.26 V. The instantaneously
switchedsimulation(plain curve) convergedto thelower bistablevalue,while the
10V/nsslewedsimulation(circle-curve)convergedto theuppervalue.Thisshows
that slew rate variation can profoundly affect device function.
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lighted wherethe useof instantaneousswitchinghasled to incorrectconclusionsabout

quantumdeviceoperation.As aaddedbenefit,it wasshown thattheuseof slewedswitch-

ing can also reduce the high computational demands of transient WFM simulation.
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Chapter 8

RTD Device Physics Investigation

In Chapters6 and7, thesimulationtestdevice wasa resonanttunnelingdiode(RTD)

exhibiting several interestingbehaviors, including a plateauin the negative differential

resistanceregion of the I-V curve, hysteresis,and intrinsic high-frequency oscillations.

While thesephenomenaweredescribed,their physical causeswerenot determined.This

chapterfinally presentsadetailedinvestigationof thephysicsbehindthesebehaviors.This

investigation incorporatesandaddsto the resultsof Chapters6 and7, producinga fairly

comprehensive demonstrationof the capabilitiesof SQUADS for analyzinga quantum

device from many different viewpoints until its behaviour is fully understood.

Thissimulationinvestigationof RTD physicsbeginsin Section8.1with asummaryof

severalremainingcontroversiesaboutaspectsof RTD operation.TheRTD physicsinvesti-

gation in this chapterwill have implicationsfor eachof theseopenquestions.Section8.2

then analyzesthe steady-stateoperationof this RTD, using both the TMM and WFM

capabilitiesof SQUADS. The most important steady-stateeffects are the plateauand

bistability in the NDR region of the I-V curve. Section8.3 continuesthe investigation,

with an in-depthlook at the transientoperationof the RTD, including an analysisof the

unstableoperationin part of the plateau.Basedon this investigation,Section8.4 signifi-

cantly revises the interpretationof simulationsof this RTD by previous researchers.

Finally, Section8.4alsodiscussestheremainingdiscrepanciesbetweenexperimentalRTD

measurements and the simulation results for this RTD.
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8.1 RTD Controversies

Resonanttunnelingdiodes[1-3] have undergoneintenseinvestigation, both experi-

mentalandtheoretical,over thepastdecadeandmore,dueto their potentialcircuit appli-

cations[2, 4] and their statusas the prototypequantumelectronicdevice. Even as a

detailedunderstandingof theoperationof RTDshasdeveloped,severalcontroversieshave

persisted,includingthecauseof anobservedplateauin thenegative differentialresistance

(NDR) region of the current-voltage(I-V) curve, whetherintrinsic bistability hasbeen

observedandhow it manifests,thecauseof RTD oscillations,thenatureof the tunneling

process(sequentialor resonant),and the correct lumped-parameterequivalent circuit

modelfor anRTD. Althoughsomeconsensushasdevelopedonmostof theseissues,addi-

tional investigation through accurate numerical simulation of RTDs is needed.

In 1991,JensenandBuot (JB) [5] publishedthevery interestingresultsof someambi-

tious transientWigner function-basednumericalsimulationsof an RTD (hereaftercalled

the JB RTD), includingboth self-consistency andscattering.In [5] andsubsequenttheo-

reticalanalysisof thesesimulationresultsby Buotetal. [6 -11], agooddealof insightwas

developedinto several of the RTD controversiesmentionedabove. Unfortunately, more

detailedandcomprehensive investigationswouldhavebeenprohibitively expensiveat that

time (expensive Cray supercomputertime wasrequired)[12]. With the rapid advancein

thepower of computerworkstations,it hasrecentlybecomefeasibleto revisit theWigner

functionsimulationof theJB RTD in greaterdetail.The investigationof RTD physicsin

thischapteraccomplishesthisby usingtheJBRTD for acasestudy. Basedon thesesimu-

lation results, the current understandingof the operationphysics of this device are

extendedandrevisedwherenecessary. Theremainderof this sectionsummarizesthehis-

tory andcurrentstateof theRTD controversies,andindicateshow thesimulationresults

of JB and subsequent analysis by Buot et al. impacted these debates.

The device physicsunderlyingthe plateauin the NDR region of I-V curve measure-

mentsof RTDs hasbeena sourceof controversyfor over a decade.The plateauis often

accompaniedby hysteresis/bistabilityandhigh-frequency oscillations.For example,Fig-

ure 6.1 shows a measuredRTD I-V curve whereall of theseeffectswereobserved [13].

Two opposingexplanationsweregiven for the plateau.Someresearchers[14-25] advo-

catedextrinsically-inducedoscillationscausedby reactive elementsin the external bias

circuit (in concertwith intrinsic NDR andcapacitance)as the solecause.Othersmain-
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tainedthatpurely intrinsic RTD operation,suchasintrinsic bistability dueto chargestor-

agein thequantumwell [26-29],or discretestatesin theemitteraccumulationlayer [30],

couldexplain theplateau.Severaltheoreticalcalculationsandsimulationsof theRTD [31-

37] seemed to support the “intrinsic” case.

The extrinsic-versus-intrinsicplateaudebateappearedto be well settledwhencircuit

simulations[20, 22, 25] showed convincingly that all of the observed behavior could be

reproducedwith extrinsically-inducedoscillations.In fact,severalresearchers[17, 18,21,

28,33] arguedthatkeepinganRTD from oscillatingin theNDR region,a necessarycon-

dition to make the “intrinsic” case,is difficult. Othersimulations[13, 24, 38,] suggested

that producingan RTD that exhibits intrinsic bistability is also difficult. In fact, many

researchersseekingto demonstrateintrinsic bistability usedasymmetricbarriers[24, 32,

34,35,39-41],thick undopedlayersneartheemitteror collectorbarrier[39, 41], or asec-

ondquantumwell just beforetheemitterbarrier[42]. Suchstructureswerenot employed

in themany experimentalmeasurementswherethe I-V curve effectswereobserved.Fur-

ther, all unambiguousexamplesof intrinsicbistabilityproducedhysteresisin themaincur-

rentpeak,ratherthanproducinga plateauandhysteresisin theNDR region afterthemain

peak.Thesefacts led to the conclusionthat experimentallyobserved I-V curve effects

associatedwith a plateauin the NDR region weredueto, andevidenceof, extrinsically-

inducedoscillations.1 Theseefforts alsosettledthedebateasto whetherintrinsic bistabil-

ity could be observed (almostcertainly),andhow it appears(asa hysteresisloop in the

main I-V peak).We alsomentionthatall observedRTD oscillationswereassumedto be

extrinsic in origin.

In contradictionto the consensus,JensenandBuot’s simulations[5] provided some

convincingevidencefor the“intrinsic” explanationof theI-V plateauandrelatedphenom-

ena.Their Wigner-function-based(intrinsic) RTD simulationsshowed an I-V plateauin

theNDR region, hysteresis/bistabilityin theplateau,andintrinsic high-frequency current

oscillationsat any fixed biasin the plateau.Analysisof thesesimulationsby JB [5] and

Buot et al. [6, 8, 9] describedthephysicsthatwould producethis behavior. In short,they

concludedthat intrinsic bistability andoscillationsconspiredto producetheplateau.The

mechanismfor intrinsic oscillationswas the dynamicand self-consistentoscillation of

charge in thequantumwell andemitter, andtheresultingoscillationof thequantumwell

1. The equivalent-circuit explanation of these oscillations is given in Section 8.4.2.
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stateenergy. Charge accumulationin the quantumwell was responsiblefor the plateau

hysteresis[9]. Buot and Rajagopal[9] also gave a possibleexplanationfor an upward-

sloping plateau,which is sometimesobserved experimentally, but which is difficult to

explain by intrinsic bistability alone.

Thecontroversy[2, 3, 43-47]of whethertunnelingis mainlysequential(i.e., tunneling

mediatedby scatteringin thequantumwell) or coherent(i.e., tunnelingthroughtheentire

double-barrierstructurewithoutscattering)is perhapslesssettledthantheI-V plateauand

bistability issues.It is not evenclearwhethertheanswermakesany practicaldifferencein

RTD operation[29, 34-36],althoughothersdisagree[2, 3, 44]. Thecurrentconsensusis

thatbotheffectsoccurin parallel,andeithercurrentcomponentcandominate,depending

on the scatteringrate and device structure[2]. Accuratenumericalsimulation will be

requiredto further illuminatethis issue.JB andBuot et al. did not commenton this issue,

but we will return to it briefly in Section 8.2.

Finally, a relatively recentpoint of controversy concerningRTDs is which lumped-

parameterequivalent circuit model is correct for an oscillating RTD. The conventional

model[13, 16-22,25] assumedthattheprinciplesourceof inductancewasextrinsic to the

device (i.e., in the biasingcircuit), resultingin the series-inductanceequivalentcircuit in

Figure8.1.This modelwasnot seriouslychallengeduntil thenumericalsimulationsof JB

[5] showedintrinsicoscillations,requiringaninternalinductancemodel.Two possiblecir-

cuit modelswereanalyzedin thesubsequentanalysisof Buot et al. [6, 10,11]: theseries-

inductancemodel (but with an internal inductance),and the parallel-inductancemodel

(seeFigure8.1).As discussedby Buot et al., thelocationof theinductancehassignificant

implications for stability analysisand oscillation frequency of the RTD. Thus, proper

designof RTDs for useasfastoscillatorsandrelatedapplicationswill dependon useof

the correctcircuit model. Basedon the analysisof many simulationand experimental

results,Buot et al. again went against convention in concludingthat the parallel-induc-

tancemodelmustbecorrect.[Note thatGeringetal. [48] andBrown andSollner[49] had

previously proposedRTD modelswith internalinductance,but neithersuggestedthat the

RTD could self-oscillate.In fact,Brown andSollner’s negative inductancedid not allow

self-oscillations.]

As statedearlier, this chapterdescribesa SQUADS-basedinvestigationof thephysics

of RTDs in general,andtheabove RTD controversiesin particular, usingtheJB RTD asa
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testcase.The resultsdiffer from thoseof JB in somesignificantconclusionsbecauseit

wasfeasibleto investigatetheoperationof theJBRTD in bothmoredetailandmorecom-

prehensively that waspossiblepreviously.2 Becausethe RTD controversiesaremultifac-

eted,ratherthanattemptingto demonstrateonepositionor anotheron theseissues,the

approachwill be to examinethesimulatedoperationof theJB RTD in sufficient detail to

definitively determineits underlyingphysics.Of course,in runningadevicesimulation(as

opposedto a circuit simulation),all simulatedeffects are necessarilyintrinsic, so only

inferences can be made about RTD behavior including measurement circuit parasitics.

This work usesboththeWignerfunction[50, 51] andtransfer-matrix [52, 53] simula-

tion capabilitiesof SQUADS (seeChapters4 and5). To allow direct comparisonto the

simulationsof JB [5], the identicaldevice structureandsimulationparameterswereused

2. In fact,oneof the resultsof this investigation is a discussionin Section8.4.3of the remaining
inaccuraciesin RTD simulation,particularly simulationsbasedon the Wigner function method
(used by JB and in SQUADS).

Figure 8.1: Two most common RTD equivalent circuit models

Shown aretheseries-inductancemodelandtheparallel-inductancemodel.G is the
intrinsic conductance(basedon the equilibrium I-V curve), andC is the intrinsic
capacitanceof the RTD. The seriesresistanceandinductanceareoften attributed
to externalcauses,suchascontactresistanceandthe measuringapparatusinduc-
tance,but in thiscaseof intrinsicoscillations,thecausemustbeinternal.Rs canbe
attributedto scattering,andL to the delayin currentasthe QWS chargesor dis-
charges after an applied bias change across the DBS.
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(aswasalsodonein Chapters6 and7), andall Wignerfunctionsimulationsin thischapter

includeself-consistency andscattering.TheJB RTD, shown in Figure6.4 at equilibrium,

was composedof a 5 nm undoped GaAs quantum well between 3 nm undoped

Al0.3Ga0.7As tunnelbarriersand3 nm undopedGaAsspacerlayers.The GaAscontact

layerswere19 nm each,giving a total device width of 55 nm.Theelectroneffective mass

was assumedconstantat 0.0667 , and the permittivity was also taken as constantat

12.9 . Thesimulationsused86 positionpoints,72 wavenumberpoints,a time stepof 1

fs, and an effective relaxation time of 525 fs [54] at a simulation temperature of 77 K.

8.2 Steady-State RTD Physics

The fundamentaloperationcharacteristicfor electronicdevicesis the current-voltage

curve, and this will serve as the startingpoint in our investigation of the JB RTD. A

Wignerfunctionsimulationtracingthesteady-stateI-V curveof thisRTD is shown in Fig-

ure 8.2. Beforeinvestigating the physicsbehindthe moreinterestingfeaturesof this I-V

curve,wefirst describe“normal” RTD operation,themajorfeatureof which is a regionof

negative differentialresistance.Thebasiccauseof NDR is indicatedin Figure8.3,which

shows theenergy bandprofile of theJB RTD at boththepeakandvalley of theI-V curve.

At appliedbiasesup to andincludingthepeakcurrentcondition(0.23V in theJB RTD),

electronsenteringthe RTD at the emitter contactcan tunnel throughthe double-barrier

structure(DBS)via thequantumwell state(QWS).As thebiasis increasedabovethepeak

condition, the QWS energy dropsbelow the emitter bandedge,and currentdecreases.

Currentdoesnotdropimmediatelyto its minimumbecauseof thefinite width of theQWS

and scattering-assistedtunneling into the QWS. Nevertheless,currentshouldnormally

decreasemonotonicallyfrom peakto valley (0.32 V in this RTD), as indicatedby the

dashedcurve in Figure8.2. Currentreachesa minimum andeventually increasesagain

because,as the collector barrier is pulled down with increasingappliedbias, tunneling

throughtheentireDBS (i.e., not via theQWS)increases.This “normal” RTD behavior is

well described in [2] and elsewhere.

Quite obviously from Figure8.2, the JB RTD doesnot behave in the simplemanner

describedabove in theNDR region of operation.In fact, it waspreciselybecauseof this

interestingbehavior that we usedthis RTD asthe testdevice in our recentinvestigations

[55, 56] of implementationissuesin theWignerfunctionmethodof quantumdevicesimu-

m0

ε0
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Figure 8.2: Self-consistent, steady-state RTD I-V cur ve

Notetheupward-slopingplateauandhysteresisin theNDR region.“Normal” RTD
operation(without the plateau)is indicatedby the dashedcurve. The linear-drop
(non-self-consistent)I-V curve wassimulatedassuminga linear biasdrop across
the undoped central region of the RTD.
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Figure 8.3: RTD energy band profiles at peak and valley operation

Carriersenteringfrom theemittercantunnelthroughthequantumwell stateat the
bias for peak current (0.23 V), but not at the bias for valley current (0.32 V).
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lation. Insteadof the current falling smoothly from peak to valley, a plateaustructure

occursin theI-V curve in theNDR region of operation.Apparentlya secondcurrentpath

is operative here.Theplot in Figure8.4 of theenergy bandprofile of theRTD at 0.28V

(thecenterof theplateau)indicateswhat this new currentpathmaybe.Herewe seethat

the QWS is indeedwell below the bandminimum at the emitter contact,so electrons

enteringthe RTD at the emitter cannot tunnel throughthe QWS directly. However, an

extendedenergy banddepressionhasdevelopedin theemitterlayer. Thissuggeststhatthe

plateaucurrentoccursfrom electronsscatteringinto theemitterdepressionandthentun-

nelingthroughtheQWSasusual.Sincetheemitterdepressionis narrow (10-20nm), the

quantummechanicallyallowed energy levels (below zero) for electronswill be discrete

andwidely separated,just asin the quantumwell. Thus,this explanationfor the plateau

structuredependson anallowedstatein theemitterdepressionbeingat roughlythesame

energy astheQWSsothatcurrentcanflow from theemitterstateto theQWS.Becauseof

the interestingphysics involved in this plateaumechanism,a fair amountof discussion

below will be devoted to verifying and analyzing it.

It is not straight-forwardto verify theabove explanationof theplateau.Normally, the

transfer-matrixmethodof quantumdevicesimulationis usedto locatediscreteenergy lev-
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Figure 8.4: RTD energy bands at center of I-V plateau

Self-consistentenergy bandsat 0.28V indicatethatelectronsmustscatterinto the
discreteenergy statein theemitterdepressionto tunnelthroughthequantumwell
state.
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els by finding theenergiesat which the transmissionof electronsthroughthedevice is a

maximum.However, for operationof theJB RTD in theplateau,the transmissioncoeffi-

cient in eitherdirectionat theQWSenergy is necessarilyzero,sincethereareno emitter

electronsincident at this energy (becausethe QWS is below the emitter contactmini-

mum),andall electronsfrom thecollectorat theQWSenergy will bereflectedback(see

Figure 8.4). Further, the suspectedcurrentpath requiresscattering,which hasnot been

incorporatedaccuratelyinto the transfer-matrix method.In spiteof thesedifficulties, it is

possibleto probetheenergy bandsin Figure8.4 for resonantenergy statesbelow .

The trick is to calculatequantumwavefunctionsfor mono-energeticelectronbeamsinci-

dentfrom (andreflectedbackto) thecollectorata rangeof energies.Thosewavefunctions

which have thehigheststanding-wave amplitudesin theemitterdepressionandquantum

well aresaidto “fit”, or resonate,there.Thecomputationof single-energy electronwave-

functionsis a simpleextensionof the transfer-matrix methodof quantumsystemsimula-

tion (see Chapter 4).

By default,SQUADS computeswavefunctionsatenergiesrelative to theincidentcon-

tact minimum. In this case,wavefunctionsare incident from the collector, which will

effectively shift the referenceenergy down by the appliedbias.Using the approachdis-

cussedabove, Figure8.5 shows the resultingenergy spectrum(normalizedwavefunction

amplitudeversusenergy) of carriersin the emitterdepression(solid curve) andquantum

well (dashedcurve) for theenergy bandsof theJB RTD biasedat thecenterof theplateau

(0.28 V). The first discreteemitter state(DES) energy is only about5 meV below the

QWS energy, which is closeenoughfor themto interact.Note the constructive interfer-

ence at the respective resonant energies and destructive interference between.3

Note that theDESandQWSenergiesareseparatedby only 5 meV whentheRTD is

biasedat the centerof the plateau,yet the plateauextendsover about75 mV of applied

bias.This requiresthat the two energy levels muststayessentially“locked” togethervia

some(as-yetundetermined)mechanismduringthis portionof theI-V curve: any changes

in energy of thetwo statesmustbevirtually equal.If theenergy levelsbecamewidely sep-

arated,theplateaucurrentpathwouldbebroken,andcurrentflow woulddecrease.4 Figure

8.6 shows the variation of the two energy statesversusappliedbias in the plateau.As

3. The presentation of these results was refined based on similar work by another researcher [57].
4. In fact, this is what happens at the end of the plateau, as discussed later.

E 0=
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expected,thetwo energy statesdo remainvery close(within 10 meV) throughoutthepla-

teau.Collectingdatafor thisplot (from curveslike thatin Figure8.5)is somewhatcompli-

cateddueto the interferenceof the two resonances.However, a coupleof generaltrends

are evident: the QWS energy is nearly constant,while the DES energy risesgradually,

until at theendof theplateauthetwo areequal.Eachof theseobservationsis significant,

as discussed below.

The fact that the QWS energy doesnot rise with respectto the collectorbandmini-

mum indicatesthat the energy bandprofile in the collector and quantumwell doesnot

changeappreciablythroughthe plateau.Therefore,all increasesin appliedbiasmustbe

accommodatedby band-bendingin the emitter. To checkthis definitively, energy band

profiles were plotted for consecutive biasesin the plateau,with the collector electrode

groundedandbiasesappliedto theemitter(ratherthanvice versa,asin Figure8.4).The

energy bandsin the collector and quantumwell should line up very closely, and then

divergein theemitter. This is exactly whatoccurs,asshown in Figure8.7.Thus,all of the

additionalband-bendingin the plateauis accomplishedby charging the emitter contact

Figure 8.5: Energy occupation spectrum in emitter and quantum well

Energy occupationspectrum(normalizedwavefunctionamplitudeversusenergy)
of carriersin theemitterdepression(solidcurve)andquantumwell (dashedcurve)
for the banddiagramof Figure8.4. The first emitterenergy level is only about5
meV below thequantumwell state.Constructive interferenceis apparentnearthe
respective resonant energies, and destructive interference between.
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anddischarging of theemitteritself, so that thee-fieldat theemitterbarrier, andthusthe

energy band profile in the rest of the RTD, remains unchanged.

Anotherconclusionfrom thefactthatthequantumwell andcollectorenergy bandpro-

files do not changein the plateauregion is that the total charge in the quantumwell and

collectormustremainconstantthroughouttheplateau.If thechargeschangedappreciably,

thentheelectricfieldsin thedevicewouldalsobemodified,aswould thepotentialprofile.

On the other hand,as mentionedabove, the emitter charge (absolutemagnitude)must

decreaseto screenthecharging of theemittercontactfrom therestof theRTD. To check

theseconclusions,Figure8.8shows thedisplacedcharge(differencein chargefrom equi-

librium) in theemitter, quantumwell, andcollectorversusappliedbias.As expected,the

quantumwell andcollectorchargesareeffectively constantduring theplateau,while the

magnitudeof the emittercharge decreasessignificantly. Also shown in Figure8.8 is the

changein total chargein theRTD. This curve indicatesthat theRTD doesnot remainnet

charge neutral,reflectingthe charging of the emittercontactto restorecharge neutrality.

Figure 8.6: Emitter and quantum well energy levels in plateau

Resonantenergy (relative to the collectorbandminimum) versusappliedbias in
the plateau.The solid curve shows the energy of the lowest statein the emitter
depression,while thedashedcurve shows that in thequantumwell. Both energies
are relatively constantrelative to the appliedbias change.However, the emitter
stateenergy risesuntil it reachesthe quantumwell stateenergy at the endof the
plateau.
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The significance of the charged emitter contact is examined in Section 8.4.3.

Comparisonof theI-V curve in Figure8.2andthequantumwell chargein Figure8.8

suggeststhatcurrentflow is proportionalto thequantumwell charge . To understand

why this is true, recall the basic current density equation (ignoring sign conventions):

(8.1)

where is theelementarycharge, is theelectrondensity, and is theaverageelectron

velocity. Supposethat the probability of an electrontunnelingthroughthe collectorbar-

rier, andthuscontributing to , is fixed.Then is exactlyproportionalto . In typical

RTD operation,theheightof thecollectorbarrierabove theQWSenergy decreasesgradu-

ally with increasingappliedbias, so is not exactly proportionalto over wide

appliedbiasranges.However, whentheJB RTD operatesin theplateau,wherethecollec-

tor barrierdoesremainessentiallyunchanged,the proportionalityshouldhold very well.

Further, sinceelectricfields in thecollectorremainunchangedin theplateau,theaverage

velocity of thecarriersin thecollectorshouldremainconstantthroughoutplateauoper-

ation.This suggeststhatcurrentshouldbeconstantin theplateau,andthis is far from the

Figure 8.7: RTD Energy band profiles in plateau operation

Self-consistentenergy band profile for the plateau(solid curves) and adjacent
biases(dashedcurves).All appliedbiaschangesin theplateauareaccomodatedby
charging of theemittercontactanddischarging of theemitteritself. Theresonant
statesat thecenterof theplateau(0.28V) areshown in theemitterdepressionand
quantum well.
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case (see Figure 8.2).

Theonly reasonableconclusionfrom theabove analysisis that(onceagain) a parallel

currentpathmustbeoperating.Figure8.4shows whatthis additionalcurrentpathis: tun-

nelingthroughtheentiredouble-barrierstructureby carriersin theemitterthatdonotscat-

ter into the DES. Consideringthe plateauenergy banddiagramsin Figure 8.7, as the

appliedbiasincreases,carriersenteringat theemittercontactwhichdonotscatterwill see

both barrierheightsreducedby approximately V (i.e., the differencebetween

the appliedbiasandthe biasat the currentpeak).Sincetunnelingprobability (the trans-

mission coefficient) varies exponentially with barrier height, this non-resonantcurrent

component(from unscatteredelectronsin theemitter)shouldincreaseexponentiallyver-

susappliedbias.This expectationis consistentwith the currentincreaseseenin the pla-

teau of Figure 8.2. The positive slope of the plateau is again an issue in Section 8.4.3.

Theotherobservationsfrom Figure8.6 arenow investigated:that thediscreteemitter

stateenergy risesrelative to thecollectorenergy bandduringtheplateauuntil it equalsthe

QWS energy at the end. The fact that the DES energy risesmakes sense:the emitter

Figure 8.8: Integrated charge versus applied bias in RTD

For the total, emitter, andcollectorcharges,only thechangefrom theequilibrium
is shown. In theplateauregion, thequantumwell andcollectorchargesareessen-
tially constant,while themagnitudeof theemitterchargedecreasessignificantlyto
screenthe rest of the RTD from the chargedemitter contact.The charge on the
emitter contact can be inferred from the non-zero change in total charge.
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depressiongetsnarrowerandsteeper, sotheresonantquantumwavelengthwill beshorter,

andtheresonantenergy is thereforehigher. Thefollowing argumentshows thataslong as

theDESenergy is below theQWSenergy, theplateaucurrentpathis maintained.With the

QWSabove theDES,if theQWSchargedensityincreases,thee-fieldin thecollectorbar-

rier increaseswhile that in theemitterbarrierdecreases,sothepotentialof theQWSrises

furtherabovetheDES.This reducesthecurrentflow from DESto QWS,reducingtheQW

chargeandtheQWSenergy. By symmetry, astheQWSchargedecreases,thepotentialof

theQWSdecreasestowardstheDESenergy, sothesupplyof electronsfrom DESto QWS

increases,as doesthe QWS charge and energy, and the cycle repeats.Thus,a negative

feedbackmechanismdueto charge storagein the quantumwell keepsthe QWS slightly

above theDES,andmaintainstheDES-QWScurrentpath.However, if theDESever rises

above the QWS,we arguethat the plateaucurrentpathis no longerstable,andthe RTD

switchesto the lower I-V curve. For example,as0.313V is approachedon the up-trace,

exact alignmentof the DES andQWS producesmaximumcurrentfrom DES to QWS.

When the DES risesjust slightly above the QWS, the supply of electronsto the QWS

decreases,andthe QWS begins to deplete.The e-field in the collectorbarrierdecreases

while thatin theemitterbarrierincreases,sothepotentialof theQWSdropsfurtherbelow

theDES.This furtherreducesthesupplyof electronsto theQWS.A run-away conditions

ensues, which ends when the lower I-V curve operating conditions are reached.

Sinceplateauoperationis apparentlysofragile, it shouldnot bedifficult to switchthe

RTD out of plateauoperationwithout actually biasing the RTD above 0.313 V. This

expectationwasprovencorrectin simulationsdescribedin Chapter7 and[56], wheresim-

ply slewing thebiastoo quickly from thepeakinto theplateauregion causedtheRTD to

switch to the lower I-V curve. Anotherpoint shouldbemadethatalthoughthenon-reso-

nantcurrent(i.e., currentthat tunnelsthroughthe DBS, not via the DES/QWS)is quite

significantin the plateau,this currentcomponentcontributesnegligibly to the quantum

well charge,becausethewavelengthsof electronsat theseenergiesdo not “fit” (resonate)

in the quantumwell. Thus, when the resonantcurrentcomponentcan not supportthe

quantumwell chargeat theendof theplateau,thenon-resonantcarrierscannot make up

the difference.

Giventheabove descriptionof thetwo simultaneouscurrentpathsin this RTD, it may

seemthat thesesimulationscanshedsomelight on thecontroversyof whethertunneling



8.2. Steady-State RTD Physics 233

in RTDs is dominantlyresonantor sequential.However, in this RTD, the importantscat-

tering which makesthe plateaucurrentpathpossibletakesplacebefore electronstunnel

throughthedouble-barrierstructure,ratherthanin thequantumwell. Actually, sincescat-

tering in thesesimulationsis constantthroughoutthe device, both electroncurrentpaths

involvecomponentsof bothsequentialandcoherenttunneling.Thus,onceagain,differen-

tiating betweenthe two, even in simulations,will requiremore ingenuity. Nevertheless,

with its ability to includescatteringin a meaningfulway, the Wigner function approach

should be well suited to such an investigation.

Having done the transfer-matrix analysisof the DES and QWS energy levels, the

above conclusionsarefurther verified with a few additionalWigner function simulation

results.NotethattheWignerfunction givesthedensityof carriersateachposition

andwavenumberin thesimulationdomain.Therefore,across-sectionof theWignerfunc-

tion at a particularpositiongives the numberof carriersat eachwavenumber(and thus

energy) at thatposition.Considertwo suchcross-sectionsof theWignerfunctionat0.31V

appliedbias:oneat thecollectorcontact( nm), andonein theemitterdepression

( nm). In the collector contactcross-section(Figure 8.9), there should be two

peaksof carriers(besidesthelargeequilibriumdistribution centeredat ) at positive

velocity (wavenumber),correspondingto carrierswhich tunneledthroughthe QWS,and

thosewhich tunneleddirectly throughtheDBS from theemittercontact.Wavenumberis

related to energy by:

, (8.2)

where is the electroneffective mass, is its kinetic energy, and is the reduced

Planckconstant.UsingFigure8.7andneglectingscattering,at 0.31V, transmittedcarrier

peaksshouldappearat about0.24eV above thecollectorminimumfor theQWScarriers,

andbetween0.31eV (theemitterminimum)andabout0.4eV (theemitterFermilevel) for

the direct tunnelingcarriers.This translatesto wavenumbersof and

. These values match the two peaks in Figure 8.9 quite well.

In the Wigner function cross-sectionin Figure8.10, threecarrierpeaksareevident.

The two outterpeaksaredueto carrierstravelling from the emittercontacttowardsthe

emitterbarrier(positive ) andreflectedoff the emitterbarrierbacktowardsthe emitter

contact(negative ). Themiddlepeakis dueto carriersin theDES,whichshouldbeabout
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0.026eV above thebandedgeat nm, or , which is again a rea-

sonablematch.Finally, notethat theDEScarriersarelargely not reflected,sincethereis

no correspondingcarrierpeakat . This is becausetheDBS is nearlytrans-

parentat the QWS energy, so the DES electronstunnel through the DBS, rather than

reflectingbacklike the majority of the electronsnot in the DES.Admittedly, becauseof

the relatively low numberof wavenumberpointsusedin thesesimulations,the peaksin

bothplotsdiscussedabovearenot resolvedverywell, eventhoughweused0.31V biasing

for maximumenergy separation.It is worthy of notethattheWignerfunctionmethodcan

discerndiscreteenergy level effectswithout a highly refinedwavenumbergrid. However,

the relative accuracy of such simulations will be considered in Section 8.4.3.

Oneminor issueremainsin theanalysisof thebasicI-V curve of this RTD. Thephys-

icsof thetransitionat0.313V asgivenabove is alsodescribedby Goldmanetal. [26], but

thephysicsof thetransitionpointat0.254V wasconsideredamystery. Actually, thephys-

ics of the transitionpoint on the down-traceis even simpler. As 0.254V is approached

Figure 8.9: Wavevector spectrum of carriers at collector contact

Wigner function cross-sectionat the collector contact (x = 55 nm) at 0.31 V
appliedbias.Thelargepeakis the(largely undisturbed)equilibriumcarrierdistri-
bution, while the two small peaksat positive wavenumber(velocity) accountfor
the RTD current.The peakat k = 0.65/nmis due to electronswhich tunneled
throughtheDESandQWS,while thepeakneark = 0.8/nmis dueto carrierstun-
neling directly from the emitter without scattering into the DES.
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from above, the emitter energy band(without a depression)is not far above the QWS.

Scattering-assistedtunnelingallows the(empty)QWSto begin to fill, raisingits potential.

This bringstheemitterandQWSclosertogether, andboththescattering-assistedandres-

onanttunnelingcurrentsincreasefurther. As with the0.313V transition,a run-away con-

dition ensuesthatendswhentheemitterdepressiondevelopsandthe lower tracereaches

the plateauoperatingconditions.Buot [7] alsodescribedthe bistabletransitionsin some

detail.

To summarizethesteady-stateinvestigationof theJB RTD in this section,thephysics

of theI-V plateauandassociatedhysteresiscanbedescribedasasaninteractionof several

phenomena:scattering,thedevelopmentof apotentialdepressionin theemitter, thealign-

ment of a discreteemitter statewith the quantumwell state,and charge storagein the

quantumwell. On theup-trace,astheQWSdropsbelow 0 (i.e., theemittercontactenergy

bandminimum) after the peakcondition,the quantumwell begins to deplete.Normally,

Figure 8.10: Wavevector spectrum of carriers in emitter depression

Wigner function cross-sectionin the emitter depression(x = 18 nm) at 0.31 V
appliedbias.The outterpeaksarecarriersincidenton the DBS (positive k) and
reflectedfrom the DBS (negative k) which have experiencedminimal inelastic
scattering.Themiddlepeakshows electronsin theDESandtravelling towardsthe
DBS. Thereis no reflectedpeakat the DES energy becausethe DBS is largely
transparentat the QWS energy, so the DES electronstunnel through,ratherthan
reflecting.
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the emittercharge increasesto compensate,but in the plateau,anothermeansof accom-

modatingtheappliedbiascomesinto play: thedevelopmentof anenergy depressionin the

emitter. A discreteemitterstatedevelopsin thisemitterdepressionwhichelectronsscatter

into, andwhich providesa currentpaththroughtheslightly higherenergy QWS.A nega-

tive feedbackmechanismdueto quantumwell charge keepsthe QWS slightly above the

DES as the bias increases.Thus, current through the DES-QWScurrentpath remains

essentiallyconstantthroughoutthe plateau.However, currentdueto electronswhich do

not scatterinto theDESincreaseswith biasastheheightof theDBS decreases.Also with

increasingbias, the DES is slowly pushedup towards the QWS. When the two states

cross,the electronsupply from DES to QWS decreases,the QWS energy drops as it

depletes,andthe plateauendsabruptly. On the down-trace,the QWS is initially empty,

and the bias must be decreasedto the point where the QWS is just below the emitter

energy beforeelectronsfrom theemitterbeganto scatterinto theQWS,raisingits poten-

tial, and returningthe RTD to plateauoperation.Thus, for the JB RTD, quantumwell

charge is solely responsible for the plateau’s hysteresis, as determined by JB [5].

8.3 Transient RTD Physics

Giventhedescriptionin theprevioussectionof thebasicphysicsof theplateauin the

I-V characteristicof theJB RTD, it is now possibleto menaingfullyinvestigatethe tran-

sientphysicsof theplateau.This beginswith a transientWignerfunctionsimulationtrace

of the I-V curve5 similar to thatof JensenandBuot [5], which simulationbroughtatten-

tion to this device and to the WFM simulation method.Like JB’s, thesesimulations

showed high-frequency currentoscillationsat fixed biasesthroughoutthe plateauafter

switchingfrom oneappliedbiasto thenext. However, for biasesabove0.25V, theplateau

is actuallystable,sincetheoscillationsdecayedandthedevice eventuallyreachedsteady-

state,while JBconcludedthattheplateauwasunstablethroughout.Section8.4will return

to this importantdiscrepancy betweenthesesimulationresultsandthoseof JB.According

to this transientI-V simulation,theJBRTD is unstablein theplateauonly atbiasesof 0.25

V andbelow. For example,Figure8.11shows thecurrentoscillationsat 0.24V after they

haveconvergedto asteadywaveformandamplitudeafterabout20ps.Thesearequitesig-

5. NotethatFigure8.2 is a steady-stateI-V curve,which tracesthe(stableor unstable)equilibrium
operating point.
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nificant oscillations,with a frequency of about2.5 THz and an amplitudeof

A/cm2, which is over 40% of the time-average current.

ThetransientI-V curvewasidenticalto thesteady-statecurvewheretheRTD wassta-

ble. However, in the small rangeof biaseswheretherewereperpetualoscillations(i.e.,

wherethetransientsimulationsdid not convergeto steady-state),thetime-averagecurrent

wasnot equalto the(unstable)equilibriumvaluefoundby thesteady-statesimulation.In

suchcases,sincethe transientsimulationfollows the actualevolution of the device, and

sinceexperimentstypically measuretime-averagecurrent,the transientI-V curve is the

physically correctone.Figure8.12shows a detailview of theunstableregion of theequi-

librium steady-stateand the time-averagetransientI-V curves. In following the down-

traceof thetransientI-V curve,asecondhysteresisloopnotseenin thesteady-statesimu-

lation wasdiscovered.Thus,therearealreadythreefeaturesof the transientoperationof

the JB RTD to investigate: the causeof the oscillations,the physical differencebetween

thelower (unstable)andupper(stable)portionsof theplateau,andthecauseof thesecond

hysteresis.

Consideringthefirst issue,thediscussionof negative feedbackin theprevioussection

1.8
5×10

Figure 8.11: Intrinsic curr ent oscillations of unstable RTD

2.5 THz intrinsic currentoscillationsat Va = 0.24 V in the narrow-emitterRTD.
The oscillationsresult from the changingrelative positionsof the quasi-bound
states in the emitter depression and the quantum well.
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suggeststhatvariationsin thealignmentof theDESandQWSdueto chargedensityvari-

ationsmight producethe plateauoscillations.To investigate further, Figure 8.13 shows

charge densityandenergy bandprofiles for the minimum andmaximumcurrentcondi-

tions of Figure8.11.To seecharge variationmoreclearly, Figure8.14shows integrated

chargein theemitterandquantumwell versustime(thecollectorchargevariationis much

smaller).Thus,duringoscillations,theemitterandquantumwell chargesoscillateessen-

tially 180degreesout of phasewith eachother. As describedin Section8.2,asthequan-

tum well charge increases,the electricfield in the collectorbarrier increases,andthat in

theemitterbarrierdecreases,raisingthepotentialof theQWSfurtherabove theDES.The

misalignmentof the DES and QWS lowers the currentfrom DES to QWS, so that the

QWSdischargesandtheemitterrecharges.This lowerstheQWSwith respectto theDES

again, andthecycle repeats.Thus,theplateauoscillationsin theJB RTD resultfrom the

self-consistentinterplaybetweenthechargein thequantumwell andthatin theaccumula-

tion region, and the resultingvariation in the alignmentof the discreteenergy statesin

these two regions.

The analysisabove largely agreeswith the detaileddescriptionof the physicsof pla-

Figure 8.12: Transient hysteresis below main I-V curr ent peak

Steady-state(equilibrium) andtransient(time-averaged)I-V curve detail nearthe
uppertransitionto theplateau.ThetransientI-V curvehasasecondhysteresisloop
near the main peak of the I-V curve.
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teauoscillationsgiven by Buot andRajagopal[8, 9], but differs on oneimportantpoint.

FromFigure8.13,thevariationin alignmentof theQWSandDESis only about10 meV.

Thus,theoccurrenceof plateauoscillationsrequiresa discreteenergy statein theemitter,

sinceonly a narrow energy statewould produce,with only a small variationin theQWS

energy, a large variation in current into the QWS and correspondinglarge variation in

quantumwell charge. Buot and Rajagopalusedthe Fermi level, rather than the DES

energy, asthe relevant emitterenergy. The Fermi level in this device is 86.4meV above

theemittercontactminimum,makingtheincomingelectrondistributionmuchtoowide to

producetheobservedquantumwell chargevariationwith suchsmallchangesin theQWS

energy. More importantly, Figure8.4 shows that the emitterFermi level is nowherenear

theQWSenergy while this RTD is operatingin theplateau.Even if Buot andRajagopal

meantto describea quasi-Fermilevel in the emitter depression,theseoscillationsdefi-

nitely require a discrete emitter state.

The possibility of oscillationsoccurring in an RTD where a discreteemitter state

chargestheQWSwasfirst predictedby RiccoandAzbel [57]. However, they did not fore-

seethattheDESmustremainbelow theQWSfor a negative-feedbackmechanism(in this

Figure 8.13: Carrier and energy band profiles during oscillations

Self-consistentenergy bandandelectrondensityduringoscillationsat 0.24V. The
solid curvescorrespondto the maximumcurrent;the dashedcurves to the mini-
mum. the quantum well potential only varies by about 12 meV.
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case,self-consistency) to maintain this currentpath. They also suggestedthat an RTD

wouldnever reachsteady-stateunderthesecircumstances.Simulationsin thissection(and

in Chapter6) showedconclusively that this RTD is stablein theupperportionof thepla-

teau,eventhoughit displaysdampedoscillations.Explainingwhy theplateauis partlysta-

ble andpartly unstableis thesecond“mystery” concerningtransientplateauphysics.The

answeris quite obvious: one of the requirementsof unstableoperationof either of the

equivalentcircuits in Figure8.1 is that the differentialconductance mustbe negative.

Theplateauwill only beunstablewheretheRTD exhibits NDR.6 Thus,for plateauopera-

tion atbiasesof 0.25V andbelow, theRTD will beunstable,while above0.25V it will be

stable.SincetheJB RTD is unstablein theNDR portionof theplateau,it mayseemodd

thattheRTD is stablein NDR portionof thelower I-V curve on thedown-trace(0.31V -

0.255V). The reasonis, of course,that the negative feedbackmechanismof the plateau

(variationin alignmentof theDESandQWS) is not operationalexceptin theplateau.In

6. This statement will be modified slightly in Section 8.4.2.

Figure 8.14: Emitter and quantum well charge during oscillations

Total (integrated)chargein theemitterlayer(top) andquantumwell (bottom)ver-
sustime during oscillationsat 0.24 V bias.Self-consistency tries to maintaina
constantnetchargein thedevice,soa decreasein oneregion causesanincreasein
the other, and vice-versa.
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fact,thereis essentiallyno resonantchargein theQWSatall, sotheemittercharge,which

is not in a discretestate,has nothing to oscillate out of phasewith.Tthis difference

between NDR regions will be important in the equivalent circuit analysis of Section 8.4.2.

Finally, this sectionconcludeswith ananalysisof the third “mystery” concerningthe

transientoperationof this RTD: thecauseof thenarrow hysteresisloop just below 0.24V

(seeFigure8.12).Sincethereis nohysteresisin thesteady-stateI-V curve in themaincur-

rentpeak,theusualcausesof hysteresismustberuledout here:load-linehysteresisduea

seriesresistancegreaterthantheRTDs intrinsic NDR [21, 23, 24], andbistability dueto

chargestoragein thequantumwell (seeSection8.1).Thecauseof this hysteresismustbe

adynamiceffect. Indeed,theRTD is still oscillatinghereon thetransientdown-trace.Fig-

ure 8.15shows the position-averagedcurrentafter the RTD is switchedfrom 0.238V to

0.2375V (theendof theplateauon thetransientdown-trace).Sincethemaximumcurrent

during the oscillationis A/cm2, it is clear that the RTD is not oscillating

aroundtheequilibriumoperatingpoint ( A/cm2) foundby thesteady-stateI-

V trace.Theoscillationssomehow causetheRTD to remainin plateauoperation(i.e.,with

an emitter depressionand DES/QWScurrentpath) longer than a non-oscillatingRTD

would.Actually, this I-V curve featurehasbeenshown in RTD equivalentcircuit simula-

tionsandexperimentalmeasurementspreviously [15, 17,20,58]. Sollner[15] usedakind

of momentumargumentto explain this form of hysteresis:“it is necessaryto bias the

diodenearerthe region of maximumnegative conductanceto begin oscillations...thanto

suppressoscillationsafterthey have begun....” Wallis andTeitsworth [25, 58] usetheterm

“subcriticalHopf bifurcation” for this effect.Buot andRajagopal[59] reportedtheeffects

of this asa doublehysteresisin theoriginal JB simulations[5], althoughat thatbias(0.24

V), bothtransientI-V tracesdoeventuallyconvergeto thesametime-averagecurrent.This

transientI-V curve simulation is thereforeapparentlythe first to demonstratedynamic

hysteresis definitively in intrinsic RTD simulations.

8.4 Discussion

Sections8.2and8.3describedthesteady-stateandtransientphysicsbehindtheopera-

tion of theJB RTD in somedetail.This sectiondiscussesthesignificanceof theseresults.

Section8.4.1,pointsout themaindiscrepancy betweenthesimulationresultsandconclu-

sionsin this chapterandthoseof JB [5], andexplainsthereasonfor theincorrectsimula-

J 5.36
5×10=

J 6.0
5×10=
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tion resultsand conclusionsof JB. Section8.4.2 then discussesthe revisions that are

necessaryin other researchers’equivalent circuit analysisbasedon the JB simulations.

Finally, Section8.4.3 attemptsto determine,throughfurtheranalysisandmoreaccurate

simulations,whetherandto whatextent the foregoingsimulations(andthoseof JB) cor-

rectly model the physics and operation of real RTDs.

8.4.1 Plateau Interpretation Error

As mentionedin Section8.3,themaindiscrepancy betweenthetransientWignerfunc-

tion method(WFM) simulationresultsin this chapterandthenominally identicalonesof

JensenandBuot [5] is thefactthatthesimulationsin thiswork showedthepositivediffer-

ential resistance(PDR) portion of the plateauto be stable,while JB concludedthat the

entire plateauwas unstable.With their conclusion,JB’s resultsmatchedthree related

experimentalobservationsvery well: high-frequency oscillationsthroughouta plateauin

theNDR region,bistability andhysteresisin theplateau,andtheendof theplateauwhere

Figure 8.15: Oscillating current in lower state of dynamic bistability

Position-averagedcurrentaftertheRTD is switchedfrom 0.238V to 0.2375V (the
endof theplateauon thetransientdown-trace).Sincethemaximumcurrentduring
oscillation is J = 5.36x105 A/cm2, the RTD is not oscillatingaroundthe equilib-
rium operatingpoint (j = 6.0x105 A/cm2) foundby thesteady-stateI-V trace.This
indicates a dynamic bistability.
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the lower I-V curve returnsto PDR. Subsequentanalysisby Buot et al. [5, 6, 8-11, 60]

concludedthat the JB simulation resultsresolved the plateaucontroversy (seeSection

8.1), claiming that the I-V plateauandit associatedoscillationswere intrinsic in origin.

Indeed,theplateaucontroversyappearedto requireexactly sucha resolution:oscillations

to producetheobservedplateau,andcharge-bistabilityto producetheobservedhysteresis.

As discussedin Section8.1, it is now clearthatextrinsically-inducedoscillationscanpro-

duceall of the observed plateaufeatures.Further, the resultsin Section6.5.4(and[55])

provedconclusively thattheJB RTD operatingin thePDRportionof theplateauis stable

(i.e., doesnotoscillate).Thus,theclaimedresolutionof theplateaucontroversyby Buotet

al. mustbeincorrect,sinceit doesnotmatchobservations(oscillationsthroughoutthepla-

teau). Further evidence against the claim of Buot et al. is given in Section 8.4.3.

SincethetransientWFM simulationsin Section8.3werenominally identicalto those

of JB, it is instructive to determinewhy JB found the PDR region of the plateauto be

unstable.ThemostimportancedifferencebetweenthetransientWFM simulationsin this

work and that of JB was their useof an “acceleratedconvergencetechnique”.The idea

behindthis techniquewasthatif thepotentialprofile is not updatedat a giventime step,a

much less expensive (non-self-consistent)Wigner function updatecomputationcan be

used.The acceleratedconvergencetechniquethereforeallowed the potential to remain

fixedfor up to 50 time steps(i.e., 50 fs) betweenupdates.It is not difficult to seehow this

might produceoscillationsin a region of operationwhich is marginally stable.However,

JB apparentlyrecognizedthis problem, and switched to the “natural time-evolution

approach”(potentialupdatedat eachtime step)in theplateau.Therefore,themostlikely

causeof their incorrectconclusionaboutplateaustability is thatonly 1600timesteps(i.e.,

1600fs) wereallowed per biaspoint.7 Indeed,from the instantaneousswitchingsimula-

tions of the JB RTD describedin Chapter6 and[55], the oscillationsdecayedso slowly

after instantaneousswitchingin thePDRregion of theplateauthat theRTD did not con-

vergeto steady-statein 1600fs at any biaspoint in this region of operation.Convergence

timesfor instantaneousswitchingrangedfrom over 7500fs at 0.26V down to just under

2000fs at 0.31V. Thus,terminatingthetransientsimulationprematurelyin thePDRpor-

tion of the plateaucausedJB to incorrectlyconcludethat the RTD wasunstablein this

7. Bias points in JB’s plateausimulationswere 0.01 V apart,with instantaneousbias switching
between.
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region of the plateau.

Giventheroot causeof JB’s simulationerror, a few relatedpointsareworth mention-

ing. TransientWFM simulationsareinherentlyCPUintensive, asthey seekto follow the

exact evolution of the quantumdevice beinginvestigated.Eachtime step(typically 1 fs)

requiresthe solution of a hugesystemof equations(assuming“natural”, or physically-

based,timeevolution is used).As aresult,boththeacceleratedconvergencetechniqueand

the limitation on time stepsby JB werea practicalresponseto the limited andexpensive

computerresourcesrequired.True instability in theNDR region of theplateaumayhave

resultedin reducedvigilance in the remainderof the plateau,especiallywhen a fully

unstableplateauwasexpected,basedon experimentalobservations.Indeed,many Cray

C90supercomputerCPUhourswereusedin thetransientWFM simulationsof Chapter6

to verify that the PDR portion of the plateau was, in fact, stable.

In theabovediscussion,thehighcomputationalcostof transientWFM simulationshas

becomean issueonceagain. As discussedin Chapter6, for maximumeffect, a WFM

investigationshouldmake useof thecomplementaryadvantagesof bothsteady-stateand

transientsimulationswhereappropriate.In particular, (efficient) steady-statesimulations

areappropriatefor wide-ranginginitial investigations(e.g., to tracethe I-V curve or to

determinethe effects of varying simulationparameters).Theseresultswill provide the

insightnecessaryto narrow thefocusof a moredetailed(andexpensive) transientinvesti-

gation to thosecaseswheredynamiceffects are inherent(e.g., switching) or suspected

(e.g.,oscillations).In this way, the basicoperationof the device is known, andadequate

computerresourcescanbeappliedto a few critical transientsimulations,without making

significantcompromisesin implementationor execution.In this case,notethat although

the transientI-V tracefor theJB RTD requiredroughly100 timesasmuchCPU time as

the steady-statetrace,the two I-V curveswerealmostidentical,even thoughsignificant

dynamicandbistableeffectsoccurredin theNDR region. This confirmsthereliability of

thesteady-stateWFM for investigatingthebasic(i.e.,non-transient)operationof quantum

devices,without diminishingtheimportanceof properlyconductedtransientWFM simu-

lations, when necessary.

As anotherexample,transientWFM simulationsarenot generallyrequired,asBuot

andRajagopalclaim [59], to traceI-V curvessimply becauseof bistabletransitionpoints.

This is a strongclaim to make without first determiningthe capabilitiesof steady-state
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WFM simulations.Although only transientsimulationscanshow the transitionprocess,

this processis generallynot shown in an I-V plot. Thesimulationsof theJB RTD in this

chapterhavedemonstratedthataproperlyimplementedsteady-stateWFM simulation(see

Chapter 6 for self-consistency implementationchallengesand solutions) can locate

bistabletransitionpointsaccuratelywhentheinitial operatingpoint is stable.Finally, even

thoughonly transientsimulationscanmodelthe“exact” evolution of a device,andevenif

computerresourceswereinfinite andinfinitely fast,steady-statesimulationscanstill pro-

vide informationthata transientsimulationcannot: the (unstable)equilibriumoperating

point in anunstableregion of operation.Thesignificanceof suchknowledgewasdemon-

stratedin the determinationin Section8.1 that the I-V plateauis largely not a dynamic

phenomenon,andin thediscovery andanalysisin Section8.3of anactualdynamicbista-

bility and hysteresis loop in the JB RTD.

8.4.2 Equivalent Circuit Analysis

One main investigative thrust basedon the JB simulationswas an extensive RTD

equivalent circuit analysisby Buot et al. [6-9] and Woolard et al. [10, 11] (hereafter

referredto as BW). The determinationin Section8.2 that the plateauis a steady-state

effect will requiresomeof this work to besubstantiallyrevised,at leastin relationto the

JB RTD. Basedon the initial conclusionby JB that experimentally-observed plateau

effectsandthe JB simulatedplateauwereoneandthe same,BW drew further analogies

with analysisof RTD measurements.They assumedthat,asin theexperimentalcase,the

plateauwasnot the“real” I-V curve,but wasa purelydynamiceffect: thetime-averageof

anoscillatingcurrent.They assumedthattheintrinsic I-V curve followedthesimpleRTD

behavior describedin Section8.2.Their equivalentcircuit analysiswork thuscenteredon

trying to producetheJB transientsimulationresultsby addingcircuit elementsto a bias-

dependentconductance which gave thelinear-dropI-V curve (seeFigure8.2).Both

the series-inductance model and parallel-inductance model in Figure 8.1 were considered.

Given the initial assumptionthat the JB RTD wasbehaving like experimentalRTDs,

BW followed a very reasonableequivalentcircuit analysis.They useda seriesresistance

to shift the linear-drop (i.e., non-self-consistent)I-V curve out to the “normal” RTD

behavior without plateaueffects (the dashedcurve and lower curve in Figure 8.2). The

intrinsic capacitance andan inductance due to a quantumwell charging delay [5]

G V( )

Rs

C L
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wereproposedto causethe oscillationsin the NDR region.8 The time-averageof these

oscillationswasexpectedto producetheplateau.Themainchallengewasto achieveapla-

teauwith positive slopein anoscillatingRTD. Admittedly, RLC circuitshave beenshown

to produceall of thesimulatedeffects(oscillationsthroughoutapositive-slopeplateauand

hysteresiswith thedown-trace),aswe discussedin Section8.1.However, BW werecon-

strainedto usecircuit elementswhich correspondedto the JB simulationresults,a con-

straint which previous circuit analysesdid not have. Several attemptswere made to

explain thepositiveslopeandunstableplateau,whichexplanationsreliedoneitheracom-

plicatedinteractionof effects[9] or acomplicatedequivalentcircuit with unspecifiednon-

linearelements[10, 11]. SinceBW’s initial assumptionaboutthecorrectsteady-stateI-V

curve was incorrect, these attempts were not completely successful.

Section8.2showedthat in theJB RTD simulations,thelower curve hasnothingto do

with plateauoperation,so the “normal” I-V curve cannot beusedin a circuit elementto

analyzeplateauoperation.Indeed,theplateauis notpurelyadynamiceffect (i.e., theaver-

ageof oscillations),but is a fundamentalpartof theequilibriumI-V curve (thesolidcurve

in Figure8.2).Of course,thetrueequilibriumI-V curvemustbeusedasthestartingpoint

for equivalent circuit analysis.The simplestDC equivalent circuit model for this RTD

consistsof a variableconductance which producesthis I-V curve in parallelwith

theRTD’s DC capacitance , asshown in Figure8.16.TheDC capacitanceversus

biascanbecomputedasthedisplacedcharge,Q(V), dividedby theappliedbias.In Figure

8.16, the positive displacedcollector charge is usedfor Q, since the negative “plate”

includesthreecomponentsin differentlocations:quantumwell, emitter, andemittercon-

tact (see Figure 8.8).

Theremainderof thissectionis outlinedasfollows.First,startingwith theDC equiva-

lent circuit modelin Figure8.16,theelementsof thetransientequivalentcircuit modelsin

in Section8.1 are describedin more detail. Then equivalent circuit analysisis usedto

explain why the NDR portion of the plateaudisplayssustainedoscillations,while the

NDR portionof the lower curve doesnot. Basedon this analysis,someobservationsand

conclusionsaremadeconcerningthe correcttransientequivalentcircuit model from the

candidatesin Figure8.1. Finally, a slightly modifiedequivalentcircuit model for the JB

8. SeeSections8.2 and8.3 for a moredetaileddescriptionof how self-consistency createsa feed-
back mechanism that produces oscillations in the JB RTD.

GDC V( )

CDC V( )
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RTD is made based on the analysis of the operation of this RTD in the previous sections.

To begin this equivalentcircuit analysisof the JB RTD transientI-V curve trace,the

origins of the four transientmodel circuit elementsfor the two RTD equivalent circuit

modelsin Figure8.1will bedescribedin moredetail.ExtendingFigure8.16,theequilib-

rium I-V curve is now acrosstheseriescombinationof and . Therefore,

 is computed from the hypothetical I-V curve

, (8.3)

which essentiallyskews the equilibrium I-V curve towards lower voltages.The series

resistance andinductance areoftenattributedto externalcauses,but sinceintrinsic

devicesimulationsdonot includeany externaleffects, and musthave internalcauses

in thiswork. For simplicity andcomparisonto thework of BuotandJensen[6], afixed

is usedhere.As mentionedabove,inductance is usuallyattributedto thedelayin current

as the QWS chargesafter an appliedbiaschangeacrossthe DBS [9, 48, 49]. However,

evenwhenthequantumwell chargeis negligible, enforcingself-consistency automatically

Figure 8.16: DC equivalent circuit for simulated RTD

Thebias-dependentresistanceis basedon theequilibriumI-V curve,andthebias-
dependentcapacitanceis theequilibriumdisplacedcollectorchargedividedby the
applied bias.
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resultsin an “ringing” effect,asthedevice oscillatesaroundanew equilibriumaftera

quickbiaschange.Finally, is thedynamiccapacitanceof theRTD, which is, in general,

not equal to the DC capacitance, as discussed by Buot and Jensen [6].

Evenbeforechoosingspecificvaluesfor, , , and , stability criteriawill allow the

correctcircuit model(parallelor seriesinductance)to beidentified,basedoncircuit stabil-

ity arguments.In general,Woolardet al. [11] notedthat two energy storageelements(in

this case and ) arerequiredfor circuit oscillationsof any kind. Self-oscillationsunder

DC biasfurtherrequireanelementexhibiting NDR, while servesto damposcillations.

One condition given by Buot and Jensen [6] for sustained oscillation of each circuit is:

Series-inductance: , (8.4)

Parallel-inductance: . (8.5)

As statedin Section8.3,notethata negative differentialresistance is requiredto make

eitherRTD circuit model in Figure8.1 unstable(i.e., to initiate osciallationsat a given

operating point).9

Now considerthedifferencein stabilityof thetwo NDR regionsof theI-V curve from

anequivalentcircuit viewpoint.10 Thedeterminationof thecorrectRTD equivalentcircuit

hingeson thefact thatboth and (thelocal slopeof theI-V curve) aresmallerin the

lower NDR region. It is clearfrom Figure8.2 that theslopeof the I-V curve is greaterat

thebeginningof theplateauthanin the lower NDR region, so is certainlysmallerin

thelowerNDR region.Two independentargumentsalsoshow thattheinductance in the

lowerNDR region is smaller. First,Section8.3foundthattheessentialdifferencebetween

the plateauand lower I-V curve is that quantumwell charge is negligible in the lower

curve,effectively eliminatingtheinductivedelaydueto quantumwell charging.Second,it

is apparentthat the remaininginductancedueto self-consistency (i.e., theself-consistent

interplayof chargedensityandenergy bands)is significantlysmaller, basedon oscillation

frequency, which generallyincreaseswith decreasinginductance.In the NDR portion of

theplateau,the (sustained)oscillationfrequency is about2.5 THz, while outsidethepla-

teauthe(damped)oscillationfrequency is roughly10 THz. With both and smaller

in thelowerNDR region, (8.4)would tendto becomeinvalid (nooscillations),while (8.5)

9. However, if the circuit is alreadyoscillating, it may continueto do so near an NDR region if
externalcircuit elementsallow theappliedbiasacross to be in theNDR region over at least
part of the oscillation cycle.
10. The physics of this behavior was described in Section 8.3.
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would be more strongly satisfied(oscillationswould occur). Since oscillationsdo not

occurin thelowerNDR region,(8.4)andtheseries-inductanceRTD circuit modelmustbe

correctin this case.This resultis contraryto thatof Buot andJensen[6], who concluded

that the parallel-inductance model was correct.

Having chosenanRTD circuit model,thetaskreturnsto choosingreasonableequiva-

lent circuit elements.Admittedly, it is perhapsfutile to attemptto accuratelymodel the

complex physics occurringin the JB RTD (as seenin the transientWFM simulations)

using a simple lumped-parameterequivalent circuit. However, the grossfeaturesof the

WFM simulationsarenot too difficult to reproduce.In contrastto the rathercomplicated

circuit elementsproposedby Woolardet al. [10, 11], a simpleseries-inductancecircuit

modelwith constant , , and will producethebasicbehavior predictedby the tran-

sientWFM simulations.Circuit simulationsusingHSPICEandtheRTD equivalentcircuit

modelshown in Figure8.17wereusedto demonstratethis.Thedevice areawasassumed

to be 1 µm2, to keepcurrentsin the reasonablerangeof a few milliamps. Thesecircuit

simulationsalso used = 5 fF (the approximateaverageDC capacitance;seeFigure

8.16),while = 5 Ω and = 600 fH werechosento approximatelymatchcircuit and

WFM simulations(especiallyoscillationfrequency andamplitude,andthewidth of RTD

instability).TheNDR element wascomputeddirectly from theDC I-V curve using

(8.3), so the DC I-V curve tracewas exactly as simulatedby the WFM. The transition

from highto low currentwasaccomplishedby switchingone elementoutandsimul-

taneouslyswitchingtheotherin at thecorrectbias(0.314V on theup-trace;0.254V on

the down-trace).

A completetransientI-V up-trace(usingcontinuousbiasslewing at 10 mV/ps)for the

circuit in Figure8.17is shown in Figure8.18.Note thatonly theNDR region of thepla-

teauis unstable,asexpected.Figure8.19shows moredetailedsimulationsof this simple

RTD circuit model(Figure8.17) in the unstableregion, including transientbiasslewing

(at 1 mV/ps)in bothdirections.Notethedynamicbistability in bothdirections,dueto the

factthatoscillationsstartedlater in onedirectionthanthey endedin theother, for reasons

discussedin Section8.3. It wasunnecessaryto changethe inductanceto keepthecircuit

from oscillatingin the lower NDR region - the decreasein negative differentialconduc-

tance was sufficient.

Simulationsof the parallel-inductancecircuit (createdby connecting asshown by

Rs L C

C

Rs L

G V( )

G V( )

C



250 Chapter 8.RTD Device Physics Investigation

the dashed-linein Figure8.17) werealsoattempted.Although DC simulationsgave the

correctI-V curve, transientHSPICEsimulationswereunableto converge in eitherNDR

region.As a result,it wasnot possibleto meaningfullyinvestigatethebehavior of thepar-

allel-inductancemodel.Returningto theseries-inductancemodel,amoreelaborateequiv-

alent circuit model could be developedin an attemptto more accuratelymatchWFM

simulationsof theJBRTD. However, asdiscussedin thenext section,thiseffort is perhaps

not worthwhile,sincetheWFM simulationresultsthemselvesmaybesubstantiallyinac-

curate.

8.4.3 Simulation Accuracy

This chapterhasshown that the connectionis merelyvisceralbetweenthe transient

Wigner functionsimulationsof theJB RTD andexperimentalRTD measurementsshow-

ing oscillationsresultingin aplateauin theNDR regionof operation.Further, theseWFM

simulationresultsseemquitesuspicious,consideringthattheeffectspredictedin theRTD

Figure 8.17: RTD equivalent circuit used in HSPICE simulations

RTD series-inductanceequivalentcircuit modelusedin HSPICEsimulations.The
device areais takenas1 µm2. TheaverageDC capacitancewasusedfor C, while
Rs andL werechosento approximatelymatchcircuit simulationsto WFM simula-
tions (frequency andbiasrangeof oscillations).Su andSd switch in andout the
two I-V curves(upperandlower) at the properappliedbias(0.314V on the up-
trace;0.254V onthedown-trace).Oneswitchclosesastheotheropens.Theparal-
lel-inductancemodelusedby JB is formedby simply moving thecapacitortermi-
nal to the other side of the inductor, as shown by the dashed line.
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simulationshave apparentlynot beenobserved experimentally. In particular, in the main

currentpeakwhereintrinsicbistabilitydueto chargestoragein thequantumwell mightbe

expectedexperimentally, the JB RTD insteadshowed a hysteresisloop due to unstable

oscillations.And in theNDR regionwhereexperimentalresultsoftenshow anI-V plateau

and hysteresisdue to unstableoscillations,the JB RTD simulationsinsteadpredicteda

plateaudueto apotentialdepressionanddiscreteenergy statein theemitter, andhysteresis

due to intrinsic bistability.

Thequestionconsideredin this sectionis whethertheeffectspredictedby theWigner

function simulationsshouldoccur in measurementsof the JB RTD, or whetherthey are

simplyartifactsof inaccuratesimulations.If theeffectsarereal,thenthey canundoubtedly

beusedin quantumfunctionaldevices.If they arenot, thenmoreattentionshouldbepaid

in the future to improving and verifying the accuracy of WFM simulationresults.This

sectionattemptsto assesthe accuracy and reliability of the foregoing WFM simulation

resultsby executingmoreaccurate(andcorrespondinglymoreexpensive) Wigner func-

tion simulations.Thedeterminationwill hingeon whetherandto whatdegreethesesimu-

Figure 8.18: HSPICE simulated I-V curve trace

TransientI-V curve (continuousbiasslewing at 10 mV/ps) for the series-induc-
tanceRTD circuit modelshown in Figure8.17.Only theNDR portionof thepla-
teauis unstable.Elsewhere,the transientI-V curve follows the DC I-V curve. At
the bistabletransition,switching from the high to low curve causesa brief and
highly damped oscillation.
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lation results differ from the previous ones.

The most obvious possiblesourceof inaccuracy of the WFM simulationsabove is

indicatedby thehigh electricfield at theemittercontactduringplateauoperation.A high

e-fieldat a contactindicates(in additionto a chargedcontact)that the simulationresults

will not be independentof thesimulationregion boundarylocation.To accuratelymodel

experimentaldeviceswhich arewider, a wider simulationwidth shouldbeused.Evenfor

RTDs which are this narrow, non-equilibriumboundaryconditions(e.g.,drifted Fermi-

Dirac) boundaryconditions[61] shouldbe usedto improve simulationaccuracy. Most

experimentalRTDs aremany times the 55 nm simulationwidth usedby JB and in this

work, sotheprevioussimulationresultsmaysaylittle abouttheoperationof mostexperi-

mentalRTDs. In particular, sincethe emitter contacte-field was significantfor plateau

operation,the interestingphysics(which all occurredin the plateau)could be entirely a

resultof choosingtoo smallof simulationwidth. To determinethis, steady-stateandtran-

Figure 8.19: Detail of HSPICE I-V curve showing dynamic bistability

TransientI-V curve (continuousbiasslewing at1 mV/ps)for theseries-inductance
RTD circuit modelshown in Figure8.17.Theunstableportionof theI-V curve is
detailed,including both the up-traceand down-trace.In eachtrace,oscillations
startedlater thanthey endedon theoppositetrace,resultingin dynamicbistabili-
ties.Themaximumandminimumof theoscillationsfor bothtraceswereabout8.1
mA and2.5 mA, respectively. The oscillation frequency was 2.5 THz, as in the
WFM simulations.
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sientWFMsimulationswere run with a wider emitter to determinethe effect of emitter

width on simulatedRTD operation.To prevent any effect from position grid spacing

changes,the grid spacingwas maintainedby simply increasingthe numberof position

points in the simulation.

In short,theemitterwidth did indeedhave a significantinfluenceon the I-V plateau.

For example,Figure8.20shows theequilibriumI-V curve for a 63 nm emitterlayer. The

narrow (19 nm) emitterI-V curve is shown for comparison.Clearly, usinga narrow emit-

ter forcestheRTD into plateauoperationat lower biasesandmoreabruptly, andprolongs

plateauoperationto higherbiases,ascomparedto thewideemitterRTD. Nevertheless,the

I-V plateaustill occursin thewide emitterRTD. Examinationof othersimulationresults

showed that the plateauis causedin the samemanner, anddisplaysall of the samefea-

tures,as in the narrow emitter RTD. Figure8.21 shows the energy bandprofile for the

wideemitterRTD operatingin theplateauat0.28V. Notethattheemittercontacte-fieldis

small, as intended.This indicatesthat the formation of an emitter depressionand the

resultingI-V plateauarenot simply the result of inaccurateboundaryconditionsin the

narrow emitter RTD simulations.

The wide-emitterRTD alsoself-oscillatesin the plateau.For example,at 0.27V, the

final oscillation amplitudewas almost105 A/cm2 aroundan averagevalue of 4.4x105

A/cm2, andat a frequency of just under2.5 THz. Otherwide-emittersimulationsshowed

thattheeffectof emitterwidth changeswasminimal,evenin plateauoperation,for emitter

widthsabove about50 nm (versus19 nm in our previoussimulations,not includingthe3

nm buffer layer).As expected,theemitterwidth madelittle differencefor RTD operation

outsidetheI-V plateau,sincetheemittercontacte-fieldwaslow here,evenin thenarrow-

emitterRTD. For the samereason,increasingthecollectorwidth madenegligible differ-

ence in the equilibrium I-V curve under any conditions.

Figure8.20 alsoshows that hysteresisandbistability still occur in the wide emitter

RTD, but notethat the hysteresisno longerhasthe visceralconnectionto the plateauof

experimentalI-V traces.In particular, theup-tracetransitionpointno longeroccurswhere

the lower I-V curve returnsto PDR, in contrastto experiments.Also the transitionfrom

lower to uppertraceis direct,sinceit occursatbiasesbelow theplateau.In fact,exceptfor

thesmallplateau,thehysteresisnow appearsmuchmorelikeexperimentalobservationsof

intrinsic bistability, wherethehysteresisloop appearsin themainI-V peak.This suggests
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that further improvementsin theaccuracy of thesimulationmayremove theplateau(and

the associatedemitter depressionandoscillations)entirely. This would bring the WFM

simulationresultsinto paritywith experimentalresults:hysteresisdueto intrinsicbistabil-

ity appearsasanI-V loop in themaincurrentpeak,andany plateauwouldbedueto exter-

nally-induced oscillations. The WFM simulations would then support the existing

consensus in these RTD operation controversies, as discussed in Section 8.1.

Oneotherobvioussourceof concernrelatingto theaccuracy of WFM simulationsis

theneedto usea relatively small number of wavenumbergrid points.As reportedby

Frensley [50], memoryusagein WFM simulationsis proportionalto , andcomputa-

tion increaseswith , where is thenumberof positionpoints.Thus,while transfer-

matrix methodsimulationstypically usethousandsof energy values,it is very costly to

useeven 100 wavenumberpoints in WFM simulations.However, as computingpower

increases,it will befeasibleto refinetheenergy (wavenumber)spectrumof WFM simula-

tions,even with the inherentlycostly transientsimulations.Someambitioussteady-state

Figure 8.20: Steady-state I-V curve for wide-emitter RTD

Wide (63 nm) emitter equilibrium I-V curve. The narrow (19 nm) emitter I-V
curve is shown for comparison.Using a narrow emittercausesthe RTD to begin
plateauoperationat lower biasesand more abruptly, and prolongsit to higher
biases,than the wide emitter RTD. However, the I-V plateaustill occursin the
wideemitterRTD, andis causedin thesamemannerasin thenarrow emitterRTD.

0.0 0.1 0.2 0.3 0.4
Applied Bias (V)

0

1

2

3

4

5

6

7

C
ur

re
nt

 D
en

si
ty

 (
10

5  
A

/c
m

2 )
Narrow

Wide Emitter

Emitter

Nk

NxNk
2

NxNk
3

Nx



8.4. Discussion 255

simulationshave beenreportedby Gullapalli et al. [62] using and .

However, theJBRTD hasnotbeeninvestigatedin thismuchdetail,andnotransientWFM

simulationsapproachingthis magnitudehave beenreportedto date.Suchlarge simula-

tions remainin the future of WFM research.A final andlessobvious reasonthat the JB

andsimilarWFM simulationsmaybeinaccuratewasdiscussedin Section5.5.7:thepossi-

bility that the standard implementation of the discrete WFTE may be inaccurate.

Basedon the wide emittersimulationresults,it appearsthat muchof the interesting

behavior of theJB RTD maybeanartifactof inaccurateWFM simulations.Theobvious

questionis whetherthiswould renderworthlesstheresultsof previoussections,aswell as

work by otherresearchersbasedon theJB simulations.Theanswerhasseveralparts.The

first is that theseWFM simulationswerevery usefulin thestudyof WFM simulation.In

fact,moreis usuallylearnedfrom imperfectionthanfrom perfection.Of course,in recog-

nizing theWFM simulationerrorsusinghindsight,thereis no intentionto suggestthatJB

shouldhave useddifferent simulationparametersor device size,sincethey were at the

limits of available computingpower with their pioneeringwork. JB producedthe first

Figure 8.21: Energy band profile for wide emitter RTD in plateau

Wide emitter energy bandprofile during plateauoperationat 0.28 V. Also indi-
catedarethe positionsof the DES andQWS (found usingtransfer-matrix analy-
sis).Notethat theemittercontacte-field is small,asintended.This shows that the
formationof anemitterdepressionandtheresultingI-V plateauarenot simply the
result of inaccurate boundary conditions in the narrow emitter RTD simulations.
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credibletransientWFM simulationsincluding both self-consistency andscattering.Fur-

ther, previous sectionsgave an analysisof the JB simulation results,not experimental

results,so in this sense,the simulationparameterswerenecessary, andthe analysiswas

entirely accurate.

The secondpart of the questionof whethersimulationsof the JB RTD to datehave

beenworthwhile focusesonthenarrowestimplicationsof thesesimulations:whetherthey

producedanaccuratedescriptionof theoperationof theJB RTD itself. While mostof the

I-V curve is qualitatively correct,theNDR portion,in whichmostof theinteresting“phys-

ics” occurred,andaroundwhich mostsubsequentinvestigationsfocused,wasincorrectto

some degree. In this sense, the simulation results have been somewhat misleading.

However, thethird partof thequestionis whethertheseinvestigationshavebeenworth

while for the studyof quantumdevicesin general.Herethe answeris yes.The JB RTD

maynot exhibit theseinterestingbehaviors experimentally, but a similar device which did

haveapotentialdepressionin theemitterwould.Indeed,experimentalRTD measurements

showing effects due to emitter potentialwells and resultingdiscreteemitter stateshave

beenclaimedor demonstrated[26, 30, 42, 63], althoughthe structuresareusually spe-

cially designedfor theseresults,unlike theveryconventionalJBRTD. All of thephenom-

enadescribed(quantumandotherwise,including tunneling,interference,scattering,self-

consistency, carrier transport,etc.) were self-consistent,and thus reasonablydescribea

quantumsystemtot he accuracy ofthe model.Thereforemost of the analysisof the JB

simulations(in this work and in that of others)remainsrelevant to the investigation of

quantum devices in general, although not all of it is relevant to the JB RTD specifically.

Thediscussionof thissectionshowsthatevenaftermorethanadecadeof activedevel-

opment,producingaccurateWFM simulationsis still very difficult. More caremustbe

takenin thefutureto checktheaccuracy of WFM simulationresultsbeforeusingthemto

draw conclusionsaboutexperimentalobservations.Dueto this difficulty, it is not surpris-

ing that,in asurvey of over40papersby numerousgroups(includingourown) describing

Wigner functionsimulationsof RTDs, only a singlepaper[64] showedexperimentalI-V

measurementsof the samedevice. The reasonfor the quantitative disconnectbetween

experimentand Wigner function simulation is simply that the typically large disparity

betweentheresults,whetherdueto inaccuratesimulationsor poordevicequality, hasgen-

erally made such comparisonsuseless.However, qualitative agreementcontinuesto
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improve greatly. As a result,Wigner function simulationis alreadya useful tool for the

investigation of quantumdevices,asthis chapterhasdemonstrated.In general,dynamic

carriertransport,scattering,self-consistency, quantumconfinement,andopenboundaries

areall importantfeaturesof realRTDsandotherquantumdevices,andtheWFM candoa

goodjob modelingthese.In fact,all of theseeffectswerein play in thesimulatedplateau

operation of the JB RTD.

8.4.4 RTD Physics Controversies

Beforeconcluding,theRTD operationcontroversiesthatstartedthiswork will now be

consideredin light of theforegoingsimulationsananalysis.Thewide-emittersimulations

in theprevioussectionhavechangedsomeof theconclusionsregardingtheseissues.Until

thatpoint, it appearedthatneitherof the two mainexplanationsfor theplateau,extrinsic

oscillationsor intrinsic bistability, werecorrect.Instead,a third possibility describedin

Section8.1,currentflow throughadiscreteemitterstate,wasshown to bethecauseof the

I-V plateau.Basedon themoreaccuratesimulationsandlack of experimentalcorrobora-

tion, the plateaumay eventuallybe shown to be an artifact of inaccurateWFM simula-

tions. Thus, the consensusexplanationof the plateau,extrinsically-inducedoscillations,

hasnot beenweakenedby JB RTD simulations,contraryto previous claims.The related

controversyconcerningthe origin of observed oscillationsin the I-V plateauis resolved

similarly (asfar asthe JB RTD simulationsareconcerned):without an intrinsic plateau,

RTD oscillations must be extrinsically-induced, rather than purely intrinsic.

Althoughthesimulatedoperationof theJB RTD in theplateaudoesinvolve two cur-

rentpaths,oneof which requiresscattering,Section8.2concludedthattheseWFM simu-

lations can not speakto the resonant-versus-sequentialtunnelingcontroversy. However,

thesesimulationsdo have repercussionsfor the other two RTD operationcontroversies

discussed.The first concernedthe correctRTD equivalentcircuit model.The conclusion

in Section8.4.2wasthat the consensusview wasagain supported,that the series-induc-

tancemodelis correctfor theJB RTD. Notethattheseresultswerebasedon thebehavior

of theJB RTD in theI-V plateau.It is unclearwhich circuit modelwould besupportedif

theplateaudoesnot occurin moreaccurateWFM simulations.Thefinal controversydis-

cussedwas whetherand how RTDs demonstrateintrinsic bistability. Onceagain, more

accurate(i.e., wide-emitter)WFM simulationsindicatedthat the consensusis correct:
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intrinsic bistability manifestsasa hysteresisloop in themainI-V peak,not asa hysteresis

loop in the NDR region, as shown in previous JB RTD simulations.

8.5 Summary

This chapterhasrevisitedthevery intriguing transientWigner functionmethodsimu-

lationsof a resonanttunnelingdiodepublishedabout5 yearsagoby JensenandBuot.The

advancementof availablecomputingpower in the interim madeit possiblefor this more

detailedyet morecomprehensive investigation of the JB RTD. The simulationresultsin

this chapterdiffer from thoseof JB on somekey points.First, steady-stateWFM simula-

tionsshowedthattheI-V curveplateau,whichwaspreviouslyascribedto dynamiceffects,

is actuallyanequilibriumphenomenon.Detailedanalysisof bothWFM andTMM simu-

lation resultsrevealedtheorigin of theplateauandrelatedeffects.In short,duringplateau

operation,two parallelcurrentpathsareoperating.Along thefirst currentpath,electrons

scatterinto a discretequantumstatein a potentialdepressionthatdevelopsin theemitter,

and then tunnel throughthe resonantstatein the quantumwell. Becauseof the emitter

depression,theheightof the tunnelbarriersis greatlyreducedfor electronswhich do not

scatterinto the depression.The secondcurrent path is due to electronswhich tunnel

directly throughthe lowereddoublebarrierstructure.It is this secondcurrentpaththat is

responsiblefor thepositive slopeof theplateauin thesesimulations,a featurewhich has

been the focus of some speculation and analysis for both the JB RTD and similar devices.

TransientWignerfunctionsimulationsof theJBRTD in thiswork alsodifferedin sev-

eral respectswith previous results.First, the I-V plateauwas shown to be only partly

unstable,while previousresultsconcludedthatit wasunstablethroughout.In fact,because

the plateauwas an equilibrium feature,only the NDR portion of the plateaucould be

unstable,while the PDR portion (the majority) must ultimately be stable. Previous

descriptionsof thecauseof theplateauoscillationswerelargelyconfirmed:self-consistent

interactionof thechargein theemitterandquantumwell, resultingin out-of-phaseoscilla-

tionsof thesecharges.Onenew discovery wasthata discreteenergy statein theemitteris

requiredto producethe oscillationsandthe abruptterminationof the plateau.It wasthe

oscillationin alignmentof thediscretestatesin theemitterandquantumwell thatmodu-

latedthe current.Finally, the discovery wasmadeof a second,albeit smaller, hysteresis

loopbelow themaincurrentpeakon theI-V curve.While themainhysteresisloop (below
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theplateau)is notadynamicbistability, contraryto previousconclusions,thissecondhys-

teresisloop is dynamic,since only the transientsimulations(with oscillating current)

showed this feature.

The main differencebetweenthis work andprevious work of JB was the respective

conclusionsaboutthestability of theplateau.Theprobablereasonfor theerrorby JB was

foundto beinadequateiterationsof thetransientsimulation,sothattheRTD did not have

timeto reachsteady-state,andthusappearedto beunstable.This incorrectconclusionwas

very attractive, sinceit matchedperfectly the symptomsof experimentally-observed I-V

plateaus.Given the high computationalcostof WFM simulations,the bestway to avoid

sucherrorsis to usethecomplimentaryadvantagesof bothsteady-stateandtransientsim-

ulationsfor besteffect. In the simulationsdescribedhere,steady-statesimulationresults

uncovered the physics behind the plateau,while transientsimulationswere neededto

detail its stability characteristics.

Theappropriateequivalentcircuit modelfor theJB RTD wasalsoinvestigated.Only

theseries-inductancecircuit modelcouldmatchthebehavior of theJB RTD in theNDR

region of operation.By contrast,previousanalysisof JB RTD simulationshadconcluded

thata parallel-inductancemodelwascorrect.Basedon thedeterminationthat theplateau

is anequilibriumeffect, andthat it is only unstablein theNDR portion,thevaluesof the

circuit elementsnecessaryto reproducethe essentialfeaturesof the transientI-V curve

traceweresignificantlysimplifiedcomparedto previousanalysis.A slightly moredetailed

equivalent circuit model was also proposed,which explicitly included the two current

paths discovered in the steady-state simulations.

This work concludedthat the simulatedbehavior of the JB RTD, althoughviscerally

similar to experimentalresults,wasof a fundamentallydifferentorigin. In particular, the

NDR regioneffectsseenin theseWFM simulationswerecausedby apotentialdepression

in theemitter, ratherthanhigh-frequency oscillations.Sincetheemitterdepressionis not

seenexperimentallyin simpleRTDssuchasthatinvestigatedherein,theaccuracy of these

WFM simulationswas called into question.Threepossiblesourcesfor this inaccuracy

wereidentified:the simulatedRTD wasnarrower thanexperimentaldevices,resultingin

suspiciousboundaryconditions; too few wavenumberpoints were used to accurately

resolve phenomenain the energy dimension;andthe implementationof the WFM (used

by all researchersto date)maybeinaccurate.All of thesepotentialsourcesof inaccuracy
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reflectanattemptto mitigatetheinherentlyhigh costof WFM simulations.Thelattertwo

itemsremainto beinvestigatedin futurework. However, simulationsusinga wide emitter

layerwith theJB RTD weredescribed.This wasintendedto make theequilibriumbound-

ary conditionsmoreself-consistent(i.e., have a low e-field at the contact).This brought

theRTD simulationsin muchcloseragreementwith experiment.For example,theequilib-

rium plateau(not seenin experiment)nearlydisappeared.Similarly, theintrinsic bistabil-

ity loop thenappearednearlyasit doesexperimentally- asa bistability loop beneaththe

main current peak.

In spiteof theremaininginnacuraciesin Wignerfunctionsimulations,this chapterhas

demonstratedthattheWFM canproduceandself-consistentlymodelall of thephenomena

that occur in real quantumdevices.Theseincludedynamiccarrier transport,scattering,

self-consistency, quantumconfinement,tunneling,andopenboundaries.No otherquan-

tum device simulationmethodyet devisedhasshown this rangeof capabilities.Unfortu-

nately, this work alsodemonstratedthatalthoughWFM simulationof RTDs hasadvanced

swiftly over thepastdecade,it is still experiencinggrowing painsastheamountof com-

puting resourcesrequiredto produceaccurateresultswith it becomesapparent.Clearly,

researchers(ourselvesincluded)needto make morecertainin the future that their WFM

simulationsaccuratelymodelreal systemsbeforedrawing conclusionsaboutthe physics

or operationof real systems.However, notethat the wide-emittersimulationssupported,

either implicitly or explicitly, each of the fairly well establishedconsensusviews

(describedat thebeginningof thechapter)on theRTD operationcontroversies,in contrast

to previous work. By this measurealone,this work andthis quantumdevice simulation

tool have madea significantcontribution to advancingthe accuracy of quantumdevice

analysis through simulation.
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Chapter 9

Conclusion

This chaptersummarizesthe contentsof this dissertation(Section9.1), lists the spe-

cific contributionsof thiswork to thefield of quantumdevicesimulation(Section9.2),and

makesrecommendationsfor futurework in thisfield (Section9.3).Finally, a list of recom-

mendedtechniquesis givenfor thesuccessfulandefficient developmentof largesoftware

projects such as SQUADS (Section 9.4).

9.1 Summary

As conventionalelectronicdevicesshrinkandtheirenergy dissipationdecreases,these

devicesarebeincreasinglyantagonizedby quantumeffects.Whentheseeffectsno longer

permitfurtherscalingof conventionalelectronicdeviceswhile maintainingreliableopera-

tion, theonly solutionwill beto usequantumeffectsto controltheoperationof electronic

devices.Quantumelectronicsis the conceptof producinguseful computing(analogor

digital signalprocessing)with quantumdevices.If it achievesits goals,quantumelectron-

ics will producenot only quantumscaledevices,but also integration levels, computing

efficiencies,and systemfunctionality well beyond that of ULSI. Of the threepossible

approaches(conceptual,computational,experimental)to pursuingquantumelectronics

research,this work took the computationalapproach,and this dissertationdescribedan

effort to developanumericalsimulationtool calledSQUADS for modelingquantumelec-

tronic devices. This approachleveragesthe advancing power of computersto provide

more efficient investigation than experiment, and more detail than theory.
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To determinethe quantumdevice characteristicsthat SQUADS must handle,it was

necessaryto haveaconceptualunderstandingof quantumelectronics,from relevantquan-

tum phenomenato complete quantum computing systemsand likely computation

approaches.At the smallestscale,the optical analogyto quantumwave systemsimplies

that thephenomena,structures,anddevice functionsof quantumelectronicsat thesmall-

est scalewill be similar to thoseof optical systems.At the large scale,analysisof the

requirementsof digital computingsystemsconcludedthat far-from-equilibriumquantum

devicesshow the mostpromisefor quantumelectronicsin the nearterm. In general,far-

from-equilibrium quantum devices are unipolar, heterojunction-based,support high

biases,includescattering,andarevery high speed.Dueto its simplicity andstrongquan-

tum effects, and the availability of experimentalresults,the resonanttunneling diode

(RTD) waschosenastheprototypequantumdevice for testingtheaccuracy andcapabili-

ties of SQUADS.

Given thesequantumdevice characteristics,the optimal formulation of quantum

mechanicswaschosenfor thedevelopmentof SQUADS. This formulationmustalsopro-

vide an internalview of device operation,be suitablefor both steady-stateandtransient

simulation,beindependentof any particulardevice or materialsystem,andbefeasibleto

executeon existing hardware.Basedon theserequirements,the Wigner functionmethod

(WFM) of quantumdevice simulationwaschosenastheprimarybasisfor SQUADS. The

simulatorwas limited to 1-D quantumdevice simulationdue to limitations of existing

computinghardware.Sincethe WFM is a computationallyexpensive andits accuracy is

unknown, the moreestablishedtransfermatrix method(TMM) wasalsoimplementedin

SQUADS to provide an efficient checkon WFM results.SQUADS wasdesignedto be

flexible andeasilyextensible,enablingtheefficient investigationof bothquantumdevice

simulation1 and quantum deviceoperation.

TheTMM is well-suitedto efficient simulationof steady-statequantumdevice opera-

tion, suchastracingthe I-V curve. TheTMM calculatescurrentflow througha quantum

systemby addingthe transmissionof many independent,mono-energeticelectronbeams

overadistributionof incidentenergiesrepresentedby theboundaryconditions.Thecalcu-

lation of the transmissioncoefficient is facilitatedby division of thepositiondomaininto

1. NotethatbecausetheTMM is well-establishedandcannothandlescatteringor transientsimula-
tions, most of quantumsimulator research was applied to investigation of the WFM.



9.1. Summary 269

many small regions.Eachregion andinterfacethenhasa simpletransfermatrix,asdeter-

minedby solutionof theSchrödingerequation.Extensionsof theTMM in SQUADS for

thecalculationof thewavefunction,energy spectrum,carrierdensityprofile, andWigner

functionwerealsodescribed.Within its limitations(noscatteringor transientsimulation),

the TMM proved to be a very reliable basis for quantum device simulation.

When scatteringor transienteffects are to be investigated in quantumdevices, the

WFM is required.TheWFM solvestheWigner function transportequation(WFTE) at a

discreteset of points to predict the evolution of the Wigner function , which

describesthe action of charge carriersin the quantumdevice. The discretizationof the

WFTE hasmany complicationsandalternative implementations,all correctlyhandledby

SQUADS. The resultingcomputationrequiresthe solution of typically 5000 to 50,000

simultaneousequations,soit is essentialto reduceextraneousmemoryusageandcompu-

tationasmuchasmuchaspossible.SQUADS usesoptimizedmatrix storageandcompu-

tationschemes.TheWFM simulationof aGaussianwavepacket in freespace,whichalso

hasananalyticsolution,allowed theaccuracy andcostof variousdiscretizationschemes

for theWFTE to becompared.Thediscrepancy betweenWFM andTMM simulationsof

anRTD wasratherlarge,presumablydueto inaccuracy in thestandardWFM implementa-

tion. Clearly, the WFM is still in a developmentphase,althoughit can give qualitative

results about quantumdevice operation.The remainderof this work describedthree

WFM-based investigations of RTDs and the WFM itself.

Thefirst investigationexaminedthe implementationof self-consistency in theWFM.

Enforcing self-consistency requiresan iterative solution of the WFTE and the Poisson

equation(PE)to achieve a simultaneoussolutionto bothequations.Four self-consistency

iterationmethodsareimplementedin SQUADS: steady-stateandtransientGummel,and

steady-stateandtransientNewton.2 TheGummelapproachesalternatelysolve theWFTE

and PE, while the Newton approachessolve the two equationssimultaneously. Due to

their computationalefficiency, thesteady-statemethodsarerecommendedfor wide-rang-

ing initial investigations,suchas I-V curve traces.For transientoperation,or to verify

device operationin critical regions, expensive transientsimulationsare required.The

expenseof theNewton approachesis not worth thesmalladditionalaccuracy they afford.

2. Most other quantum device simulators implement only a single self-consistency iteration
approach, to simplify the programmer’s job, rather than to maximize usefulness of the simulator.

f w x k t, ,( )
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Theproperselectionof convergencecriteria (i.e., whento terminatethe iteration)is also

important.Theimplementationof self-consistency in theTMM is muchsimpler, sincethe

TMM can only use the steady-state Gummel iteration method.

Thesecondinvestigationstudiedtheeffect on device functionof usinga finite applied

biasslew ratein transient,self-consistentWFM simulationsof anRTD. Theconventional

approachof instantaneouslychangingtheappliedbiasin simulationscauseshugecurrent

pulsesbothwithin theRTD andin theexternalbiasingcircuit. Usinglower slew rates,the

currentpulseamplitudesdecreasedto more tolerablevalues,and the internalpulsewas

thenshown to bedueto charging of thedepletionandaccumulationlayersto accommo-

datethe new appliedbias.Other instanceswhereRTD function dependedon slew rate

weredemonstrated.For example,fastslewing initiatedoscillationsin a marginally stable

regionof operation,while low slew ratesdid not.Also, very low slew rateswerenecessary

to producesomemodesof RTD operation.Finally, the slew ratecould determinewhich

statean RTD endedup in whenswitchedinto a bistableregion of operation.Thus,slew

rate does affect device function, and should be chosenin simulationsbasedon the

intended application for the device.

Thefinal SQUADS investigationwasanin-depthstudyof thevery intriguing physics

of the RTD that was usedin the two investigationssummarizedabove. The interesting

effectsincludeda plateauin thenegative differentialresistanceof the I-V curve, hystere-

sis,andhigh-frequency oscillations.Basedon the visceralsimilarity betweenthesephe-

nomena and experimental observations, other researchersconcluded that they had

reproducedtheexperimentaleffects.On thebasisof this conclusion,they broke with the

establishedconsensusview on several controversiesaboutthe natureof RTD operation.

The investigation in this work showed conclusively that the simulatedRTD physicswas

notof thesameorigin astheapparentlysimilarexperimentaleffects.In fact,furtherinves-

tigation indicatedthatmoreaccurateWFM simulationswould probablysupportthecon-

sensusview on eachof the controversial issues.Although the WFM appearsto require

further refinements,this investigation showed that SQUADS canprovide a rich arrayof

information from which to draw in the study of quantum device physics.

9.2 Contrib utions

Thissectionlists theprinciplecontributionsof thiswork. Roughlyin theorderthey are
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presented in this dissertation, these contributions include:

• Oneof themostcomprehensiveconceptualreviewsandanalysesof thetheoryof

quantum electronics to date, including discussions of

• the array of available quantum effects and basic quantum device structures,

• the types of quantum devices (quasi-equilibrium and far-from-equilibrium),

• the architectures that may be utilized (cellular automaton or quantum filter),

• the probable nature of computing with quantum electronic circuits, and

• the ultimate future of quantum electronics in true quantum computers.

• An analysis of quantum device simulation approaches, including discussions of

• the goalsof quantumdevice simulationand its relation to theoreticaland

experimental quantum device research,

• the lessons learned from conventional electronic device simulation, and

• the strengthsand weaknessesof all significantquantumdevice simulation

approaches in use and proposed.

• Most importantly, the developmentof a numericalsimulationcalledSQUADS

(StanfordQUAntum Device Simulator)tool for modeling1-D quantumdevices.

Important features of SQUADS include:

• Highly functional:TMM andWFM simulationapproachesareimplemented.

Self-consistency, scattering(WFM), steady-stateanalysis,transientanalysis

(WFM), and Gaussian wave packet simulations (WFM) are all available.

• Extensible:Modular structuremakes enhancementsand alternative imple-

mentationseasilyadded.Also, generalenhancementsto SQUADS areimme-

diately available, if appropriate, to both the TMM and WFM.

• Efficient:agreatdealof effort wasappliedto theeffort of producingaccurate

simulations with a minimum of computation.

• Portable:Compiledandexecutedwithout modificationon at leastten plat-

forms, ranging from a 386 PC to a Cray C-90 supercomputer.

• Publication-quality graphical output, including line and surface plots.

• TMM simulation contributions:

• Mostcomprehensivemathematicalderivationanddescriptionof theTMM to

date, including discussions (apparently for the first time) of

• how to take advantageof contactflat-bandregionsfor improvedcompu-
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tational efficiency,

• how quantum turning points must be treated for robust TMM simulation,

• when numerical overflow may occur and how to protect against it,

• handling classically neutral regions, and

• correctly handling classically-forbidden T-contacts.

• Alternative transmissionmatrix computationalgorithmswere found to be

significantly more efficient for some TMM simulation tasks.

• Using a piece-wiselinear (asopposedto piece-wiseconstant)potentialwas

foundto have threetimesthecomputationalcost,with little accuracy benefit.

• The useof a position-dependenteffective masswas shown to significantly

alter quantum device simulation results.

• Calculationof theenergy spectrumof carriersandtheWignerfunctionwere

added to the standard TMM simulator capabilities.

• WFM simulation contributions:

• Mostcomprehensivemathematicalderivationanddescriptionof theWFM to

date, including

• implementationof numerousdiscretizationoptionsfor thediffusionterm

and three for the drift term of the WFTE,

• five alternative implementations for transient simulations,

• a Gaussian wave packet simulation capability, and

• efficient storageandsolutionschemesfor solving thecompute-intensive

WFTE.

• Optimaldiscretizationapproachesfor thediffusionandtransienttermswere

determined, both for efficiency and accuracy.

• Inaccuracy in the standardimplementationof the WFM wasdemonstrated,

and possible solutions to this short-coming were proposed.

• Self-consistency contributions:

• Implementedthefour basicself-consistency iterationmethodsfor theWFM,

allowing direct comparison of accuracy, efficiency, and robustness.

• Demonstratedthe complementaryroles of steady-stateand transientself-

consistency iteration approaches.

• Described the Newton iteration method for the WFTE.
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• Derivedandimplementeda modifiedsteady-stateGummeliterationmethod

that achieves much faster convergence that the standard Gummel approach.

• Implementeda sophisticatedsteady-stateself-consistency iteration algo-

rithm, which is both efficient and robust.

• Describednecessaryandsufficient criteriato gaugeconvergencein self-con-

sistency simulations.

• Demonstratedthat converged steady-stateself-consistency simulations is

only anequilibrium operating point, and may be stable or unstable.

• Implemented,asanalternative to Gummelself-consistency, a quasi-classical

self-consistency algorithm (to imitate scattering) for the TMM.

• Slew rate contributions:

• Showed that the conventionalapproachof usinginstantaneousswitchingin

transientWFM simulationshasled to substantiallyinaccuratesimulationsof

quantum devices and resulting incorrect conclusions about device operation.

• Showedthatuseof differentappliedbiasslew ratesin quantumdevice simu-

lation candramaticallychangedevice function:theslew rateusedin simula-

tions should match that of the intended device application.

• Conductedthe most detailedsimulationinvestigation to dateof RTD physics.

Some results included:

• Showed the rich physicsthatRTDs arecapableof, andthedepthof simula-

tion investigationthatmaybeneededto uncoverall significantaspectsof this

physics.

• Showed that an RTD having a discreteemitterstatecanproduceinteresting

andusefuloperation,includingaplateauin theNDR region,unstableoscilla-

tions, bistability, and hysteresis.

• Uncoveredandcorrectederrorsin previousinterpretationof RTD simulation

results and experimental measurements.

• Achievedimprovedagreementbetweensimulationandexperimentfor a par-

ticularly interestingRTD, with which improvement,the simulationseffec-

tively support the consensusconclusions on several RTD physics

controversies, in contrast to previous analysis of simulations of this RTD.

• DemonstratedthatthestandardWFM implementationusedfor over tenyears
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still requires accuracy improvements.

• Demonstrated dynamic hysteresis in RTD simulations for the first time.

• Showedtheimportanceof includingself-consistency andscatteringin simu-

lationsto demonstratesomevery interestingandpotentiallyusefulmodesof

RTD operation.

• For accuratesimulations,showed the significanceof using a simulation

region which naturally accommodates the entire applied bias.

9.3 Recommendations for Futur e Work

As the contributionsabove indicate,this work encompassesa significantadvancein

the field of quantumdevice simulation.However, this work alsodemonstratesthat there

arestill many significantquestionsto answer, investigationsto pursue,andadvancesto

make in this endeavor. Most of the resultingrecommendationsfor future work centeron

theWFM of quantumdevice simulation,sincethis approachwasshown to have themost

potentialfor accuracy andcapabilities.Thefollowing capabilitiesshouldbeaddedto, and

investigated with, the WFM:

• ImproveddiscreteWFTE implementation.Oneof thecontributionsof this work

wasa determinationthat the standardWFM implementation(usedby all WFM

researchersto date)apparentlyhasa fundamentalflaw, resultingin compromised

accuracy. Othermethodsof implementingthediscreteWFTE shouldbe investi-

gatedin an attemptto clarify andavoid this flaw. Mains andHaddad[1] have

proposed one such implementation.

• Higher simulations.TMM simulationstypically requireabout1000energy

pointsto achieveacceptableaccuracy. In contrast,typicalWFM simulationsonly

use100wavenumberpoints(relatedto energy). Further, a singleenergy valuein

a TMM simulationincorporatesboth forward-travelling (positive wavenumber)

andbackward-travelling (negative wavenumber)wavefunctions.Thus,accurate

WFM simulations may require  wavenumber points.

• Interfaceto a classicaldevice simulator. Although quantumdevicesarea long-

termprospect,understandingquantumeffectsin conventionalelectronicdevices

is becomingincreasingimportantasthesedevicesaredown-scaled.Becausethe

WFM usesclassicalboundaryconditions,it caninterfaceto non-quantumdevice

Nk

Nk 2000=
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simulators.This would allow quantumregions of a conventionaldevice to be

simulatedwith a quantumsimulator, with the remainderbeingtreatedwith the

conventionaldevice simulator. Suchmulti-modalsimulationhasbeenusedwith

otherquantumsimulationapproaches[2, 3], but this essentiallyrequiresthat a

computationallyexpensive Monte Carlo approachbe usedfor the classicalpor-

tion of the simulation.

• Interbandinteractions.SomeTMM simulatorshave addedinterbandcoupling

[4-9] including a limited scatteringmodel [10], only oneWFM simulator[11]

hasattemptedto include theseeffects.The importanceof including interband

couplingfor theaccuratesimulationof many tunnelingdeviceshasbeenwidely

demonstrated[4, 7, 12, 13]. Interactingbandswould make multi-bandWFM

simulationsmuchmorecostly, but a suitablere-orderingof theunknownsin the

WFTE matrix equationshouldmake thecomputationfeasibleon existing hard-

ware.

• Bipolar andoptical capability. By far the mostwidely usedquantumeffects in

electronicstoday are optoelectronicin nature,in devices suchas the quantum

well laser diode. Adding a bipolar capability (oppositely-charged carriers,

recombination/generation)and optical effects (photogeneration/absorption)

would enablethe simulationof theseimportantoptoelectronicdevices. Some

proposedand demonstratedresonanttunneling transistorsare bipolar devices,

andwouldalsobeaccessibleto simulationwith thebipolarcapability. Evenwith

a 1-D simulator, a quasi-three-terminalcapabilitycould be producedby main-

tainingby thepotentialat aninternaldevice nodewith theintroductionor deple-

tion of the requisite number of carriers.

• Detailedenergy bands.Quantumdevice simulatorsalmostuniversallyusepara-

bolic energy bands(effective massindependentof energy).3 This is not very

accuratein far-from-equilibrium quantumdevices, wherecharge carriersmay

accelerateto several hundredmeV above the energy bandminimum. It should

not bedifficult to implementmoreaccurateenergy bandsin theWFM [11], and

some TMM simulators [5, 7] and other quantum device simulators

[14, 15] already have this feature.

3. In E-M wave systems, this would be equivalent to a dispersionless material.
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• Dynamic boundary conditions. Quantum devices will eventually be small

enough,andhave low enoughscattering,thatclassicalboundaryconditionssuch

as thoseusedin the WFM are not appropriate.Carrierswill maintain some

phase-coherenceinto the contact,and into the next device. This meansthat

neighboringdeviceswill have a morecomplicatedanddynamiceffect on each

other. These effect could be studied using dynamic boundary conditions.

• Greatervariety in quantumdevice investigations. Investigations to date with

WFM-basedquantumdevice simulators,includingthosein this work, have cen-

teredon theGaAsRTD. Besidesa lack of time in this relatively new endeavor,

this narrow focussuggestsa lack of imaginationin the field of quantumdevice

simulation.The devices which may make quantumelectronicsa successare

almostcertainlynot evenbeknown at this point.Thus,a wider arrayof devices,

material systems,and simulation parametersshould be investigated with the

WFM in an effort to discover more promising quantum devices.

• 2-D and3-D simulation.Few quantumdevicescanbeaccuratelymodeledas1-D

structures,so implementingmulti-dimensionalWFM simulation is essential.

SomeSchrödingerequationquantumdevicesimulatorsalreadyprovide2-D [16-

19] and3-D [20, 21] modeling.Unfortunately, it is unlikely thatdirect2-D or 3-

D WFM simulationwill befeasiblein thenearfuture,sincetherequiredcomput-

ing power would beimmense,asdiscussedin Section5.2.1.However, theWFM

couldbeusedfor onedimension,andanotherquantumor classicalapproachfor

the other(s).Another option is to usethe WFM-basedMonte-Carloapproach

[22], which should be feasibleon existing hardware in 2-D or 3-D. Finally,

approximatequantumcorrectionsto classicalsimulatorscould be effective for

some quantum effects.

Thefollowing capabilitieshave beeninvestigatedto somedegreein at leastoneother

WFM simulator, but should be implemented in the WFM simulator in SQUADS:

• Position-dependenteffective mass.TMM simulationsin Section4.5.3 showed

that using a position-dependenteffective masssignificantly affects quantum

device simulation results.Therefore,accurateWFM simulationsrequire the

inclusionof a position-dependenteffective massaswell. Several researchers[1,

23, 24] have described how this may be accomplished.
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• Small-signalWFM simulations.Adding his capability to the existing steady-

stateand transientWFM capabilitieswould make SQUADS a fully general

quantumdevice simulator. Frensley [25] hasdemonstrateda WFM-basedsmall-

signal capability.

Quantumdevice simulationresearchto datehasbeenratherdisorganizedanduncoor-

dinated.In particular, thereis no softwarepackagethatprovidesa base-lineof functional-

ity which researcherscan useand enhance(for example,as PISCES[26] doesfor 2-D

conventionaldevice simulation).Instead,every researchteammustessentiallyimplement

the samebase-linefunctionality before the enhancementsof interestcan be added.Of

course,this new functionality is not availableto anyoneelse,sincethe variousquantum

devicesimulationtoolshave independently-evolvedstructuresandinterfaces.Thus,afinal

andmoregeneralrecommendationfor futurequantumdevice simulationwork is to create

a generallyavailable,highly functional,highly usable,androbustquantumdevice simula-

tion package.In addition to alleviating the problemsdescribedabove, this would also

greatlyincreasethenumberof researchersto whomquantumdevice simulationwould be

availableasaresearchtool. NotethatSQUADS is currentlybeingevaluatedasacandidate

for this “base-line” quantum device simulation tool.

9.4 Recommendations for Software Development

Finally, for thoseattemptingto createa large software packagelike SQUADS, this

sectioncontainsa few suggestions(learnedduringthedevelopmentof SQUADS) for cod-

ing largesoftwareprojects,in theinterestof maintainingprogrammersanity(andproduc-

ing increasinglyfunctional code).Thesepoints may also be of use to thosetrying to

decipher code in SQUADS (for example, for the purpose of adding enhancements).

General issues:

• Choiceof programminglanguage.For numericalsimulationtools,speedof exe-

cutionis akey issue,asaretheavailability of programingtools,portabilityof the

sourcecodeto multiplecomputingplatforms(i.e., level of languagestandardiza-

tion, andwidespreadexistenceof compilers),widespreaduse(in caseotherswill

look ator work on thecode),andability to structurethecodein separatesubrou-

tinesandfiles.Basedon theseconsiderations,theC programminglanguagewas

chosen for SQUADS, and GCC is used as the compiler on most platforms.
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• Platformindependence.For a large programmingproject,it is unlikely that the

entireprogrammingandexecutionof the projectwill be conducedon a single

computingplatform.Efforts shouldbe taken to make suretheprojecthasmini-

mal platform-dependence.SQUADS has been run under OS/2, Ultrix, Irix,

OSF1,SunOS4,Solaris,SystemVr4,Unicos(Cray).To copewith thenecessary

differences between platforms (usually, different function library files),

SQUADS hasa run scriptwhich determinestheoperatingsystemon thecurrent

platform,modify acopy of themakefile for thisplatform,compileSQUADS in a

directory for that OS, and execute.

Before writing any code:

• Have at leastone generationfull backupof working sourcefiles. Refreshthe

backup only after major changes have been fully tested.

• Alwayshave a working executable.Therewill alwaysbeoccasionsto run it on

short notice, whether for demonstration or to get last-minute results.

• For mathematicallycomplex functions,do not begin codinguntil the theoretical

derivation is complete.

When writing and debugging code:

• Useahierarchicalstructure.In otherwords,divideandconquer. Usereasonably-

sizedsubroutinesandmultiple files to breaka problemdown into small parts,

each of which can be completely understood as a whole.

• Documentnew codeassoonaspossible.Although non-obvious codesections

shouldbecommentedwithin thesourcefile, themostimportantcodedocumen-

tation is the interface(header)files. Thesefiles areall someone(including the

programmer)shouldhave to readto understandwhat theassociatedsubroutines

do. A header file is incomplete if someone must look at the actual code.

• Upgradegracefully. Don’t make all plannedchangesat once.Make enhance-

mentsin smallstepswheneverpossible,andverify properprogramfunctionafter

each step.

• Use appropriatetools to make programmingtaskseasier. For example,during

SQUADS development,grep was used to find all occurrencesof a variable

whosenameor definition wasaboutto change,diff wasusedto find all differ-

encesbetweenan old (working, backup)sourcefile and a new (non-working)
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one,an executionprofiler wasusedto tunecritical sectionscodefor efficiency,

and a debugger was used to quickly locate fatal run-time errors.

• Implementnew functionalitywithout destroying working code.Add featuresin

separatesubroutines,ratherthandirectly modifying existing code.Alternatively,

keepacopy of previous(working) lines,subroutines,or files, for comparisonthe

(almost invariably) non-working ones after modifications.

When running the program:

• Automatebusy work. For example,much of SQUADS’ executionscript was

describedabove. Otherautomationscriptscreatethedirectorystructureusedby

SQUADS, packandunpackall SQUADS files for transportto othermachines,

cleanout old objectfiles or simulationresults,rotatesurfaceplot files,filter plot

file data,convert plot files betweenvariousformats,or scanall library files for

neededfunctions.In general,try to automateanything that mustbe donemore

than twice.

• User interface.If possible,adda GUI (graphicaluserinterface)only after the

code(or at leastthe input to theprogram)is essentiallyunchanging,andonly if

the GUI is fasterandmorestraightforward to usethana text interface.For the

programmer, the GUI representsan additionallevel of complexity to be main-

tainedandupgradedwith the remainderof the code.Therefore,it mustbe very

easy to upgrade, or it will eventually be abandoned for a text interface.
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