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Abstract. This paper presents some lessons that can be drawn, from
the point of view of the constraint reasoning and constraint program-
ming community, from trying to model and to solve as best as possible
the mission management problem for the new generation of agile Earth
observation satellites, that is the selection and the scheduling of obser-
vations performed by the satellite.

1 Introduction

The mission management problem for the current generation of Earth observa-
tion satellites, like those of the French Spot family, has been already presented
[3]. Various methods, able to solve it either optimally or approximately, have
been proposed and compared [4, 3, 14].

This paper is devoted to the mission management problem for the new gener-
ation of agile Earth observation satellites, like the already operational American
Ikonos satellite and those of the future French Pléiades family.

The main difference between both these generations of satellites lies on the
degrees of freedom that are available for image acquisition. Whereas the non-agile
Spot satellites have only one degree of freedom, along the roll axis, provided by
a mobile mirror in front of each instrument, the agile Pléiades satellites will
have three degrees of freedom, along the roll, pitch, and yaw axes, provided by
the attitude control system of the whole satellite. Whereas there is, with the
Spot satellites, only one way of acquiring an image of a given area on the Earth
surface from a satellite revolution, there will be, with the Pléiades satellites, an
infinite number of ways of acquiring it from a satellite revolution, because the
starting time and the azimuth of image acquisition will be free.

The first consequence of this greater freedom is an expected better efficiency
of the whole imaging system. The second one is a far larger space (in fact infi-
nite) of imaging opportunities, and consequently a far greater complezity of the
management problem.



In this paper, we describe the mission management problem for agile Earth
observation satellites, as it has been stated by the CNES' managers of the PIléi-
ades project (Section 2). Then, we describe the simplifications we had to do in
order to get a manageable problem (Section 3). We show how this simplified
problem can be mathematically stated (Section 4) and describe the four algo-
rithms or approaches we designed, implemented and experimented for solving
it (Section 5). We show and discuss the experimental results that have been
obtained on training instances provided by the CNES (Section 6). We conclude
with some lessons that we drew from this study and that deserve, in our opinion,
discussion in the constraint reasoning and constraint programming community
(Section 7).

2 Problem description

Satellite orbit Earth observation satellites use specific orbits that are:

— quasi polar: the satellite orbital plane passes nearly through the Earth north
and south poles; the conjunction of a quasi polar orbit with the natural
Earth movement around its polar axis allows the whole Earth surface to be
flown by the satellite each day (see Figure 1);

— circular; this implies a constant image acquisition altitude;

— heliosynchronous: the angle between the satellite orbital plane and the Earth-
Sun axis remains constant during the whole year; this implies constant Earth
illumination conditions for image acquisition; note that the satellite can only
acquire images during the illuminated part of each revolution;

— phased: after a given number of revolutions, the satellite goes back exactly
at the same position with respect to Earth.

Fig. 1. The track of the satellite on the Earth surface during one day.

! French space agency: http://www.cnes.fr.



Image acquisition degrees of freedom The satellite is compactly built
around one optical instrument. At any time, it is moving on its orbit and can
simultaneously move around its roll, pitch and yaw axes, thanks to its attitude
control system.

The core of the instrument is made up of a set of aligned photo-diodes that
allow at any time a segment on the Earth surface to be acquired as a set of aligned
pixels. The combined translation and rotation movements of the satellite allow
then an image to be acquired as a set of contiguous segments (see Figure 2).

To simplify their processing, these images are constrained to be rectangular
strips. Although the width of these strips actually depends on the acquisition
angle, we consider that it is fixed and equal to its minimum value (obtained
exactly under the satellite orbit). Their length and their direction (from 0 to 180
degrees) are however free.
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Fig. 2. Acquisition of a rectangular strip.

User requests Observation requests can be submitted by users at any time.
Each of these requests is defined by:

— a target area, which can be, either a spot (a small circular area), or a polygon
(a large polygonal area);

— a validity period, outside of which its acquisition has no utility (usually spec-
ified in days);

— a set of acquisition angular constraints (minimum and maximum roll and
pitch angles);

— a type, which can be either mono or stereo; in case of a stereoscopic request, an
associated selected strip must be acquired twice during the same illuminated
half-revolution, by satisfying specified acquisition angular constraints and by
using the same azimuth;

— a weight, which expresses its importance.

From requests to images A spot can be covered by one strip of any direction.
It is not the case with polygons that generally need several strips to be covered.
The strips associated with a polygon can be acquired from several successive
illuminated half-revolutions.



Note that any strip can be acquired using either of the two associated op-
posite azimuths (azimuths range from 0 to 360 degrees). We call an image the
association between a strip and an acquisition azimuth. Two potential images
are thus associated with any strip.

Acquisition and transition constraints For each illuminated half-revolution
h and for each candidate image 4, the acquisition angular constraints allows us
to determine whether or not i can be acquired from h and, in case of positive
answer, the earliest and latest acquisition starting time of i. As the acquisition
speed is constant, the acquisition duration of any image is proportional to its
length.

For each illuminated half-revolution A and for each pair of candidate images
1 and 7, a minimum transition time between the end of the acquisition of ¢ and
the beginning of the acquisition of j can be computed, taking into account the
movement of the satellite on its orbit and its attitude manoeuvering capabilities.
Note that this transition time depends on the time at which the transition begins,
that is on the time at which the acquisition of ¢ begins. Note also that the
computation of this transition time implies itself to solve a complex continuous
constrained optimization problem, that has no analytical solution and may be
very time consuming, since the best algorithms in terms of solution quality may
need a half hour of computing.

Energy consumption As satellite attitude manoeuvres are energy consuming
and as this energy is limited on board, this limitation must be taken into account.
Note that, because solar panels are firmly attached to the satellite, in order to
limit vibrations and to increase agility, energy production and image acquisition
may be conflicting tasks (the attitude positions needed for image acquisition
may imply that the solar panels are no more well oriented towards the sun).

Data recording and downloading Images must be not only acquired. The
resulting data must be recorded on board and downloaded to any appropriate
station on the ground. Consequently, the limitation of the on board recorders,
the visibility windows between the satellite and the stations on the ground, and
the limitation of the data flow between the satellite and the ground must be
taken into account too. Note also a possible conflict between data downloading
and image acquisition.

Acquisition uncertainties Because of the optical nature of the instrument,
the presence of clouds can decrease the quality of an acquired image and even
invalidate it. As an absence of clouds over a given area cannot be guaranteed a
long time in advance, it is never sure that a planned image acquisition will be
successful.

Optimization criterion Although other criteria could be meaningful, the cho-
sen criterion is the sum (or the expected sum to take into account uncertainties) of
the gains associated with the satisfied requests, that is an wutilitarist criterion. In



a first time, it can be considered that the gain associated with a satisfied request
equals its weight. But, whereas spot acquisition requests are either satisfied or
not, polygon acquisition requests may be only partially satisfied. Consequently,
two criteria have been considered:

— afirst, called linear, where the gain associated with a completely satisfied re-
quest equals its weight and where the one associated with a partially satisfied
request is proportional to the useful acquired surface;

— a second, called non linear, where the gain associated with a completely
satisfied request is the same, but the one associated with a partially satisfied
request is the result of the application of a conver function to the useful
acquired surface.

The advantage of the non linear criterion is to favour the termination of
already partially acquired polygons.

Mission management organization It is assumed that the selection and the
scheduling of the images that will be acquired by the satellite is done each day
for the following day, taking into account the current set of user requests, the
current state of the satellite, and the currently available meteorological forecasts.

As each illuminated half-revolution defines a nearly independent subproblem,
we consider that the basic problem to solve is a selection and scheduling problem
on one illuminated half-revolution.

Selection and scheduling are done on the ground, under the supervision of
human operators. When an acquisition plan has been built, the associated set of
commands is uploaded to the satellite. When this plan has been executed, the
associated data are analyzed by human operators and the strips associated with
validated images are withdrawn from the set of user requests.

This kind of organization can be characterized as a regular off-line on the
ground mission management organization. Others on-line, eventually on board,
more reactive organizations could be considered, but are out of the scope of this

paper.

3 Problem simplifications

In order to get a manageable problem, we must simplify substantially the previ-
ously described problem. The successive simplifications we did are the following.

Image acquisition degrees of freedom In addition to the assumption of a
fixed strip width, we made the assumption of a fixed direction. Such an assump-
tion may seem strange in the context of an agile satellite, because it removes in
fact one of the three degrees of freedom. Is is however justified by the results
of simulations which showed that the satellite attitude movements around the
yaw axis, required to vary the acquisition direction, are very costly in terms of
transition time and are not compensated by a greater freedom of acquisition of
either spots or polygons. This fixed direction can be however freely chosen.



From requests to images As a consequence of the previous assumption of a
fixed acquisition direction, all the spots are acquired using this direction and all
the polygons are cut up along the same direction. For each polygon, this cutting
up is performed once and for all before selection and scheduling and an offset is
chosen such that the useless acquired surface is minimized.

Acquisition and transition constraints We assume that the transition time
between two image acquisitions does not depend on the time at which the tran-
sition begins. Moreover, in order to bypass the complexity of the computing of
this minimum transition time, we pre-compute a table of minimum transition
times using a reasonable discretization of the parameter space, that we exploit
using simple linear interpolations.

Energy consumption, data recording and downloading For the moment,
we do not consider the constraints related to the energy, memory, visibility, and
data flow limitations.

Acquisition uncertainties In order to take into account the acquisition uncer-
tainties, as well as the remaining acquisition opportunities from other satellite
revolutions, we use an approach inspired from [15], which defines a rational way
of modifying the weight that is associated with each request and used by the
selection and scheduling process. Roughly speaking, this modification favours
the requests the acquisition certainty of which is high from this revolution and
the number of remaining acquisition opportunities from other revolutions is low.

Optimization criterion For the non linear criterion, we use a piecewise linear
convex function.

4 Problem mathematical statement

The problem resulting from these simplifications, we call SRSS for Satellite Rev-
olution Selection and Scheduling, can be mathematically stated as follows.

Data Let R be the set of requests that can be acquired, at least partially, from
the considered illuminated half-revolution. For each r € R, let W,. be its weight
and A, be its surface (multiplied by two in case of a stereoscopic request).

Let I be the set of potential images, associated with R. For each i € I, let r;
be its associated request, E; be its earliest starting time, L; be its latest starting
time, D; be its duration, A; be its useful surface, and W; = W,, - AA—:' be its
weight. '

For each pair of images (i, j) € I x I, let M;; be the minimum transition time
between i and j. Let B C I x I be the set of pairs of images (i,j), such that
1 and j are images of the same strip, using opposite azimuths. Let S C I x I
be the set of pairs of images (i, ), such that ¢ and j are the two elements of a
stereoscopic image of the same strip, using thus the same azimuth.



Decision variables We need three sets of decision variables: the first for the
selection, the second for the scheduling of the selected images, and the third for
the acquisition starting times of the selected images.

For each i € I, let x; be equal to 1 if the image 7 is selected, and to 0
otherwise. For each pair (i,j) € I x I, let f;; be equal to 1 if the image ¢ is
followed by the image j in the chosen sequence, and to 0 otherwise. For each
1 € I, let t; be the starting time of the the image i, if it is selected.

Constraints Let o be a fictitious image, used to begin and end the chosen
sequence, and It =T U {o}.

The constraints that define the feasible selections and sequences are the fol-
lowing:

Viel:(z;=1)=>(E; <t; <L;) (1)
V(i,j) € I xI:(fi; =1)= (t; + Di + Mj; <t;) (2)
V(i,j)€B:z;i+1z; <1 (3)
V(Z,]) €Sz = T (4)
T, =1 (5)
VieIT™: ) fij=> fii=a (6)

JEIT JEIT

The constraints 1 and 2 are temporal constraints, associated with the ac-
quisition angular constraints and the minimum transition time constraints. The
constraints 3 state that only one image per strip is needed. The constraints 4
state that the two elements of a stereoscopic image are needed. The constraints 6
state that the variables z; and f;; actually define a sequence of selected images.

Criterion Whereas the linear criterion (); can be defined as follows:

Ql=ZWi'$i=ZWri'%'$i (7)

iel iel Ti

the non linear criterion @),,; can be defined as follows:

Qu=Y W, P( Y G ®

rTER i€l|ri=r r

where P is a piecewise linear convex function, defined on [0, 1] and such that
P(0) = 0 and P(1) = 1. Note that both criteria are equivalent when Vz €
[0, 1], P(z) = z.

Problem analysis Apart from the constraints 3 and 4, and the non linear
criterion, SRSS has the classic form of a selection and scheduling problem. In
fact, it is close to well known problems like:

— the Traveling Salesman problem [6,10], at which temporal constraints would
be added and where the goal would be no more to visit all the cities by
minimizing the travel distance, but to maximize the sum of the weights of
the visited cities;



— the Job Shop and Open Shop Scheduling problems [6], where the goal would
be no more to complete all the jobs in a minimum time, but to maximize
the sum of the weights of the completed jobs;

— the Knapsack problem [6], where the usual linear capacity constraints would
be replaced by temporal constraints.

It can be established that, like these problems, SRSS is NP-hard. This implies
in practice that any algorithm able to solve it to optimality may need in the worst
case a computation time that grows exponentially with the size of the instance
to be solved.

It may be interesting to look at it as the combination of three subproblems:
selection, scheduling, and temporal assignment. Indeed, whereas the selection and
scheduling subproblems are hard, the temporal assignment subproblem, that is
the problem of deciding if a specified sequence of images can be achieved or not,
is polynomial and can be solved by a simple propagation on the earliest and latest
starting times associated with each image (in fact, by enforcing arc consistency).
This observation will be used by the local search algorithm (see Section 5.4). Note
also that the optimization criterion only depends on the selection choices, and
does not depend on the scheduling and temporal assignment choices.

It can be also noted that, provided that the time has been discretized, a
weighted acyclic directed graph can be associated with any instance of SRSS. In
this graph, a vertez is associated with any pair (i,t), where ¢ € I is a candidate
image and t a possible acquisition starting time for i (E; < t < L;, equations
1). A directed edge exists between two vertices (i,t) and (j,¢') iff ¢ # j and
the acquisition of ¢ starting at time ¢ can be followed by the acquisition of j
starting at time ¢' (¢t + D; + M;; < t', equations 2). This temporal constraint
prevents the presence of cycles. The weight associated with each directed edge
is the weight W; of the image i associated with its origin. Assuming a linear
optimization criterion (equation 7), looking for an optimal solution for an SRSS
instance is equivalent to looking for a longest path in the associated graph, that
does not involve two vertices associated with the same image (equations 3), and
that involves the two vertices associated with the two elements of a stereoscopic
image each time it involves one of them (equations 4). This observation will be
used by the dynamic programming algorithm (see Section 5.2).

5 Four solving algorithms

First, it can be observed that, in case of a linear optimization criterion, the
problem mathematical statement presented in the previous section defines a
mized integer programming problem, that suggests the use of dedicated tools.
Unfortunately the use of CPLEX, one of the most powerful Integer Programming
tools, provided us with poor results : only very small instances (no more than
twenty candidate images) could be deal with. So, this way has been given up.
Four other ways have been then explored :

— a greedy algorithm (GA);



— a dynamic programming algorithm (DPA);
— a constraint programming approach (CPA);
— a local search algorithm (LSA).

The first two (GA and DPA) are limited to a linear optimization criterion
(equation 7) and do not take into account the stereoscopic acquisition constraints
(equations 4). The last two (CPA and LSA) are not limited and take into account
the whole set of constraints.

5.1 A greedy algorithm

The greedy algorithm we considered imitates the behavior of an on-line mission
management system that, in parallel with image acquisition, would be wondering
what next image to acquire. It starts with an empty sequence of images. At each
step, it chooses an image to be added at the end of the current sequence and
repeats this until no image can be added.

At each step, the chosen image is one of the images that is not present in
the current sequence yet, can follow the last image of the current sequence, and
maximizes a criterion that is an approximation of the gain that is possible to
get by making this choice. When the chosen image is added at the end of the
curren‘g sequence, the temporal constraints are propagated.

If G is an approximation of the problem optimum, E = min;crE; and L =
mazicyL;, and T; is the earliest ending time of i, if it would be added at the end
of the current sequence, the chosen criterion is:

L-T,

W,'+G-L_E

(9)

The first part of the criterion measures the immediate gain resulting of the
choice of 7. The second part is approximation of the gain that it would be possible
to obtain later. This later gain is assumed to be proportional to the remaining
time. As the problem optimum is not known, it is possible to start with any
approximation, to run the greedy algorithm, to use its result as a better approx-
imation, and so on.

A non linear optimization criterion (equation 8), as well as stereoscopic ac-
quisition constraints (equations 4), which both link images that are set anywhere
in the sequence, cannot be easily taken into account by such a sequential decision
process.

5.2 A dynamic programming algorithm

The dynamic programming algorithm uses the observation, done in Section 4, of
the possible transformation of SRSS into a longest path problem in a weighted
acyclic directed graph, obtained thanks to a time discretization and under the
assumption of a linear optimization criterion. But, to obtain a purely longest
path problem, polynomially solvable, it is necessary to remove the constraints 3
and 4.



Assuming that the stereoscopic acquisition constraints 4 have been anyway
removed, a way of removing the constraints 3 consists in ordering the set of
candidate images and in imposing that the chosen sequence respects this order,
which comes down to deciding about the scheduling subproblem. Indeed, if we
remove now from the graph all the edges the destination vertex of which precedes
its origin vertex in the chosen order, the constraints 3 will be necessarily met by
any path.

In the general case, it may be difficult to find a pertinent order. But, nat-
ural orders may be exhibited in our specific problem: either a temporal order
according to the middle of the temporal window associated with any image, or a
geographical order according to the latitude of the middle of the strip associated
with any image. In both cases, the idea is to prevent the satellite to turn its in-
strument backwards thanks to its attitude control system while going forwards
on its orbit, because this kind of movement may be considered to be generally
inefficient.

The dynamic programming algorithm we designed is only an efficient way
of looking for such a longest path. It explores the images in the inverse order
of the chosen order, and the possible starting times in the inverse order of the
natural order. For each pair (7,t), it computes the maximum gain G*(i,t) that
it is possible to obtain by acquiring ¢ and starting this acquisition at time ¢. For
that, it uses the following equation [2]:

G* (4, t) = maz (j 11| ci,b,4,00) (Wi + G (4, )] (10)

where ¢(4,t, 7,t") holds iff there is an edge between (i,t) and (j,t'), that is iff
1 # j and the acquisition of ¢ starting at time ¢ can be followed by the acquisition
of j starting at time ¢’ (¢t + D; + M;; < t', equations 2). Doing that, it records
the pair (j,t") (in fact, one of these) associated with G*(i,t). Moreover, it takes
advantage of the following monotonicity property:

Vi, t,t'  t <t = G*(i,t') < G*(i,t) (11)

which states that starting later cannot improve the gain.

As the greedy algorithm and for the same reasons, this dynamic programming
algorithm can easily take into account, neither the non linear optimization cri-
terion (equation 8), nor the stereoscopic acquisition constraints (equations 4).
For example, taking into account stereoscopic acquisition constraints would in-
duce time and memory requirements growing exponentially with the number of
stereoscopic images.

5.3 A constraint programming approach

Constraint programming is neither an algorithm nor a family of algorithms. It
is first a modelling framework, which uses the basic notions of wvariables and
constraints and to which many various generic algorithms can be applied.

For solving our problem, we could have used any basic constraint reasoning or
comstraint programming tool, provided by software companies, research centers,



or academic teams, like our own tools?. We decided to use OPL [8], firstly because
it is a nice high level modelling tool, and secondly because it can call and combine
constraint programming and integer linear programming.

OPL allowed us to build various models of SRSS, all of them more compact
than the linear one described in Section 4. The model we finally chose deals
with a restriction of SRSS, which consists in finding a feasible optimal sequence
of images of a fized length. We start with a length equal to 2 and increase this
length at each step, until no feasible sequence can be found. The largest optimal
found sequence is an optimal solution of SRSS.

Unfortunately, even with this approach, the first results, obtained within
a limited time, were very poor in terms of quality. Neither the use of pertinent
heuristics for the variable and value orderings, nor the use of non standard search
strategies like Limited Discrepancy [7], improve them significantly.

The only way we found to obtain better results with this approach was to
add constraints that are not redundant, and thus may decrease the problem
optimum, but are chosen in such a way that we can hope that the loss in terms
of quality will not be too high. The constraints we added are the following :

— images the weight of which is too low are removed from the set of candidate
images;

— each image is constrained to appear only in a specified sub-sequence of the
whole sequence; for example, an image the associated strip of which is located
near the equator will not appear at the beginning of the sequence;

— although the considered sequences can follow an order that is different from
the natural temporal or geographical order (discussed in Section 5.2 and
used by the dynamic programming algorithm), the amplitude of a backtrack
with respect to this order is limited;

— at each step of the algorithm, the considered sequences are constrained to
involve all the images that are involved in the sequence that has been chosen
at the previous step (not necessarily in the same order).

Adding these constraints allows us to obtain reasonable quality results on all
the instances whatever their size.

5.4 A local search algorithm

Local search algorithms, like hill-climbing search, simulated annealing, tabu search,
or genetic algorithms [1], are known to be applicable each time one wants to find
within a limited time reasonable quality solutions to large constrained optimiza-
tion problems.

Rather than using generic algorithms, we designed a simple specific algorithm
dedicated to our problem. This algorithm defines a local search through the set
of the feasible sequences of images. It starts with an empty sequence and stops
when a specified time limit is reached.

% See ftp://ftp.cert.fr/pub/lemaitre/TLVCSP/.



At each step, it chooses one action among two possible ones: either to add
an image to the current sequence, or to remove an image from it. The choice
between both these actions is random and made according to a dynamically
evolving probability. The result of an image adding may be either a success or
a failure. In case of success (resp. failure), the adding probability is increased
(resp. decreased). On the other hand, an image removal is always successful and
does not modify the adding probability.

In both cases (adding or removal), an image is chosen to be added or removed.
This choice is random, with a probability to be added (resp. removed) that is
proportional (resp. inversely proportional) to its weight. In case of image adding,
the choice of the position in the sequence is random, with a uniform probability
among all the alternatives.

To determine if adding an image at a specified position is possible or not,
and to update the time windows associated with each image in the current
sequence when adding or removing an image, temporal constraint propagation
mechanisms are used (see Section 4).

6 Experimental results

We compared the performances of these four approaches, by running the asso-
ciated algorithms on six instances we chose among a set of training instances
provided by the CNES, as being representative of this set.

For each instance and each algorithm, the computation time was limited to
two minutes, expect for LSA that was running one hundred times, two minutes
each time, because of its stochastic behavior. Within this time, GA and DPA
terminated, CPA was stopped before termination, and LSA, which cannot ter-
minate naturally, simply stopped after two minutes. Results were compared in
terms of quality (quality of the best solution found after two minutes).

A first experiment, involving the four algorithms (GA, DPA, CPA, and LSA),
was carried out. In this experiment, the optimization criterion was linear and
the stereoscopic requests dealt with as if they were unrelated (the stereoscopic
constraints 4 were ignored). Results are presented in Table 1. Despite of its
restriction to a predefined image sequencing, DPA produces systematically the
best results.

Unfortunately, the best two algorithms from this first experiment (DPA and
GA) cannot deal with a non linear optimization criterion and with stereoscopic
constraints.

A second experiment, involving only the two other algorithms (CPA and
LSA), was carried out. In this experiment, the optimization criterion was non
linear and the stereoscopic requests correctly dealt with. Results are presented
in Table 2. LSA produces systematically the best results.

In both tables, a row is associated with each instance. The instance number
appears in the first column, the number of involved strips in the second column,
the results, in terms of quality, provided by GA, DPA, CPA, and LSA, in the last



four columns. For LSA, average and maximum results over the hundred trials
are provided. For each instance, the best results are displayed in bold.

instance id|# strips||GA|DPA|CPA|LSA av. (max.)
2:13 111 106(|532| 603| 442 574 ( 587 )
2:15_170 295|707 843| 527 723 (779)
2:26 96 483|(831({1022| 782 826 ( 877 )
2:27 22 534(|895(1028| 777 800 ( 861 )
)

)

3:25 22 342(|436| 482| 253 345 ( 375
4:17_186 147||188| 204| 177 192 ( 196

Table 1. First experiment: linear optimization criterion, stereoscopic constraints ig-
nored.

instance id|# strips||CPA|LSA av.
2:13_111]  106|| 241] 414
2:15_170]  295|| 350] 446

(max
E
2:26__96 483( 439 516 (
(
(
(

4
4

2:27 22 534| 410 455
3:25_ 22 342]| 149 255
4:17 186 147 125 145

)
90 )
90 )
592 )
61)
98)
56 )

5
2
1

Table 2. Second experiment: non linear optimization criterion, stereoscopic constraints
dealt with.

7 Lessons

We conclude with some lessons we drew from this study and choose to present
along the four considered algorithms. It is however important to stress that, be-
cause many mistakes may be done while modelling a problem, designing and im-
plementing an algorithm, using a tool, carrying out experiments . .. these lessons
cannot be considered as being universal and definitive truths. They are pre-
sented here to stimulate discussions in the constraint reasoning and constraint
programming community.

Greedy algorithm It is confirmed that greedy algorithms are always the first
available solution when facing a large complex constrained optimization prob-
lem. They are easy to implement, generally require little computation time, and
produce reasonable quality solutions. The one we considered can be seen as a
degraded version of the dynamic programming algorithm. But other greedy algo-
rithms could have been considered, based on other variable and value heuristics.

Dynamic programming algorithm When applicable, that is when the num-
ber p of subproblems to consider is not too high, dynamic programming is clearly
the best solution. It is easy to implement, requires a computation time and a
memory that are proportional to p, and produces optimal solutions. As shown in
[5], its applicability depends widely on the structure of a graph associated with



each problem instance (the induced width of the macro-structure graph in the
CSP framework). Is is however important to note that, if p grows exponentially
with the problem size, both computation time and memory requirements of dy-
namic programming grow the same way. To bypass this difficulty, hybridizations
between dynamic programming and tree search, as it is for example proposed in
[9], deserve certainly more attention in the constraint reasoning community.

Constraint programming approach Constraint programming offers clearly
very nice modelling frameworks: various types of constraints can be expressed
in an elegant way, various models of a problem can be explored by adding or re-
moving constraints. Difficulties arise with the solving methods, that are currently
limited to constraint propagation and tree search.

For our problem, local constraint propagation mechanisms are clearly not
powerful enough. We think that there are at least two reasons for that: firstly,
although powerful specific propagation rules are available for scheduling prob-
lems, these rules are not applicable as long as selection decisions have not been
made; the same phenomenon occurs when one goes from the CSP framework to
the Max-CSP framework: basic arc consistency algorithms do not work anymore
[12]; secondly, even when these selection decisions have been made, the time
windows associated with each image are too large with regard to the duration
of each image to allow propagation mechanisms to deduce any scheduling con-
straint. As it is well known, depth-first tree search mechanisms do not succeed to
improve quickly the first greedy solution and exhibit a poor anytime behavior.

On the other hand, adding constraints to the problem statement, allowed us
to obtain reasonable quality results. It is known in the constraint community,
that adding redundant constraints, that is constraints that are satisfied in all
the problem solutions, helps the search (this is what is done by the constraint
propagation mechanisms). In constrained optimization problems, an interesting
way of helping the search consists in adding non redundant constraints, that
is constraints that are not satisfied in all the problem solutions, but in all the
optimal solutions, or at least in some of them, and thus do not decrease the
problem optimum, or decrease it at least as possible. It is in fact what has
been done with success with the dynamic programming algorithm: discretizing
the time and adding sequencing constraints result in that case in a polynomial
problem, solvable by a dynamic programming approach.

Local search algorithm Local search mechanisms are widely applicable, be-
cause they only require the ability to evaluate any complete solution. The re-
sults we obtained with a very simple search strategy confirm the significance
of a search through the set of the feasible solutions and of a combination be-
tween heuristic and random movements. The stochastic behavior of the resulting
algorithms is always irritating and the numerous parameters difficult to tune.
Hybridizations between local search, limited tree search and constraint propa-
gation, as it has been for example proposed in [13,11], is certainly one of the
currently most promising ways of research.



These lessons may seen to be negative for the constraint programming ap-
proach, because the basic constraint programming tools we used did not provide
us with actually satisfactory results. It is true if constraint programming is seen
as limited to the combination between constraint propagation and tree search.
But it is not true if it is seen as a powerful modelling framework, as well as a
modular software architecture, to which many either specialized or generic algo-
rithms, coming from the Constraint Reasoning, Interval Analysis, Graph Theory,
Artificial Intelligence, or Operations Research communities, can be connected.
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