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Abstract
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Optimal shape design of aerodynamic configurations is a challenging problem due to the
nonlinear effects of complex flow features such as shock waves, boundary layers, and separa-
tion. A Newton—Krylov algorithm is presented for aerodynamic design using gradient-based
numerical optimization. The flow is governed by the two-dimensional compressible Navier—
Stokes equations in conjunction with a one-equation turbulence model, which are discretized
on multi-block structured grids. The discrete-adjoint method is applied to compute the ob-
jective function gradient. The adjoint equation is solved using the preconditioned generalized
minimal residual (GMRES) method. A novel preconditioner is introduced, and together with
a complete differentiation of the discretized Navier—Stokes and turbulence model equations,
this results in an accurate and efficient evaluation of the gradient. The gradient is obtained in
just one-fifth to one-half of the time required to converge a flow solution. Furthermore, fast
flow solutions are obtained using the same preconditioned GMRES method in conjunction with
an inexact-Newton approach. Optimization constraints are enforced through a penalty formu-
lation, and the resulting unconstrained problem is solved via a quasi-Newton method. The
performance of the new algorithm is demonstrated for several design examples that include lift
enhancement, where the optimal position of a flap is determined within a high-lift configuration,
lift-constrained drag minimization at multiple transonic operating points, and the computation
of a Pareto front based on competing objectives. In all examples, the gradient is reduced by
several orders of magnitude, indicating that a local minimum has been obtained. Overall, the
results show that the new algorithm is among the fastest presently available for aerodynamic

shape optimization and provides an effective approach for practical aerodynamic design.
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Chapter 1

INTRODUCTION

1.1 Motivation

HE goal of aerodynamic design is to accurately and efficiently determine surface shapes
Tthat attain optimal aerodynamic performance. Among the most important applications
are the design of external surfaces of aircraft, especially wings, and the design of components for
gas-turbine engines, such as compressors and turbines. Although our focus is on aerodynamic
design, it should be noted that optimal shape design problems, where the optimization of a
performance criterion depends on the shape of a boundary, occur in many areas of engineering.
Examples include the design of structures, such as plates and shells, and the problem of minimal
hydrodynamic resistance.!

The primary challenge of aerodynamic design is the underlying complex nature of the flow.
For cruise configurations of commercial aircraft, the flow is compressible, usually transonic,
and may contain features such as shock waves, shock-induced boundary-layer separation, and
boundary-layer transition. At take-off and landing, the use of configurations with multiple
elements, for example slats and flaps, at high angles of attack causes additional difficulties.

An excellent overview of high-lift aerodynamics is provided by Smith [159]. The dominant

!First studied by Newton over three hundred years ago.



2 Chapter 1. INTRODUCTION

flow features include regions of separated flow, confluent boundary layers and wakes, and even
regions of supercritical flow where compressibility effects are important. Such flow features have
a strong influence on the aerodynamic performance of a configuration due to their nonlinear
effects. Consequently, the nonlinear effects must be carefully controlled by the shape of the
configuration in order to realize optimal performance. Note that the design problem inherently
involves multiple operating conditions.

The design of practical configurations with optimal aerodynamic properties requires the
consideration of not only aerodynamics, but also several other disciplines, namely, structures,
acoustics, and controls [161]. The aero-structural coupling is perhaps most significant, since
an optimal aerodynamic design may incur excessive weight penalties [109, 129]. Furthermore,
the design is constrained by numerous engineering requirements [60], such as the desirable fuel
tank volume within the wing. Jameson and Vassberg [88] present an insightful example of
multidisciplinary design based on requirements for a small race plane.

Although aerodynamic design is a complex task, the incentive for the development of ef-
fective design strategies is substantial. The potential benefits include safer and more efficient
aircraft and shorter design-cycle times. For example, an efficient high-lift configuration can sig-
nificantly improve the aerodynamic performance of an aircraft, as well as provide weight savings
and reductions in mechanical complexity of the high-lift system [172]. For cruise configurations,
the benefits include low drag and improved fuel burn, an increase in the drag-divergence Mach
number, and also sonic-boom reductions for the design of quiet supersonic platforms [85, 4].

Experimental methods, using wind tunnel and flight testing, provide the basis of the tradi-
tional “cut and try” approach for the design of new aerodynamic shapes. This approach alone,
however, is too expensive, which has motivated the continual development of sophisticated com-
putational methods for flow simulation [104] and established the field of computational fluid
dynamics. These methods, along with performance gains in computer technology, complement
and in some instances even replace the use of the wind tunnel during the design process. In this
setting, the experimental and computational techniques are analysis tools that provide reliable
estimates of aerodynamic performance for given configurations and operating conditions. A
good physical insight of the designer is required to select and evolve the candidate aerodynamic
shapes and provide an overall control for the design process.

The fundamental question that the design process seeks to answer is the following:
What is the aerodynamic shape that attains the design objectives?

The “cut and try” approach does not address this question directly, resulting in an inefficient
design process. Consequently, a significant research effort has been devoted to the development

of computational methods for the solution of the design problem. The resulting methods can
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be divided into two categories, namely, inverse design methods and numerical optimization
methods.

Inverse design methods, first introduced in 1945 by Lighthill [102], are an established ap-
proach for the determination of an airfoil shape that attains a given pressure distribution. For
example, an experienced designer is able to specify a lift-preserving pressure distribution that is
shock-free for transonic flow conditions, thereby achieving significant drag reductions. Inverse
methods were also used to design the well-known Liebeck high-lift airfoils [101]. An advantage
of this approach is its low computational cost. Giles and Drela [61] developed an inverse de-
sign method using the two-dimensional, coupled Euler and boundary layer equations with a
computational cost equivalent to the solution of just one analysis problem. Although inverse
design methods have been applied to three-dimensional problems [55], their primary limitation
is the specification of desirable pressure distributions that lead to optimal designs, especially
for problems with multiple operating conditions and turbulent and separated flow.

Numerical optimization methods provide a more general approach for solving design prob-
lems. The creativity and insight of an experienced designer are required to reduce the design
problem to a well-posed optimization problem. This involves the definition of objective func-
tions that specify the goals of the optimization, design variables that determine the aerodynamic
shape, as well as constraints that qualify a feasible region of the design space. Note that for
practical problems, it is very likely that the objectives are competing and that changes in the
specification of the optimization problem occur as the design evolves. Typically, the problem is
cast as a minimization, where the objective functions include lift, drag, and moment functionals.
Inverse design can be considered a subset of numerical optimization by defining an objective
function that represents the difference between the target and the actual pressure distributions.

Once an aerodynamic shape optimization problem is defined, a numerical optimization
method coupled with a suitable flow analysis tool (flow solver) is used to find a solution. The
goal of the optimization is to determine a set of design variables that satisfies the objectives
within the feasible region of the design space. This approach provides an effective design
strategy, since the selection of an optimal configuration is based on a systematic and potentially
fast evaluation of candidate designs. Furthermore, the effects of nonlinear flow features, multiple
operating conditions, and multidisciplinary interactions can be intrinsic in the formulation of
the optimization problem.

The main difficulty in the realization of such general optimization algorithms is computa-
tional cost, which is due to the need for repeated evaluation of the objective function, and hence
the flow equations. Objective function gradients can be used to accelerate the convergence of
the optimization problem; however, fast evaluation of accurate gradients is a challenging task.

The goal of this thesis is to develop an accurate and robust algorithm for complex aerodynamic
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shape optimization problems that provides an efficient evaluation of the objective function and
gradient.

An overview of algorithms for aerodynamic shape optimization problems is given in the
following section, which is divided into two parts. In the first part, Subsection 1.2.1, we provide
an outline of the techniques used for the essential components of the optimization problem. In
Subsection 1.2.2, we summarize methods used for the evaluation of the gradient. The objectives

of this thesis are stated in Section 1.3, which also provides an outline of the document.

1.2 Review of Aerodynamic Shape Optimization Algorithms
and Applications

1.2.1 Essential Components

The aforementioned, essential components of an aerodynamic shape optimization problem are
objective functions and constraints, design variables?, a flow solver, and a numerical optimiza-
tion method. These components should be selected carefully, since they have a direct impact
on the accuracy and efficiency of the optimization. Jou et al. [89], Giles [60], and Drela [38]
present important factors that influence the selection of the objective functions and constraints
for practical problems. These factors include limitations of the flow solver that can be exploited
by the optimization procedure and the consideration of multiple operating conditions.

Samareh [154, 153], Oyama [136], and Reuther et al. [146] provide excellent summaries of
shape parameterization techniques that can be used to define design variables. Overall, it is
important that the selected parameterization technique provides sufficient flexibility in order to
realize truly optimal designs; yet, it is also desirable that the number of parameters required to
define the shape is small in order to ensure a reasonable convergence rate of the optimization.
Additional desirable qualities include local shape control, as well as smooth shape perturbations.

The simplest choice of design variables, which does not require an explicit parameterization
technique, is the location of surface nodes in the computational grid. Jameson [84] and Mo-
hammadi [113] have successfully used this approach in conjunction with smoothing operators.
Unfortunately, the number of design variables becomes prohibitively large for three-dimensional,
turbulent flow problems.

The most promising shape parameterization approaches are the shape-function, polynomial
and spline approaches. The shape-function approach was introduced by Hicks and Henne [75].

For recent publications that contain a detailed description of this approach see [48, 146]. An

2 Also referred to as design parameters or controls in the context of control theory or genes in the context of
genetic algorithms.
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example of the polynomial approach is PARSEC [160, 59, 136], where practical airfoil parame-
ters such as the trailing-edge angle, airfoil thickness and curvature are used to define the airfoil
shape. Spline approaches, such as basis splines (B-splines) and nonuniform rational B-splines
(NURBS) [32, 53], have received considerable attention [20, 8, 98] since they can be tailored
to provide local and smooth airfoil shape control and are easily incorporated into the CAD
environment.

Closely associated with the design variables is a grid-perturbation algorithm, which adjusts
the computational grid relative to the surface shape defined by the design variables. Although
this task could be accomplished by a grid generator, present-day grid generation tools for com-
plex geometries are computationally expensive and typically not fully automated. Therefore,
grid-perturbation algorithms are often used to modify a baseline grid, which is generated only
once at the start of the optimization. For two- and simple three-dimensional problems using
structured grids, algebraic grid-perturbation strategies work well. Burgreen and Baysal [19]
use an algebraic strategy that preserves the distance to the outer grid boundary and relocates
the nodes in the normal direction proportional to the distance from the surface. A similar
strategy is used by Reuther et al. [145]. However, they note that this strategy fails for three-
dimensional problems where multiple surfaces require simultaneous adjustment. A new strategy
is introduced based on transfinite interpolation [167]. Grid-perturbation algorithms for unstruc-
tured grids generally use a force equilibrium of springs approach, but safeguards are required
for viscous-grid perturbations [8, 47, 42]. A promising strategy for large surface deformations

based on a modified linear elasticity theory is proposed by Nielsen and Anderson [132].

The accuracy of the optimization ultimately depends on the modelling of the flow, and
hence, the flow solver. Accurate modelling of the nonlinear flow effects described in Section 1.1
requires the solution of the compressible, Reynolds-averaged, Navier—Stokes equations combined
with a suitable turbulence model. Two-dimensional flow problems for single and multi-element
airfoils are considered in this work. Detailed reviews of two-dimensional flow solvers and re-
sults for transonic cases are provided by Holst [78] and for high-lift cases see Rumsey and
Ying [149], Klausmeyer and Lin [95], and Fejtek [54]. With the exception of stall and post-
stall conditions, the flow solvers provide accurate estimates of aerodynamic performance. The
algorithm developed in this work is based on two established solvers, namely, ARC2D [143]
and TORNADO [121, 67]. TORNADO is a generalization of the approximate-factorization
algorithm of ARC2D for multi-block structured grids. Both solvers have been a subject of
detailed accuracy studies for a wide range of flow conditions and airfoil configurations, see for
example [107, 78, 182, 122, 54, 120, 34, 149].

The flow solver has also a significant influence on the efficiency of the optimization. The

repeated evaluations of the objective functions required during the optimization demand fast
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flow solutions. Detailed reviews of effective flow solvers for the Navier—Stokes equations are
given by Nelson [119], Pueyo [141], and Walsh [176]. Among the fastest algorithms are the
Newton—Krylov solvers [175, 9, 7, 142, 183, 22]. For example, promising results are presented
by Pueyo and Zingg [142], who used the preconditioned generalized minimal residual (GMRES)
Krylov subspace method [152] in conjunction with an inexact-Newton strategy. A critical com-
ponent in this approach is a fast solution of the linear system at each Newton iteration, which
is provided by the preconditioned GMRES method. For the aerodynamic shape optimization
problem, such Newton—Krylov solvers are very appealing, since they not only provide fast so-
lutions to the flow equations, but the preconditioned GMRES method can also be used to

compute objective function gradients.

Numerical optimization methods, which control the solution of the optimization problem,
can be divided into the following four categories: 1) classical direct search methods, 2) stochas-
tic methods, 3) gradient-based methods, and 4) fully-coupled methods. An insightful summary
of direct search methods is provided by Lewis et al. [99]. Among the most well-known di-
rect search methods is the simplex method of Nelder and Mead. Duvigneau and Visonneau [42]
investigate the performance of this method for aerodynamic and hydrodynamic shape optimiza-
tion problems, including the optimization of a high-lift configuration. The flow is governed by
the two-dimensional incompressible Navier—Stokes equations. Although this approach provides
a robust optimization method, its convergence to the optimal solution is slow and requires a

large number of flow evaluations.

Simulated annealing [94] and genetic algorithms [68] are good examples of stochastic meth-
ods. The latter, in particular, have received considerable attention for application in aero-
dynamic shape optimization problems, see for example Giannakoglou [59], Marco et al. [108],
Obayashi [134], and Oyama [136]. The fundamental concepts of genetic algorithms are based
on the process of natural selection. These algorithms are capable of finding a global optimum,
are well-suited for problems with multiple and non-smooth objectives, and can be used with
categorical design variables. The primary disadvantage of genetic algorithms is high compu-
tational cost. Tse and Chan [170] and Holst and Pulliam [79] provide optimization examples

where up to 10,000 flow solutions are required to reach convergence.

Gradient-based methods [66, 36, 133] are potentially the most effective methods for aero-
dynamic shape optimization problems, since significant design improvements can be obtained
in a relatively few evaluations of the objective function and gradient. However, these methods
require a smooth design space® and inherently converge to a local optimum. The gradient can

be used directly to determine a search direction for the optimization process, which is the case

3Recently, Moreau and Aeyels [115] examined the optimization of discontinuous objective functions using the
concept of generalized gradients.
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for the classic method of steepest descent. Alternatively, the gradient in conjunction with the
objective function value can be used to approximate the “curvature” of the design space, which
leads to the much more efficient quasi-Newton methods and conjugate gradient methods. In
1974, Hicks, Murman, and Vanderplaats [76] were the first to apply gradient-based methods
to aerodynamic shape optimization problems. They used the method of feasible directions,
which is based on conjugate gradients, to optimize airfoil shapes in transonic flow governed by
the small-disturbance equation. Since this pioneering work, the application of gradient-based

methods to aerodynamic shape optimization problems has been an active area of research.

Although steepest descent, quasi-Newton, and conjugate gradient methods were originally
developed in the context of unconstrained optimization, when combined with other techniques
these methods are also effective for constrained problems. The aerodynamic shape optimization
problem can be formulated as an unconstrained problem by a careful selection of objective
functions and design variables [27, 84, 165]; however, constraints that represent structural

limitations, such as volume or thickness requirements, are usually necessary.

The most popular approaches for constrained problems include the projection of the search
direction into the allowable design space [37, 48, 86], the use of the Kreisselmeier-Steinhauser
function [181, 8, 131, 11] and other penalty methods [113], and the use of methods based on
sequential quadratic programming (SQP) [66, 146, 162, 91]. Melvin et al. [112], see also [89)],
use the SQP approach, but introduce an approximate Hessian formulation. Jameson and Vass-
berg [87] compare a number of gradient-based methods using a model problem with as many
as 8,000 design variables. It should be emphasized that one of the main challenges for effective
implementation of gradient-based methods is an accurate and efficient computation of the gra-
dient. Methods for gradient computation are summarized in the following subsection, which

also includes example applications.

Fully-coupled methods* use a Lagrangian formulation for the optimization problem and
attempt to solve the corresponding coupled system of nonlinear equations that define the first-
order optimality conditions. Excellent descriptions of this approach are provided by Gun-
zburger [71], Biros and Ghattas [16], and Shenoy et al. [156]. Note that the gradient-based
methods solve the same system of nonlinear equations, but in a decoupled form. Consequently,
the flow equations and the gradient must be evaluated repeatedly, which is computationally
expensive. The main advantage of fully-coupled methods is that the repeated flow and gradient
evaluations are avoided; however, the coupled system of nonlinear equations is approximately
twice the size of the flow equations. In addition, the system size increases linearly with the

number of objectives and operating conditions considered in the optimization problem.

4 Also referred to as all-at-once and one-shot methods.
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Frank and Shubin [57] compare the fully-coupled and gradient-based methods for an inverse
design problem using a quasi-one-dimensional nozzle flow. They conclude that the fully-coupled
approach is less robust but considerably more efficient than gradient-based methods. A similar
problem is also considered by Feng and Pulliam [56], and Gatsis and Zingg [58]. Iollo et al. [82]
apply a pseudo-time method to solve the fully-coupled system and examine an inverse design
problem using the two-dimensional Fuler equations. They report that the computational cost of
the optimization problem is only three to four times greater than the analysis problem. Biros
and Ghattas [16] also consider an inverse design problem, but for a laminar incompressible
flow. Their fully-coupled method appears to converge five time faster when compared with
conventional SQP methods.

We conclude this subsection with a brief overview of approximation techniques. These
techniques are combined with numerical optimization methods in order to obtain reductions in
the computational cost of the optimization. The main idea is to approximate the design space
with a simpler, low-cost model. On the basis of this model, a numerical optimization method
is used to find an approximate optimal solution. The model can be subsequently refined and
the procedure repeated.

Dadone and Grossman [29, 30] present a progressive optimization procedure that uses grid-
sequencing and loosely-converged flow and gradient evaluations. Their results indicate that
the amount of computational work required for the convergence of the optimization is equiva-
lent to just four flow solutions. Alexandrov et al. [3] consider variable-fidelity physics models
for gradient-based optimization of high-lift configurations. This model-management approach
can yield up to five-fold savings in computational work relative to the high-fidelity model
alone. Greenman and Roth [69] use an artificial neural network in conjunction with genetic
and gradient-based algorithms to optimize the positions and deflections of slats and flaps. Ahn
et al. [2] construct a response surface based on quadratic polynomials and consider airfoil opti-
mization problems in transonic flow governed by the Navier—Stokes equations. Otto et al. [135]
present a Bayesian-validated surrogate approach that estimates the accuracy of the approxi-
mation and provides error bounds for the optimal solution. LeGresley and Alonso [97] apply
proper orthogonal decomposition to construct a reduced-order model for the Euler equations.
The resulting model is evaluated for inverse design problems. Chung and Alonso [24] investi-
gate a Cokriging method that uses objective function and gradient values to approximate the

design-space surface.
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1.2.2 Numerical Methods for Gradient Computation

Finite-difference schemes are a classic approach for the computation of objective function gra-
dients [76, 75, 27, 52]. An advantage of this approach is that its implementation is straight-
forward. Unfortunately, there are two significant disadvantages. First, for practical problems
the computational cost of repeated finite-difference gradient calculations is prohibitive. Sec-
ond, finite-difference schemes are prone to accuracy errors due to their dependence on the step
size. Recently, Anderson et al. [6] and Martins et al. [110] presented improved accuracy results
for finite-difference gradient calculations using an approach based on complex variables [106].
Although this approach is insensitive to the step size, it requires even greater computational
resources. In this work, we have not implemented the complex variable approach; however, we

found the finite-difference gradients very useful for testing and validation studies.

Two significantly better ways of computing the gradient are the direct, or flow-sensitivity,
method and the adjoint method [138]. Pironneau [139] provides an insightful overview of the
development of these methods that includes a discussion of theoretical results on the existence
of solutions, techniques for numerical implementation, and practical applications. Both meth-
ods have been applied to design problems governed by the steady Navier—Stokes equations and
can be subdivided into the continuous [84, 86, 162, 171, 117, 118, 166] and the discrete ap-
proach [10, 8, 5, 96, 157, 49, 45, 90, 62, 180]. For the continuous approach, the adjoint (or
sensitivity) equation is derived from the continuous flow equations and then discretized, while
for the discrete approach, the adjoint equation is derived directly from the discrete flow equa-
tions. Gunzburger [71], and Giles and Pierce [63] provide detailed reviews of both approaches.
Furthermore, the adjoint and flow-sensitivity methods have been also applied to control prob-
lems for unsteady flow” [72, 74, 83], and the adjoint method is a promising approach for error
analysis [65, 174].

The main advantage of the adjoint method over the flow-sensitivity method is that the
cost of the gradient computation is virtually independent of the number of design variables.
However, flow-sensitivities can be useful for design problems that contain constraints dependent
on the flow variables [180]. In addition, it may be advantageous to implement both methods
since the resulting information can be used to accelerate the convergence of the design problem

by constructing better approximations of the Hessian matrix [37, 89, 157].

Jameson et al. [86] derived the viscous adjoint terms for the continuous approach for laminar
and turbulent flows on structured grids. Although this formulation neglects the linearization of
laminar and turbulent viscosities, it has been successfully applied to a number of aerodynamic

shape optimization problems, including two-dimensional high-lift configurations [92, 93] with

Similar unsteady adjoint applications are also frequent in meteorology [168, 177].
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the Baldwin—Lomax and the one-equation Spalart—Allmaras turbulence models [164]. Nadara-
jah and Jameson [118] obtained inaccurate gradients using the continuous adjoint approach
when considering objective functions based on skin-friction drag. In order to overcome this
problem they suggest replacing the viscous continuous adjoint boundary condition with the

discrete adjoint boundary condition.

Anderson and Venkatakrishnan [8] analyzed both the continuous- and discrete-adjoint meth-
ods for unstructured grids and implemented the discrete approach for viscous design problems.
Anderson and Bonhaus [5] extended this work to turbulent flows by differentiating the Spalart—
Allmaras turbulence model by hand. They report accurate gradients for turbulent design cases.
Nielsen and Anderson [131] apply the same strategy to three-dimensional, turbulent flow design
problems and also demonstrate excellent gradient accuracy. Furthermore, their results show
the influence of various simplifying assumptions in the linearization of the discretized governing
equations, such as the assumption of constant turbulent viscosity and a linearization based on
first-order discretization. They conclude that most of these simplifying assumptions result in
significant gradient errors. Similar results are obtained by Kim et al. [90]. Automatic differ-
entiation can be used to differentiate the governing flow equations [114, 157, 6]. However, the
resulting gradient computation is usually not as efficient and extensive modifications of the flow

solver code may be required in order to control memory requirements.

In the adjoint and flow-sensitivity methods, the computational cost of the gradient calcu-
lation is dominated by the solution of the large linear system of equations that arises from
the flow Jacobian matrix. A popular approach to solve the adjoint and flow-sensitivity equa-
tions is to use the same scheme that solves the governing flow equations, for example the ex-
plicit and point-implicit multistage Runge-Kutta schemes coupled with multigrid [86, 49, 62],
the approximate-factorization scheme [96], and also the lower-upper symmetric-Gauss—Seidel
(LU-SGS) scheme [90]. The preconditioned GMRES method has been used to solve the dis-
crete sensitivity equation for laminar flows [44] and also to solve the discrete adjoint equa-
tion in conjunction with a backward-Euler time-marching scheme with multigrid for turbulent
flows [8, 131, 132]. Generally, the computational effort required to converge the adjoint equation
sufficiently in order to obtain accurate gradients is approximately equivalent to one to two flow
solutions; however, for the discrete adjoint method this effort may be significantly increased if

memory limitations prohibit the storage of the flow Jacobian matrix [130, 90].

Incomplete gradients [114, 163] are a promising approach for reducing the cost of gradient
computations. This approach is based on the assumption that for small changes in shape, the
flow solution remains almost unchanged. Consequently, only grid nodes close to the shape
boundary of interest are considered during the gradient computation. A disadvantage of in-

complete gradients is that they introduce accuracy errors in the gradient. This error can have



1.3 OBJECTIVES 11

an adverse effect on the convergence of the optimization [31, 15].

1.3 Obijectives

The objectives of this thesis are two-fold:

1. Develop a gradient-based algorithm for aerodynamic shape optimization problems that
are governed by the compressible, two-dimensional Navier—Stokes equations in conjunction
with the Spalart-Allmaras turbulence model. This objective can be further subdivided as

follows:

e Establish a framework for gradient-based optimization of single- and multi-element
airfoil configurations. This includes methods for airfoil shape parameterization, grid-

perturbation, flow solution, gradient computation, and an optimization procedure.

e Examine the use of the preconditioned GMRES method to solve the discrete adjoint

and flow-sensitivity equations for gradient computations.

e Accelerate the convergence rate of the flow solver by applying the same precondi-

tioned GMRES method in conjunction with an inexact-Newton strategy.

2. Evaluate and characterize the new algorithm in a practical aerodynamic design context
by applying it to several representative design examples, including inverse design, maxi-
mization of lift-to-drag ratio, lift-enhancement of high-lift configurations, lift-constrained
drag minimization at multiple transonic operating points, and the computation of Pareto
fronts based on competing objectives. Factors under consideration include the accuracy
and efficiency of the gradient computation, the efficiency of the flow solver, the overall

efficiency of the optimization procedure, and global and local optimal solutions.

Chapters 2 and 3 address the first objective, where we present the governing equations for the
formulation of the optimization problem and the numerical algorithm, respectively. Thereafter,
we focus on the second objective. The algorithm is validated in Chapter 4 and design examples
are presented in Chapter 5. The development and application of the new aerodynamic shape
optimization algorithm is also presented in [123, 125, 127, 124, 126, 128, 184], which provide

additional results.






Chapter 2

GOVERNING EQUATIONS

2.1 Problem Formulation

The aerodynamic shape optimization problem consists of determining values of design variables

X, such that the objective function J is minimized
rr}}n J(X,Q) (2.1)
subject to constraint equations C}
Ci(X,Q)<0 j=1,..., N (2.2)

where the vector () denotes the conservative flow variables and N. denotes the number of
constraint equations. The flow variables are forced to satisfy the governing flow equations

within a feasible region of the design space {2
F(X,Q)=0 VXeq (2.3)

which implicitly defines @ = f(X). The following sections provide a detailed description of

Eqgs. 2.1-2.3 in order to clearly define the aerodynamic shape optimization problem.

13
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2.2 Design Variables

The vector of design variables, X, primarily contains parameters that control the shape of the
airfoil. Depending on the problem of interest, additional design variables may include the angle
of attack, and the horizontal and vertical translation design variables that control the position
of slats and flaps in multi-element configurations. The element’s relative deflection angle within
a configuration is kept constant.

B-splines are used to parameterize the airfoil shape. The following development, which
describes the construction of a B-spline curve and the initial airfoil shape approximation, is
based on the work of de Boor [32] and Hoschek [80], with additional information provided
in [53, 148]. The parametric representation of an airfoil shape with a B-spline curve is given by

n+1
za(wj) =Y X7 Bix(w;) (24)
=1

n+1
va(wy) =Y Y Big(wy) (2.5)
=1

where (x,,y,) are the Cartesian coordinates of the airfoil surface, B; ) are the B-spline basis
functions of order k (degree k — 1), (Xf,Y°) are the coordinates of the B-spline control points,
and n + 1 is the total number of control points. Cubic B-splines, k = 4, are used for all test

cases. The B-spline basis functions are defined by the Cox—de Boor recurrence relation

B ( ) 1 ifdigwj<dz-+1

a(wy) =

' ! 0 otherwise

Bk (w;) mBi,k—l(wj) + ﬁBH—l,k—l(wj) (2.6)
(3 — 1 1 1

where the vector d represents a nonuniform knot sequence given by

0 1<i<k
d; = ”_TW {1—(:05 (nz_zlfmw)] E+1<i<n+1 (2.7)
n—k+2 n+2<i<n+k+1

Note that the knots are clustered near the end points of the curve in order to provide greater
fidelity near the leading and trailing edges of the airfoil. For single-element airfoils, Eq. 2.7 is
used to obtain the knot sequence for the lower surface and the same sequence is then reused for
the upper surface of the airfoil. For complex multi-element configurations, where the computa-
tional grid contains multiple cluster points, the cosine knot distribution, see Eq. 2.7, is replaced
by a linear distribution given by ¢ — k. This distribution can be adjusted by the user in order
to provide a detailed control over the initial location of the B-spline control points. An efficient

algorithm for the evaluation of Eq. 2.6 is presented by de Boor [32].
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The distance along the B-spline curve is represented by the parameter value w; for each

point j on the surface of the airfoil. The initial values of w are given by

wy, =0

wj =212 "_k+2 Z\/Lm j=2... N (2.8)

where N denotes the total number of airfoil surface points. The segment length between airfoil

surface points is represented by L,, and Lt is given by

N—-1
=> ViLn (2.9)

m=1

The multiplication by the factor n — k + 2 in Eq. 2.8 ensures that the maximum value of
the parameter vector is equal to the maximum value of the knot vector. Eq. 2.8 is referred
to as the centripetal chord length parameterization. This parameterization provides better
estimates of w; for curves with regions of high curvature than the more traditional chord length
parameterization [53], which is obtained by removing the square root from Egs. 2.8 and 2.9. It
is important to note that the parameter vector remains constant throughout the optimization
procedure.

At the onset of the optimization procedure, it is necessary to determine the location of the
B-spline control points that best approximate the initial airfoil shape. Assume that the initial
airfoil surface is defined by a set of points P; = P(a:;f, y]*) A linear least-squares formulation
is used to find the location of the control points D(XY,Y,) such that the distance between the

data point P; and the corresponding B-spline curve point C; = Clz,(w;), ya(w;)] is minimized

N
i P, —C; 2.10
mﬁ“;” J ]H ( )

The obtained control points (X¢,Y;°) and the initial parameter vector w define a curve C for
which most of the vectors P; —C'; are not perpendicular to the tangent C]’-. This is a consequence
of the fact that the initial parameter vector w only approximates the location of the data points.
A procedure to improve the values of w is proposed by Hoschek [80] and is based on a Newton

update
dpy1 — dy

14
where Ar; = (P;—C;)C}/[|Cj]], and £ is the length of the control polygon defined by the control

w; = w; + A?“j (2.11)

points. The parameter correction update is permissible if || P; — C[za(wW;), ya(W;)]|| < ||1P; —C;ll,
otherwise the update is reduced by a factor of two. The least-squares problem, Eq. 2.10, is re-

evaluated with the new parameter vector in order to obtain a better set of control points. This
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Figure 2.1: B-spline curve and control points for the NACA 0012 airfoil

procedure typically converges within a few hundred iterations, although for some cases a few
thousand iterations are required. The iterations do not require significant computational effort.
In addition, the B-spline curve is forced to pass through the leading- and trailing-edge points
in order to maintain the orientation of the chord line.

An example is shown in Fig. 2.1, where cubic B-splines constructed from 15 control points
are used to approximate the NACA 0012 airfoil. By increasing the number of control points,
the accuracy of the B-spline curve is improved. For the test cases considered in this work, the
maximum error between the B-spline curve and the original data points is below 5 x 10™c.
Numerical experiments performed on a number of airfoil shapes suggest that 25 control points
are sufficient to reach an error tolerance of 8 x 10=5¢. Trépanier et al. [169] show that for errors
below this threshold, the pressure distribution for the B-spline approximation is very close to
the pressure distribution for the original airfoil. Note that the manufacturing tolerance used by
the aircraft industry is typically assumed to be 2 x 10~%c. Figure 2.2 shows an example for a
multi-element configuration, where a B-spline curve is fitted over the upper surface of the main
element and flap for the NLR 7301 airfoil.

The coordinates of the B-spline control points are used as design variables and we only

allow displacements in the vertical direction. The control points associated with leading and
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trailing edges remain fixed. In addition to the control points, the design variables may also
include the horizontal and vertical translation of the high-lift elements within a multi-element
configuration. An example is shown in Fig. 2.2, where the translation design variables are
labeled as ', and F,. These variables control the gap and overlap distances in the slot region

of the configuration as defined in Fig. 2.3.

2.3 Objective Functions

The inverse design, lift-constrained drag minimization, lift enhancement, and maximization of
lift-to-drag ratio optimization problems are considered. For the inverse design problem the

objective function is given by

1

J=3 /B(Cp — C})?ds (2.12)

where C7 represents the target pressure distribution which is user specified and B denotes the
airfoil boundary. By minimizing J, the optimizer finds the shape of the airfoil that, in the
least-squares sense, best matches the target pressure distribution.

For the lift-constrained drag-minimization and lift-enhancement problems, the objective

function has the form

wL< —QL>2+WD (1—013)2 it Cp > C:
Ccr CH D
J = L/, b (2.13)
wi, (1 — %) otherwise

where Cy and C} represent the target drag and lift coefficients, respectively. The weights wp and
wr, are user-specified constants. We find this formulation of the objective function particularly
useful, since it provides an intuitive approach for the selection of weights and additional terms,
such as the moment coefficient, can be readily included. For the maximization of lift-to-drag

ratio problem we use

= — 2.14
7= (214)
The weighted-sum method is used for multi-point optimization problems,
Nm
T = w; J; (2.15)
i=1

where Ny, denotes the number of design points (typically defined by freestream Mach numbers),
and w; represents a user-assigned weight for each design point. The strengths and weaknesses
of the weighted-sum method are well illustrated by Drela [38] for a number of aerodynamic

shape optimization problems, including the design of cruise configurations for transonic flow.



2.4 CONSTRAINTS 19

2.4 Constraints

The constraint equations, Eq. 2.2, primarily represent airfoil thickness constraints that are used
to ensure feasible designs. For multi-element configurations, it is also necessary to constrain
the gap and overlap distances in order to prevent collisions among the elements and to ensure a
reasonable computational grid (further discussed in Section 3.5). Additional constraints, that
are useful for practical design, include the leading-edge radius and the trailing-edge angle. Note
that the constraints are a function of only the design variables, i.e. Cj(X) < 0. For example,

the thickness constraints are given by
h*(:L‘j) — h(ZL‘J) S 0 (2.16)

where h*(x;) represents the minimum allowable thickness at location x; and h(z;) represents

the current airfoil thickness.

2.5 Flow Equations

The governing flow equations, Eq. 2.3, are the compressible Navier—-Stokes equations in con-
junction with a one-equation turbulence model. These equations are expressed in generalized
curvilinear coordinates in order to facilitate the use of finite differences. The high-Reynolds

number aerodynamic flows under consideration allow the use of the thin-layer approximation.

2.5.1 Navier—Stokes Equations

For a two-dimensional flow with density p, velocities (u,v) in Cartesian coordinates (z,y), and

total energy e, the compressible Navier—Stokes equations are given by

oQ oK or _ | (0E, OF,
54‘%‘1‘@—736 <6x+6y> (2.17)
where _ -
0
Q=" (2.18)
pv
e

is the vector of conservative dependent flow variables. The convective flux vectors are given by

_ » - _ o -
2
U+ VU
E=| TP ad F=| ” (2.19)
puUv pv2 +p
_u(e+p)_ _v(e—i—p)_
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The viscous flux vectors are given by

C o
E,=| ™| and F=]| " (2.20)
Tay Tyy
| 1] | P2 |
with
Tew = (p+ pe)(dugy — 20y)/3
Toy = (o ) (uy — va)
Tyy = (p+ pe)(—2uy +4vy)/3 (2.21)
P1 = UTzg + Uy + (HPT?l + Mﬂ?rt_l)(’y - 1)71395(@2)
po = UTay+ 0Ty + (WPr + Pry ) (v —1)710,(a?)
Pressure, p, is related to the flow variables by the equation of state for a perfect gas
Lo, 9
p=(y-1)|e—gp(u” +v7) (2.22)

and the speed of sound, a, is given by

a= \/? (2.23)

Note that Eqgs. 2.17-2.23 are written in a non-dimensional form. The non-dimensional variables
are obtained by using the following scaling parameters

1] 7 a v 3 ta

g, p:L, u=-—, V=", 6= —5, t=—2= (2.24)
c Poo Goo Goo PoolZ c

where the bar symbol denotes dimensional variables, oo refers to freestream quantities and c is
the chord length of the airfoil. The ratio of specific heats, =, is 1.4 for air under the conditions
of interest here.

Sutherland’s law is used to relate the dynamic viscosity, u, to temperature

i (@It S a4 ST .
e T + S* a2+ S%T ’

where T, denotes the freestream temperature which is assumed to be 460.0°R and the constant
5™ is 198.6°R for air. Turbulent eddy viscosity is denoted by pu;, Re is the Reynolds number, Pr
is the laminar Prandtl number, and Pr; is the turbulent Prandtl number. The non-dimensional,

laminar Prandtl number is given by

Pr= -2 (2.26)
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where k; denotes the thermal conductivity and ¢, is the specific heat at constant pressure. The
laminar and turbulent Prandtl numbers are assumed to be constant and are set to 0.72 and
0.90, respectively. The scaling for the Reynolds number is given by

_ Poo € Ao
Moo

Re (2.27)

The boundary conditions for the Navier—Stokes equations are discussed in Section 3.2.1.

2.5.2 Turbulence Model

The dynamic eddy viscosity, y; in Eq. 2.21, accounts for the effects of turbulence. The Spalart—
Allmaras turbulence model [164] is used to determine the value of ;. This one-equation trans-
port model, written in non-dimensional and non-conservative form, is given by

ov v 9 em

. 1 o ey
54- B By Re(1—ft2)SU+%{(1+6b2)v'[(V—i-l/)Vl/]—CbQ(l/—i-l/)vI/}

1 ¢ 7\ 2
— @ (Cwlfw — %fﬁ) <d> +R€ft1AU2 (2.28)

where 7 is the non-dimensional working variable. The freestream kinematic laminar viscosity

is used to render r non-dimensional

[t
I

= Poo
== 2.29
fhoo (2.29)

g‘vu

The kinematic eddy viscosity, vy = p/p, is obtained from

vy = Ufi1 (2.30)
where
3
vl = 2.31
f 1 X3+C%1 ( )
and ~
1%
= 2.32
X = (2.32)
The production term S is given by
~ 1%
where
ov  Ou
=|— - = 2.34
dr Oy ( )

is the magnitude of the vorticity, dy, is the distance to the closest wall and

X

=1- —
fU2 1+val

(2.35)
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The destruction function f,, is given by

316
e[
where
g =7+ cua(r® —7) (2.37)
and .
= szd?,v (2.38)

The functions f;; and fis control the laminar-turbulent transition locations. In this work, the
flow is assumed to be fully turbulent. Therefore, the functions f;; and f;o are set to zero. For

a definition of these functions see [164]. The remaining parameters are constants given by

Cp1 — 0.1355 Cp2 — 0.622
Cyl = cbl/m2 + (14 cp2)/o k= 0.41 (2.39)
cw2 = 0.3 Ccw3 = 2.0
2
Cyl = 7.1 o= g

The turbulence model boundary conditions are discussed in Section 3.2.1.

2.5.3 The Thin-Layer Approximation and Coordinate Transformation

For attached or mildly-separated aerodynamic flows at high-Reynolds numbers, the Navier—
Stokes equations can be simplified by using the thin-layer approximation. For such flows, the
viscous derivatives in the streamwise direction are much smaller than the viscous derivatives in
the normal direction. The thin-layer approximation therefore neglects the viscous streamwise
derivatives.

The grids that are used to discretize the physical domain around the airfoil are constructed
such that the grid lines follow the contours of the airfoil in one direction and are locally normal
to the airfoil in the other direction. These directions are referred to as £ and 7, respectively. A

general transformation

T=1
5 = f(:L’, Y, t) (240)
n=n(z,y,t)

is used to map the curvilinear grid into a computational domain where the spacing is uni-
form and equal to one, as illustrated in Fig. 2.4. For further details regarding the thin-layer

approximation and the generalized curvilinear coordinate transformation see [143, 167].
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The thin-layer Navier—Stokes equations, written in generalized curvilinear coordinates, are

given by
00 OE OF _,08
O OB 08 5102 2.41
or "o Tan T ¢ oy (241)
where
P
g=uQ=g"| "™ (2.42)
pv
e
The convective flux vectors are
| pU ] | pV ]
= U x e V X
Bogt| PURER g | PVt P (2.43)
pUv + &p pVu +nyp
| (e+p)U —&p | | (e+p)V —mp |
with
U=&+&u+ 51,/”7 Vi=m+nu+ Nyv (2'44)

the contravariant velocities. The variable J represents the metric Jacobian of the transformation

I = (zeyy — Tyye) (2.45)
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The viscous flux vector is

_ . i
~ mi + nym
§=y1 RN A (2.46)
NeM2 + 1yms3
I Nz (umy + vms + my) + 1, (uma + vmg + ms) |
with
mi = (u+ pe)(neuy — 2nyv,)/3

(
(1 + ) (nyn + navy)

my = (b + ) (—2n0uy + 4nyvy) /3 (2.47)
(uPr=t + wPr; ) (y = 1) e, (a?)

(uPr=t + e Pry )y = 1)y 0y (a®)

The Spalart—Allmaras turbulence model without the laminar-turbulent transition functions,

written in generalized curvilinear coordinates, is given by

ov ov  _ov 1 - 7\? 1
ov +U— v Vl {Cblsﬂ — Cwl fw <V> + ; [(1 + Cbg) T — CbgTQ]} (2.48)

8 85 Re dw
where
. 0 . Ov
V= [(v 19)e 85] g [(v +7) nxan]
0 ov 0 ov
+§y8*§ [(V +7) fyaﬂ + 77y377 [(V +7) Wyaz] (2.49)
and

0 ov 0 ov 0 ov
=) g (65¢) + 1oy ()~ 6 (53¢ + vy ()] 20

Note that all terms containing mixed derivatives have been neglected.
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THE NEWTON—KRYLOV
ALGORITHM

The aerodynamic shape optimization problem defined by Eqs. 2.1-2.3 is cast as an uncon-
strained problem. This is accomplished by lifting the side constraints, Eq. 2.2, into the ob-
jective function J using a penalty method. Furthermore, the constraint imposed by the flow
equations, Eq. 2.3, is satisfied at every point within the feasible design space, and consequently

these equations do not explicitly appear in the formulation of the optimization problem.

For an unconstrained minimization problem, the well-known necessary and sufficient condi-
tions for a design variable vector X* to be a local minimizer of J can be stated as follows. It is
necessary that the gradient G of the objective function equal zero and that the Hessian of the
objective function is at least positive semi-definite at X*. The sufficient condition states that
the Hessian is required to be positive definite at X*. For further details see [36, 133]. These
optimality conditions can be satisfied only when the gradient is based on the discrete form of
Egs. 2.1-2.3 [71, 117, 63].

The discrete form of the objective functions and constraints is presented in Section 3.1 in

conjunction with penalty methods. The discrete form of the flow equations is presented in Sub-

25
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section 3.2.1 and the derivation of the gradient, using the discretized flow equations, is given in
Section 3.3. An optimizer based on the quasi-Newton method is used to solve the aerodynamic
shape optimization problem. At each step of the optimization procedure, the algorithm requires
the value of the objective function, which is provided by the solution of the flow equations, and
also the objective function gradient. For a given number of objective function and gradient
evaluations, the overall efficiency of the optimization procedure is dominated by the time re-
quired to solve the flow equations and compute the gradient. In Subsections 3.2.2 and 3.3.2, we
provide a description of a fast strategy for the evaluation of the flow equations and the gradient,
respectively. The optimizer is discussed in Section 3.4, and a grid-perturbation strategy that
accommodates the airfoil shape and position changes throughout the optimization procedure is
presented in Section 3.5. Overall, this chapter provides a detailed description of all components
of a new aerodynamic shape optimization algorithm, which we refer to as the Newton—Krylov

algorithm.!

3.1 Objectives with Constraints

A penalty method is used to combine the objective function with the constraint equations. For

example, the formulation for the thickness constraints is given by

N

j=1
where J4 denotes the design objectives defined by Eqs. 2.13 and 2.14, and wr is a user specified
constant. The constraint equations C}, based on Eq. 2.16, are cast using a quadratic penalty

term

0= { (1= hiay)/h* ()] i Blag) < b () 52)

0 otherwise
A similar formulation is used to enforce the lower and upper bounds for the gap and overlap
distances, where we use an additional user specified constant wp. It is important to realize that
the purpose of the constraints is two-fold: 1) to prevent the occurrence of infeasible shapes, such
as airfoil surface cross-over, during the optimization, and 2) to enforce engineering structural
limitations, such as minimum airfoil thickness. The former constraints are usually inactive
for the final design, while the latter constraints are typically active. The penalty formulation
works well for the design cases presented in this work, but it should be noted that there are well-
known weaknesses of penalty methods [66, 133], and more sophisticated strategies for solving

constrained problems are given in [48, 37, 181, 133].

!The name ‘Newton-Krylov’ is based on the fact that the optimizer, the flow solver, and the gradient com-
putation algorithm make use of Newton’s method and/or a Krylov subspace method.
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For the inverse design problem, the objective function given by Eq. 2.12 is replaced by the

following discrete form

1 *
T =52 (Cp, =G (3.3)

where Nj denotes the number of nodes on the airfoil. Constraints are not required for the
inverse design problem since the shape modifications are relatively small for the design cases

considered.

3.2 Flow Analysis

Structured grids are used to discretize the physical domain surrounding the airfoil. All grids
are generated with the multi-block grid-generation tool AMBER2d [119]. For single-element
airfoils, single-block C-topology grids are used, as shown in Fig. 3.1(a), while for multi-element

airfoils, H-topology grids are used, as shown in Fig. 3.1(b).

The spatial discretization of the flow equations, Eq. 2.3, is presented in the following section.
The algorithm used to determine the steady-state solution of the discretized flow equations is

discussed in Subsection 3.2.2.

3.2.1 Spatial Discretization
Interior Scheme

The spatial discretization of the thin-layer Navier—Stokes equations is the same as that used in
ARC2D [143] for C-topology grids and TORNADO [121] for H-topology grids. The discretiza-
tion for the inviscid fluxes consists of second-order centered-difference operators with second-

and fourth-difference scalar artificial dissipation given by

OF  Ejix—Ej 1y
— = : = — VA 3.4
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(b) H-topology grid for the NLR 7301 airfoil (block numbering indicated)

Figure 3.1: Examples of structured grids for single- and multi-element airfoils
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where
(2 4
Ap = dP) AeQux—d))) | AcVeA Qi (3.5)
(2) _ —1
A1y = 2(ecJ )j%k (3.6)
4) _ -1 (2)
dj+%7k = max {0,2/{4((&] )j+%,k_dj+%,k (3.7)
ok = Ul+a\/&+& (3.8)
€k = 2 0505, +0.25 (15, + 15 4)] (3.9)
G = max (L1, Tk Tim1k) (3.10)

Y., — Dj+1k — 2Djk + Dj—1k (3.11)
” Pj+1k + 2Pk + Dj-1k

The operators A¢ and V¢ represent first-order forward and backward difference operators

A& ()= (‘)j+17k - ()]k
Ve ()= )ik — ()j-1k (3.12)

and ks and k4 are constants. Typical values of ko and k4 are 1.0 and 0.01, respectively. The
scalar coefficient o is the spectral radius of the flux Jacobian matrix. The term T is a pressure
switch to control the use of first-order dissipation near shock waves. Values at half nodes are

calculated using arithmetic averages given by

(.)j+%7k — ()JH’“;_()M (3.13)
Near computational boundaries the third-order dissipation stencil Q425 — 4Q 1% + 6Qj % —
4Q;-1% + Qj_2 is modified to a one-sided first-order stencil [143]. For example, at the first
interior node, the stencil —2Q);_1 4+ 5Q; —4Q 41 + Q42 is used, while at the last interior node,
the stencil —2Q)j41 + 5Q; — 4Qj—1 + Qj—2 is used. The computation of grid metrics involves
the same centered-difference operator as the inviscid fluxes and first-order one-sided operators
are used at the boundaries. Analogous terms appear in the n direction; however, Eq. 3.10 is
not used.

The viscous terms in Eq. 2.41 are in the form
O (@i 9Bik) (3.14)
The discretization of this term is accomplished by the following conservative three-point stencil
Vi (01 AnBin) = 0y 1 (Bjnsr = Bik) — a1 (Bjk — Bjk—1) (3.15)

All values at half nodes are calculated using Eq. 3.13, including laminar and turbulent viscosi-

ties.
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The Spalart—Allmaras turbulence model is discretized as described in [164, 67]. It is conve-

nient to rewrite the model, Eq. 2.48, in the following steady-state form

J Y M@®) - P®)+D@) - N(@)] =0 (3.16)
where
M(w) = Ugg + Vg; convective term (3.17)
P(p) = %S’ﬁ production term (3.18)
e
() = Cotfu (7 destruction t (3.19)
=% @ estruction term .
_ 1 e
N(@v) = e [(1+ cp2) Th — cpaT] diffusion term (3.20)

and the factor of J~! is introduced in order to improve the scaling of the flow Jacobian matrix,
see Subsection 3.2.2.

A first-order upwind discretization is used for the convective term, Eq. 3.17, given by

~ 1 B 5 1 - N
M(©)jx = Q(Uj,k + U k) (P — Dj—1k) + §(Uj,k — U k) (Zjs16 — Ujk) (3.21)

for the ¢ direction.? The diffusion term, Eq. 3.20, has the same form as the viscous terms,
Eq. 3.14, and therefore the same three-point stencil given by Eq. 3.15 is used. The computation

of vorticity is given by

1
§= 5 W1 = vj—10) (€a)ih + (Vi1 = Vip—1) (1)

—(ujpr e — wj—1k) €k — (Wjkr1 — wik—1)(my)jkl  (3.22)

Boundary Conditions and Block Interfaces

The boundaries of the physical domain consist of the airfoil body, far-field and outflow bound-
aries. The location of these boundaries is indicated in Fig. 3.2 for C- and H-topology grids.
In addition, special consideration is required at interior boundaries such as the wake-cut and
block interfaces. Examples of the boundary equations are provided specifically for C-topology
domains; however, the modifications required for H-topologies only involve the index values,
and the tangent and normal directions as shown in Fig. 3.2.

At the airfoil body, the no-slip boundary condition is applied. Furthermore, the boundary
is considered to be adiabatic and the gradient of pressure normal to the body is set to zero [77].

Combining the adiabatic condition and a zero normal-pressure gradient with the perfect gas

2 An analogous term appears in the 1 direction.
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Figure 3.2: Grid boundaries with normal and tangential directions indicated (modified and

used with permission from S. De Rango [33])
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law results in a zero normal-density gradient. For the turbulence model equation, the working

variable I is set to zero. These boundary conditions can be expressed as

pia1 = pj2 =0 (3.23)

(pu)ja =0 (3.24)

(pv)y1 =0 (3.25)

Pj1—pji2=0 (3.26)

vj1 =10 (3.27)

where the index j loops over the nodes on the surface of the airfoil, see Fig. 3.2(a).
At the far-field boundaries, locally one-dimensional Riemann invariants are used

2a

R = V,— 3.28

1 n v — 1 ( )
2a

Ry =V, 3.29

2 n T N - 1 ( )

where V,, denotes the normal velocity component, as shown in Fig. 3.2 and defined in Ap-
pendix A. These invariants are associated with the two characteristic speeds A\; = V,, — a and
Ao =V, + a, respectively. Three additional equations are required, two for the Navier—Stokes
equations and one for the turbulence model. The choice of equations which works well in prac-
tice [143, 164] is based on the tangential velocity component V; (for definition see Appendix A),
entropy S = In(p/p”), and the variable o given by

Ry = V, (3.30)
R i (3.31)
4 » .
Ry = (3.32)

Depending on the sign of the corresponding characteristic speed, these variables are either
extrapolated from the interior values or they are set to the freestream values.

For subsonic inflow, V,, < 0, A1 < 0 and Ay > 0. Therefore, the Riemann invariant R; is
determined from freestream conditions and Rp is determined by extrapolation from the interior.
For subsonic outflow, V,, > 0, A\; < 0 and Ay > 0. As in the case for subsonic inflow, R; is
determined from freestream conditions and Rs is extrapolated. For inflow, R3, R4 and Rs are
set to freestream conditions. For outflow, they are extrapolated from the interior. Zero-order
extrapolation [77] is used for all values. The formulas for the computation of the flow variables
from the boundary equations are provided in Appendix A.

Overall, the subsonic inflow far-field boundary equations for C-topology grids, see Fig. 3.2(a),
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are given by

2 2
(Vn —— ) - <Vn . ) =0 (3.33)
’y - 1 jykmax ’Y - 1 oo
2 2
(Vn + = ) - <Vn + = ) —0 (3.34)
V=1 s V=1 ka1
o7
r — 8. =0 (3.35)
P 7 jkmax
(V)i = Vi)oo =0 (3.36)
T} homae — Do = 0 (3.37)

where the variable 7y, is set to 1 x 1073, For subsonic outflow, the last three equations are

Y Y
<p> - (p> =0 (3.38)
p jvkmax p j7kmaxfl

(‘/t)j7kmax B (‘/t)jykmax—l = 0 (339)
ﬂjykmax - ﬁjvkmaxfl = 0 (340)

replaced by

At the outflow boundary, the use of Riemann invariants is inappropriate due to the entropy
gradients in the wake of the airfoil. Practical experience indicates that zero-order extrapolation
of the flow variables provides good results. Hence, the outflow boundary equations at j = 1 for

C-topology grids are given by

Pk — P2 =0 (3.41)
(pu)1e — (pu)2, =0 (3.42)
(pv)1k — (pv)2k =0 (3.43)

Pk — P2,k =0 (3.44)

(3.45)

U — o =0

and similar equations apply at j = jmax-

The proximity of the far-field boundary may significantly affect the accuracy of the numerical
solution for lifting airfoils [143, 182]. This undesirable effect is moderated by using the far-field
circulation correction as described in Appendix A.

For H-topology grids, the block interfaces are averaged in the normal direction. For example,
consider the interface between blocks 1 and 5 in Fig. 3.1(b), the residual equation for the average

boundary condition is

1
Q5 - 5 (Q§12) + Qfﬁmu—l) =0 (3.46)
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where the superscript denotes the block number. This expression is used for the first three
conservative flow variables and also the turbulence model variable, but for the energy equation
the pressures are averaged instead. A similar equation is used along the wake-cut for C-topology
grids. Block interfaces in the streamwise direction are overlapped. The governing equations are
solved for each node at the block interface. Two columns of halo points are used for temporary
data storage.

The leading- and trailing-edge points require additional consideration since each of these
points maps to four distinct points in the computational domain for H-topology grids. Dual-
value leading- and trailing-edge points are used. For example, at the trailing edge the boundary
equations are applied from the upper and lower surfaces and these values are then copied to

the downstream blocks. A dual-value trailing edge is also used for C-topology grids.

3.2.2 Flow Solver

The spatial discretization of the governing equations leads to a nonlinear system of equations
R(Q,X)=0 (3.47)

where @ is the discrete vector of conservative dependent flow variables® with dimension Ny. For
a grid with Ng blocks, the total number of flow variables is given by Ng = 5 Zﬁ\;Bl (Jmax X Kmax);-

Hence, at each node (7, k) within the computational domain

p
U R
~ _ _ Qm
Qjr = (J IQ)NC = Jj7kl pU = [ @ (3.48)
e Tk
v
I

The notation @M and @T is introduced for convenience. The symbol @M denotes the flow
variables for the mean flow, i.e. the Navier—Stokes equations, and @T denotes the turbulence
model variable. Similarly, the residual equations, Eq. 3.47, consist of the Navier—Stokes equa-
tions, Ry, and the Spalart—Allmaras turbulence model equation, Rt. Note that the residual
equations include the interior, boundary, and wake-cut or block interface equations. Although
R is written as a function of the design variables, see Eq. 3.47, we emphasize that during a flow
solution the design variables, and consequently the computational grid, are constants.

A classic method for the solution of Eq. 3.47 is Newton’s method

A AGM — R (3.49)

3For the remainder of this document, Cj denotes the discrete flow variable vector instead of the continuous
flow variable vector denoted in Chapter 2.
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where

A=— (3.50)
is the flow Jacobian matrix evaluated at @(”) and
QU = Q) 1 AQ™ (3.51)

The flow Jacobian matrix is a large sparse matrix with dimensions Ng x Ng. The matrix is
non-symmetric and usually ill-conditioned. The crux of an effective implementation of Newton’s

method consists of two problems:
1. An efficient solution of the linear system of equations represented by Eq. 3.49
2. An efficient startup procedure in order to provide the initial vector @(0)

The following two subsections describe the algorithms that address these two problems. We
use the term “outer iterations” to denote the iterations associated with the Newton updates,
i.e. Eq. 3.51, while the term “inner iterations” is used to denote the iterations required for the

solution of the linear system given by Eq. 3.49.

Preconditioned GMRES Algorithm

The solution of Eq. 3.49 is obtained using the generalized minimal residual (GMRES) Krylov
subspace method [152, 150]. The restarted version of the GMRES algorithm is used, denoted by
GMRES(m), where m represents the number of search directions. The matrix-vector products
at each iteration of GMRES are approximated with first-order forward differences. Conse-
quently, the flow Jacobian matrix does not need to be formed explicitly. This implementation
of the algorithm is referred to as matrix-free GMRES. Preconditioning of the flow Jacobian is
required in order to cluster its eigenvalue spectrum around unity, and therefore significantly
improve the efficiency of the GMRES algorithm. The preconditioning matrix is applied from
the right side, such that Eq. 3.49 becomes

AMTIMAQ = —R (3.52)

where M represents the preconditioning matrix. Although the preconditioning matrix can be
applied from the left or both sides, an advantage of right preconditioning is that the residual
of the linear system is not affected by the preconditioner. Saad [150] indicates that the choice
of the side for preconditioning should not have a significant impact on the convergence rate of
GMRES unless M is ill-conditioned. An outline of the preconditioned, matrix-free GMRES
algorithm is provided in Appendix B.
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The matrix M is decomposed using incomplete LU factorization [111] with a level of fill &,
such that

M=L-U~L-U=A (3.53)

This is referred to as ILU(k) preconditioning where the level of fill controls the accuracy of
the incomplete factorization. Higher fill levels allow more non-zero entries during the Gaussian
elimination process, resulting in better approximations of the L-U factors. This gain in accuracy
is balanced by the increase in the computational effort and storage requirements. Saad [150]
provides a detailed overview of various ILU algorithms.

The choice of M is a critical aspect of effective ILU(k) preconditioners. The existence and
stability of the ILU (k) factorization has been established only for M-matrices® [111], even though
the factorization has been applied to a much wider spectrum of problems [23, 21]. Considering
Eq. 3.52, a natural choice for the preconditioner is the flow Jacobian matrix. However, since this
matrix is non-symmetric and non-diagonally dominant, the ILU(k) factorization may generate
inaccurate and unstable L - U factors [50, 51, 18]. Broad criteria for a “good” preconditioner
are a matrix that is easier to invert than .4, while its inverse remains a good approximation
of A=1 [142, 23]. In order to describe the formation of M, where such criteria are fulfilled,
it is necessary to present a detailed description of the flow Jacobian. Note that the flow
Jacobian matrix is also used for the computation of the objective function gradient, discussed
in Subsection 3.3.2.

Consider a coarse H-topology grid surrounding the NACA 0012 airfoil as shown in Fig. 3.3.
The six blocks are separated such that the block boundaries are clearly visible. The leading edge
of the airfoil is located at nodes 21, 26, 100, and 105. The trailing edge of the airfoil is located at
nodes 46, 51, 125, and 130. The ordering of nodes in Fig. 3.3 is referred to as natural ordering.
This ordering proceeds in the normal direction in order obtain a smaller matrix bandwidth.’
The corresponding entries in the flow Jacobian matrix are shown in Fig. 3.4. These entries are
consistent with the residual equations presented in Subsection 3.2.1, and each entry represents
a 5 x 5 block matrix consistent with Eq. 3.48. For example, the complete interior scheme
(including artificial dissipation) is first applied at node 13, which corresponds to the 9 entries

shown on line 13 in Fig. 3.4. Similarly, the reader can verify the treatment of boundaries and

“Matrix B is an M-matrix if [150]:

1. bjy>0fori=1,...,n

2. by <0fori#yj, 4,j=1,...,n

3. B is non-singular

4. B™' > @, where @ denotes a zero matrix

SFor practical grids (especially C-topology grids), the number of nodes in the streamwise direction usually
exceeds the number of nodes in the normal direction.
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Figure 3.3: Natural node order for H-topology grids

block interfaces. At streamwise block interfaces, we solve the Navier—Stokes equations on both
sides of the interface instead of using slave conditions.® Although the Navier-Stokes equations
contribute slightly more fill to the Jacobian matrix, as shown in Fig. 3.4, scaling problems are

avoided. The 5 x 5 blocks within the flow Jacobian matrix can be represented by

ORM ORM
8@1\/{ 8@T
4 x4 4x1
(3.54)
i ORT T [ ORT |
8@1\/{ 3@T
1x4 1x1

where the contributions from the Navier—Stokes and turbulence model equations are clearly
distinguished.

Pueyo [141] derived the flow Jacobian for the Navier—Stokes equations discretized on single-
block C-topology grids. The spatial discretization of the Navier—Stokes equations in [141] is

identical to the spatial discretization presented in Subsection 3.2.1. In his derivation, the lami-

SAn example slave condition for node 28 in Fig. 3.3 is given by Q28 — Q23 = 0.
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Figure 3.4: Entries for the flow Jacobian matrix based on Fig. 3.3 (Each entry denotes a 5 x 5

block matrix.)
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nar viscosity, turbulent viscosity, the vortex strength due to the far-field circulation correction,
and the artificial-dissipation coefficients, i.e. Eqgs. 3.6 and 3.7, are treated as constants with
respect to the flow variables. Furthermore, the residual equation for the turbulence model is
not required since the effects of turbulence were modelled with an algebraic turbulence model.
Hence, the flow Jacobian blocks are reduced to 4 x 4 matrices represented by an approximation
to the term ORy/ 8@1\/{. For example, at an interior node the four rows of the flow Jacobian

with the corresponding nine block entries are given by
156D ) 3 -1 7>
6 A~ 5 De + 6 B — 6 D, — Re 160 K (3.55)

where the matrices E, §, and K are the flux J acobians, defined by

A% p_00 a4 k=%
00 a0 a0

(p+pt)=const.

and D represents a diagonal matrix with the contribution of the artificial-dissipation coefficients
based on Egs. 3.6 and 3.7. The flux Jacobians are provided in [144, 143, 141]. The operator §(®)
denotes the antisymmetric centered-difference stencil, while §® denotes the symmetric second-
and fourth-difference artificial-dissipation stencils, see Eq. 3.4, and 60") denotes the stencil for
the viscous flux vector, see Eq. 3.15.

Pueyo [141] also derived the Jacobian matrices associated with the differentiation of the
boundary conditions. It is important to pivot and scale the entries within the flow Jacobian
that correspond to the blocks for the far-field and body boundary conditions. These entries are
not of the same order of magnitude as the entries for the interior nodes, which can cause poor
convergence of GMRES.

We extend the work of Pueyo [141] to include the Spalart—Allmaras turbulence model,
Eq. 3.16. The differentiation of laminar viscosity, turbulent viscosity, and the artificial-dissipation
coefficients is also included. Due to the complexity of the pressure switch equations, Eqs. 3.9—
3.11, the coefficient € in Eq. 3.9 is treated as a constant with respect to the flow variables. An
additional complication is the differentiation of the far-field circulation correction, presented in
Subsection 3.2.1 and Appendix A. In particular, the computation of the vortex strength leads
to the coupling of airfoil surface nodes and far-field boundary nodes. Although this contribu-
tion can be differentiated as described by Korivi et al. [96], in this work we treat the vortex
strength as a constant with respect to the flow variables as well. It is important to realize that
these two simplifications do not affect the steady-state flow solution. Furthermore, their impact
on the convergence rate of the flow equations is relatively minor since they only influence the
preconditioning matrix. These simplifications, however, do affect the accuracy of the objective

function gradient, which is discussed in Subsection 3.3.2 and Section 4.3.
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Overall, the differentiation of the residual equations is a tedious but relatively straightfor-
ward process. One of the difficulties is the differentiation of the absolute value function, which
is used for the evaluation of the spectral radius, Eq. 3.8, the upwind discretization of convective
terms for the turbulence model, Eq. 3.21, and the computation of vorticity, Eq. 3.22. The

derivative of the absolute value function is assumed to be

5 (3.56)

d|b| B 1 ifb>0
—1 otherwise

The preconditioning matrix, M, is identical to the flow Jacobian matrix except for the
treatment of the artificial-dissipation coefficients, Eqs. 3.6 and 3.7. First, these coefficients are
assumed to be constant with respect to the flow variables. Second, the matrix M is formed
with only second-difference dissipation, but the second-difference coefficient is combined with

the fourth-difference coefficient as follows,
d? = d® + ¢dW (3.57)

where the subscript r denotes the contribution from the right-hand side, and the subscript [ de-
notes the resulting left-hand side value used in the preconditioner. Fast convergence is obtained
with the value of ¢ set to 6.0, which has been determined through numerical experiments. We
emphasize that this modification does not affect the steady-state solution.

As a result of Eq. 3.57, the preconditioning matrix contains 5 blocks per interior node,
as shown in Fig. 3.5. This provides a significant reduction in the computational effort and
storage requirements for the ILU(k) factorization. Furthermore, Eq. 3.57 improves the diagonal
dominance of the preconditioning matrix. This approach is similar to the “diagonal shift”
strategy suggested by Chow and Saad [23]. Pueyo and Zingg [142] discuss an inviscid-flow
example where they demonstrate that an ILU(0) preconditioner based on this approximate-
flow Jacobian provides a better estimate of A~! than an ILU(0) preconditioner based on the
exact-flow Jacobian. The present preconditioning matrix can be regarded as a compromise
between two commonly used approaches [131, 132]: 1) a Jacobian matrix based on the first-
order upwind discretization of the flow equations and 2) the exact flow Jacobian. This novel
intermediate preconditioner is significantly more effective than either of these approaches, as
discussed further in Chapter 4.

The block structure of the preconditioning matrix is well suited for a block ILU(k) factor-
ization. Practical experience suggests that a block ILU(k) factorization is generally superior
to a scalar ILU(k) factorization in terms of performance [21]. The approach that is actually
implemented is based on a scalar ILU(k) factorization, but any zero entries within a block are

treated as non-zeroes. This approach is referred to as block-fill ILU(k) [BFILU(k)] [142].



3.2 FLow ANALYSIS 41

Figure 3.5: Block entries for the preconditioning matrix before ILU(k), based on Fig. 3.3

The ordering of the grid nodes can have a significant impact on the quality of the ILU(k)
factorization, and consequently, the convergence of the GMRES algorithm [39, 40, 14]. The
natural ordering, shown in Fig. 3.3, leads to entries in the preconditioning matrix which are far
from the main diagonal (large bandwidth), as shown in Fig. 3.5. In a complete LU factorization,
the remote matrix entries contribute many additional non-zeroes. This has motivated the
development of ordering (and reordering) algorithms for sparse-direct solvers that minimize the
computational cost of the factorization.

For ILU(k) factorization, the ordering algorithms also provide a reduction in computational
cost, except for ILU(0) where the fill pattern is fixed by the original matrix. More importantly,
experimental evidence suggests that the ordering algorithms have a significant influence on the
quality of the incomplete factorization, since the factorization depends on the “local” values
of the matrix coefficients [40, 50]. Studies by Benzi et al. [14] show that the greatest benefits
of reordering occur for non-symmetric matrices. Overall, many studies [103, 39, 40, 14, 142,
17, 175] indicate that the most efficient and consistent preconditioners are obtained using the
reverse Cuthill-McKee (RCM) reordering algorithm [28] (see also [150]). The RCM algorithm,
based on a symmetric graph of the preconditioning matrix, is used for all cases presented in
this work.

The RCM algorithm is sensitive to the initial ordering of the grid nodes and the selec-
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tion of the root node [184]. For single-block C-topology grids, we follow the work of Pueyo
and Zingg [142] and use the double-bandwidth ordering to determine the initial node order.
Referring to Fig. 3.2(a), the ordering begins at node (j =1, k = knyax) and proceeds upward
across the wake-cut. Unfortunately, the double-bandwidth ordering is difficult to generalize for
multi-element H-topology grids. For these cases, the initial node ordering is the reverse of the
natural ordering, as shown in Fig. 3.6(a). Note that both the double-bandwidth and the reverse
orderings number the nodes in an “upwind” direction, which provides superior performance.
Numerical experiments performed on simple H-topology grids indicate that the performance
of preconditioners based on the reverse initial ordering is comparable to the double-bandwidth
initial ordering. An example of an RCM reordering is shown in Fig. 3.6(b). The entries in the
preconditioning matrix resulting from an RCM reordering are shown in Fig. 3.7. The bandwidth
of the preconditioning matrix has been significantly reduced.

The exact solution of Eq. 3.49 is computationally expensive and is not necessary for a
rapid convergence of Newton’s method from a sufficiently good initial guess. This relaxation of

accuracy on the solution of the linear system of equations leads to inexact-Newton methods [35]

H R™ 4 A AQ™ H < ¢ H R(™

‘ (3.58)

where the parameter ¢ e (0,1) controls the degree of convergence of the linear system at
each outer iteration. If (™ = 0 for all n, the linear system is solved exactly at every outer
iteration and Newton’s method is recovered.

It is possible to choose non-zero values of ¢ and obtain superlinear or even quadratic con-
vergence [35]. However, such choice of ¢ (n) i not necessarily optimal in terms of overall compu-
tational efficiency due to the strong possibility of oversolving the linear problem, especially for
early outer iterations [43]. A popular approach is to select ¢ (") based on local residual values
such that a linear convergence rate is obtained, but oversolving is avoided [116, 155, 17, 142].
We adopt an even simpler strategy from [142], which still converges linearly, and is summarized

as follows:
1. ¢ = 0.5 for the first 10 outer iterations
2. ¢ = 0.1 for any remaining outer iterations

We select the number of GMRES search directions, m, such that these exit criteria are satisfied
without performing GMRES restarts. On the basis of numerical experiments and the work of
Pueyo and Zingg [142]7, the value of m equal to 40 provides robust and efficient performance.

If for any outer iteration the number of GMRES search directions reaches 40, we perform a

"Pueyo and Zingg use GMRES(20) and allow one restart for a maximum total of 40 inner iterations.
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AIRFOIL

(a) Reverse initial ordering

AIRFOIL

(b) RCM reordering based on reverse initial ordering

Figure 3.6: Node ordering strategy for H-topology grids
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Figure 3.7: Block entries for RCM-reordered preconditioning matrix, before ILU (k)

Newton update, i.e. no GMRES restarts are allowed. Furthermore, the preconditioning matrix
is formed only on the first outer iteration and is kept frozen for the rest of the outer iterations.
Pueyo and Zingg [142] demonstrate that this strategy provides approximately a factor of two

saving in computational time.

Startup Algorithm

A startup algorithm is required in order to ensure global convergence® of Newton’s method.
Backtracking line-search algorithms based on strategies for optimization problems and the
implicit-Euler time-marching method are among the most commonly used startup algorithms [36,
13, 155, 175, 7, 9, 22]. In this work, the implicit-Euler time-marching method in conjunction
with approximate factorization provides an efficient startup algorithm.

The application of the implicit-Euler time-marching method to the unsteady Navier—Stokes
equations, Eq. 2.41, results in

[Alt n A} AG™ = RO (3.59)

where At denotes a time step. Note that as At approaches infinity, the Newton equation,

8In the context of numerical methods for nonlinear equations, global convergence refers to a method that
converges to some solution from almost any starting point [36].



3.2 FLow ANALYSIS 45

Eq. 3.49, is recovered. Although startup algorithms based on an increasing time step can
provide an effective relaxation strategy [175, 9, 22], the present algorithm is motivated by the
results obtained in [142] and is based on a constant time step?, but further simplifications are
made to the implicit (left-hand) side of Eq. 3.59.

The present algorithm uses the approximate-factorization approach of ARC2D in diagonal
form [143] in conjunction with a similar approximate-factorization approach for the turbu-
lence model equation [164, 67]. Hence, the Navier—Stokes and turbulence model equations
are solved in a loosely-coupled manner and the boundary conditions are treated only on the
explicit (right-hand) side. Considering the Navier—Stokes equations, when the approximate-
factorization method of Beam and Warming [12] is applied to Eq. 3.59, the equations take on

the following form
1+ Atal 4] [T+ At B - AtRe™') K| AQ™ = ~AtR™ (3.60)

where the contribution from the artificial-dissipation terms has been omitted for simplicity, see
Eq. 3.55. The computational complexity of Eq. 3.60 is further reduced by applying the diagonal
form of Pulliam and Chaussee [144]. The eigenvalue decomposition of the inviscid flux-Jacobian

matrices is given by

Ae =T 'AT (3.61)
Ay=T7'BT, (3.62)

where the matrices A¢ and A, are diagonal matrices whose elements are the eigenvalues of the
inviscid flux Jacobians. The matrix T¢ has the eigenvectors of A as columns, and 7}, has the
eigenvectors of B as columns. Substituting the eigenvalue decomposition into Eq. 3.60 and

factoring out the eigenvector matrices results in the final form of the equation
Te [T+ Atof) Ag — AtsP) De| ',
1+ Ata Ay = ALsl) Dy — Atsl) (\)1) T,'AQM = —ALR™  (3.63)
where )\, approximates the contribution from the viscous-flux Jacobian and is defined as
B2 2 J
Ay = —— o [ = 3.64
Tt s, (2) (3.64)

The convergence rate of the startup algorithm is accelerated with a spatially varying time

step [143] given by

(3.65)

9The time step is spatially varying, see Eq. 3.65.



46 Chapter 3. THE NEWTON—KRYLOV ALGORITHM

in order to account for the widely varying cell dimensions in the grid. A typical value of At,ef
is 5.0.

A similar approximate-factorization approach is used for the Spalart—Allmaras turbulence
model, Eq. 3.16. However, specific modifications of the implicit terms as well as a subiteration
scheme are required in order to ensure that o remains positive during startup, see Spalart and
Allmaras [164] for details. In practice, the subiteration scheme is required only for cases with
regions of large flow separation.

For multi-block grids, the blocks are solved independently during startup [119, 121]. At
streamwise block interfaces, two columns of halo points are used to exchange boundary in-
formation between blocks at each iteration. The updates (including the intermediate update)
are averaged such that the interface becomes transparent at steady-state. At normal block
interfaces, the average boundary condition, Eq. 3.46, is used.

A reduction in the Lo norm of the initial residual vector by three orders of magnitude is
required in order to obtain a good initial guess for Newton’s method. Note that the residual
vector contains the contribution from all flow variables. For simple cases, especially single-
element airfoils, a two order of magnitude reduction is usually sufficient. Generally, for cases
when the startup tolerance is not sufficient, Newton’s method fails to converge due to negative
values of &, the turbulence model working variable. Grid sequencing can be used to accelerate
the startup algorithm. It should be noted that the approximate-factorization algorithm has been
used as an effective solver [143, 121, 67]. Performance comparisons between the approximate-

factorization and Newton—Krylov flow solvers are provided in Section 4.2.
Final Algorithm
Overall, the inexact-Newton—Krylov flow solver can be summarized as follows:

e Initial residual is reduced by three orders of magnitude using the startup algorithm.

e Eq. 3.49 is solved using matrix-free GMRES(40) with no restarts. The matrix-vector

products required at each GMRES iteration are formed with first-order finite-differences.

e The preconditioner is a block-fill incomplete LU decomposition (BFILU) of an approximate-
flow-Jacobian matrix. Right preconditioning is used, and the preconditioner is stored in
a modified-sparse-row (MSR) format [150, 151]. The level of fill for most cases is 2
[BFILU(2)], but difficult multi-element cases may require BFILU(4).

e Reverse Cuthill-McKee reordering of grid nodes based on an initial double-bandwidth

ordering for single-element airfoils and a reverse ordering for multi-element airfoils.

e The preconditioner is frozen after the first outer iteration.



3.3 DISCRETE GRADIENTS 47

e The GMRES convergence tolerance is set to 0.5 for the first 10 outer iterations and 0.1

for any remaining outer iterations.

3.3 Discrete Gradients

Three methods for the computation of the objective function gradient have been implemented

and are described below.

3.3.1 Finite-Difference Gradients

A centered-difference formula is used to compute the objective function gradient, G, given by

g _ JIX +hen QX + hen>]2—hj X —hen, QX =hen)] 0 ND (3.66)

where Np denotes the number of design variables, e, denotes the nth unit vector, and
h =max (e |X,[,1 x 107°) (3.67)

A typical value of € is 1 x 107%. An advantage of this approach is that the flow solver can be

)

treated as a “black-box” subroutine. Unfortunately, as discussed in Section 1.2.2, for practi-
cal problems, the computational cost of repeated finite-difference gradient calculations is pro-
hibitive since two flow solutions per design variable are required. Furthermore, the accuracy of
finite-difference formulas is sensitive to the stepsize. A large stepsize introduces a significant

truncation error, while a small stepsize is prone to subtractive cancellation errors.

3.3.2 Adjoints and Sensitivities

The gradient, G, of the objective function J [X, Q(X)] is given by

L4707, 074Q

9=ax " ox Tagax

(3.68)

where we reduce the vector of design variables, X, to a scalar in order to clearly distinguish
between partial and total derivatives. For problems with multiple design variables, it may be
helpful to note that G and 07 /09X are [1 x Np| row vectors, 0.7 /0Q is a [1 x Np| row vector,
and dQ/dX is a [Ng x Np] matrix, where N represents the number of flow variables.
Throughout this development, we assume that the implicit function Q(X) is sufficiently
smooth. Theoretically, this assumption is violated at flow discontinuities, for example shock
waves, and leads to the requirement for additional boundary conditions. In practice, the smooth-
ing of the discontinuities by the underlying spatial discretization of the flow equations provides

a Q(X) that is sufficiently smooth [71, 64, 63].
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The difficulty in Eq. 3.68 is the evaluation of the term dQ/dX, referred to as the flow
sensitivities. Evaluation of the partial derivatives, 07 /0X and 0J/0Q, is relatively straight-
forward and is described at the end of this section. In order to compute the flow sensitivities,

differentiate Eq. 3.47 with respect to the design variables

dR _OR  ORdQ

X ~ 09X T gpdx (3.69)

and realize that g—ﬁ = 0, since for any design variable Eq. 3.47 is always satisfied. Furthermore,
note that 6@ /0Q = J 1, where I is the identity matrix, and consequently Eq. 3.69 is simplified
to the following large sparse system of linear equations

onag o -
We emphasize that the residual vector R contains the contribution from all grid nodes, including
boundary conditions. The direct, or flow-sensitivity, method results from solving Eq. 3.70 for
the flow sensitivities d@Q/dX and using these values in Eq. 3.68 to obtain the gradient.

In order to formulate the discrete-adjoint method, substitute Eq. 3.70 into Eq. 3.68 to obtain

47 _ 07 _ 07 (9R\"'OR (3.71)
dX 90X 0Q \0Q 0X '
From the triple-product term in Eq. 3.71, define the following intermediate problem
8J (OR\ ™'
T
_9J (O 72
=5 (30) (372)

where 1 is a [Ny x 1] column vector. Post-multiplication of both sides by (0R/0Q) and applying
the transpose operator results in the following linear system of equations
oRT _0g"
0Q "~ 0Q

This is known as the adjoint equation'®, and the vector ¢ represents the adjoint variables.

(3.73)

Substituting v into Eq. 3.71, the expression for the gradient becomes

d7 _ 97  40R

T
- W o (3.74)

dx — ax
Note that Eq. 3.70 must be solved for each design variable, while Eq. 3.73 is independent of the
design variables. If a sparse-direct solver is used to solve Eq. 3.70, then the LU factorization
can be reused with different right-hand-side vectors. Unfortunately, direct solvers are compu-

tationally expensive for practical aerodynamic problems. A straightforward implementation of

10This terminology arises from the fact that the adjoint equation denotes one of the optimality conditions of
a stationary Lagrangian for constrained minimization. From the viewpoint of linear algebra, the flow-sensitivity
and adjoint equations can be referred to as the primal and dual equations, respectively.
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iterative solvers leads to re-solving Eq. 3.70 for each design variable, which is computationally
expensive as well. See [158] for modifications to iterative solvers that focus on linear systems
with multiple right-hand sides; however, even with these solvers the computational overhead is
still significant.

The GMRES method from the flow solver is adopted to solve both the adjoint and flow-
sensitivity equations. We use right preconditioning with the preconditioner based on the
approximate-flow-Jacobian matrix described in Subsection 3.2.2. Fast adjoint and flow-sensitivity
solutions are obtained with BFILU(6) and GMRES(85), and these settings are further discussed
in Chapter 4. For the flow-sensitivity equation, we use matrix-free GMRES with second-order
accurate finite-differences, see Appendix B. In addition to memory savings, the matrix-free
approach is easier to implement, since an accurate differentiation of cumbersome functions in
the residual equations, such as the pressure switch, Eqgs. 3.9-3.11, and the far-field circulation
correction, is “automatically” provided. Due to the transpose on the left-hand-side of Eq. 3.73,
the matrix-free approach is not possible for the adjoint equation. The flow Jacobian matrix is
formed as described in Subsection 3.2.2 and is stored explicitly.

For the inverse design objective function the term 0.7 /9Q is evaluated analytically, while
for the remaining objective functions it is evaluated using centered differences. The remaining
terms in Eqgs. 3.68 and 3.74, namely the objective function sensitivity 0.7 /0X and the residual
sensitivity OR/0X, are also evaluated using centered differences. The use of centered differences
for the evaluation of the partial derivative terms is not computationally expensive. For example,

the centered-difference formula for the residual sensitivities is given by

OR  R(X +hep, Q) — R(X — he,, Q) B

where h is defined by Eq. 3.67. Comparing Eqgs. 3.75 and 3.66, it is important to realize that
Eq. 3.75 involves two evaluations of the residual vector per design variable and not two flow
solutions.

Note that the evaluation of residual sensitivities includes the evaluation of grid sensitivi-
ties!!, since the design variables do not explicitly appear in the residual equations except for
the angle of attack design variable. The computational cost of the gradient calculation could
be reduced by neglecting grid sensitivities for grid points sufficiently far from the airfoil. This
approach, however, can introduce substantial error in the gradient calculation [131]. Since the
computational cost of the grid-perturbation procedure (see Section 3.5) and of the residual
evaluation is only a small fraction of the overall gradient calculation, we evaluate the residual
sensitivities at every node in the domain. Recently, Hansen et al. [73] introduced a promising

approach for the computation of solution sensitivities due to shape variations that avoids the

119R _ R ON

5% = o 5%+ where ON/OX represents the sensitivity of the grid node locations, NV, to the design variables
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computation of grid sensitivities. The approach is referred to as the fixed basis function finite

element approach, and it has been applied to structural shape optimization problems.

3.4 Optimizer

The optimizer used to solve the aerodynamic shape optimization problem can have a significant
impact on the efficiency of the optimization procedure, see [87] for model problem examples.
Note that by using the penalty method to incorporate side constraints, the optimization problem
is cast as an unconstrained problem. Consequently, the goal of the optimizer is to drive a suitable
norm of the gradient vector to zero. The unconstrained problem is solved using the BFGS!?
quasi-Newton algorithm in conjunction with a backtracking line search. A brief description of
the algorithm is provided below. For further details see [36, 133, 140].
The quasi-Newton algorithm, at each iteration p, determines a search-direction vector s
using the relation
sp=—HpGp (3.76)

where H represents an approximation to the inverse of the Hessian matrix and G denotes the
gradient vector of the objective function [J. Once the search-direction vector is known, the

update of the design variables is given by
Xpt1=Xp+ Bpsp (3.77)

where (3 represents a stepsize length determined by a line-search procedure. Note that if the
stepsize equals unity and H,, is the inverse of the exact Hessian matrix, then Eqgs. 3.76 and 3.77
represent Newton’s method driving the gradient to zero. Since the calculation of the exact
Hessian matrix is not practical, the BFGS secant update is used to generate a sequence of
matrices H,, that approximate the inverse of the exact Hessian matrix with increasing accuracy.

The BFGS update is given by

Hpup (Hpvp)T + Op 52?

T T
=H, — 3.78
Hp1 = Hp VI H,, 5Ty +u, Hpup (1) (3.78)
where
Op Hpvp
. _ (3.79)
ofvp vl HpUp
and
5 = Xpp1—X, (3.80)
vp = Gpr1—Gp

12Discovered independently by Broyden, Fletcher, Goldfarb, and Shanno.
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The initial matrix Hy is set equal to the identity matrix and the initial stepsize is scaled by the
Lo norm of the gradient. This results in the scaling of the initial search vector to unity and the
first descent direction is equivalent to the steepest-descent direction. After the first step but
before the first update of H, the value of Hj is set to
T
v, S
L | (3.81)

T
U, Up

Ho =

This equation approximates an eigenvalue of the inverse of the initial exact Hessian matrix and
has been found to work well in practice [133].

It is well known that a stepsize of § = 1, i.e. a full-Newton step, results in an overall
superlinear convergence of the algorithm. However, due to the inherent nonlinear nature of the
problem, a full-Newton step may cause divergence of the algorithm during the initial iterations.
This leads to a backtracking line-search procedure that systematically reduces the stepsize until
an acceptable value is found. The acceptable stepsize value is required to satisfy the strong
Wolfe conditions'® [133, 36]

T [Xp + Bsp, Q(Xp + Bsp)] < T [Xp, Q(Xp)] + c18G [ Xy, Q(Xp)]T Sp
|G [Xp + Bsp, Q(Xp + 55p)]T spl < e2lG[Xp, Q(Xp>]T Sp| (3.82)

where ¢; = 1 x10™% and ¢y = 0.9. These conditions ensure that the updated matrix H remains
positive definite and that a sufficient decrease in the objective function value is obtained for a
sufficiently large stepsize.

When the stepsize does not satisfy Eqgs. 3.82, the value of § is reduced by using the following
line-search algorithm. At each step of the line search, the objective function value and the
gradient are required in order to construct a local cubic interpolant for the one-dimensional

function
¢(ﬁ) =J [Xp + 5517: Q(Xp + ﬁsp)] (3.83)
The minimum of the cubic interpolant is either at its endpoints or in the interior [133], where

it is given by

e ia &' (Br) + 12 — 11
Br+1 = Bk — (Bk — Br-1) Lﬁ’(ﬁk) — (G + 2 (3.84)
with
no= #(Be) + F () — 32Pm1) = 2B (3.85)
Br—1 — B
= \frE— (B0 () (3.86)

The subscript k£ denotes a line-search iteration and the prime notation denotes differentiation

with respect to 8. It should be emphasized that this line-search algorithm is well suited for

13 Also referred to as the Armijo-Goldstein-Wolfe conditions.
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problems where the computation of the gradient is less expensive than an objective function
evaluation.

The line-search algorithm also includes educated guesses for adjusting the stepsize when the
line minimum has been bracketed and when the stepsize is too close to the endpoints [133, 36].
The line search is limited to a maximum of twenty steps in order to prevent unnecessary
iterations when the objective function values become indistinguishable due to small changes in
the stepsize. After each update of the design variables, but before a flow solution, the airfoil
geometry and computational grid are checked for extreme side constraint violations. These
include the detection of airfoil surface cross-over, as well as gap and overlap distances exceeding
15% of the set limits, see Section 3.5. If such violations are detected, the stepsize is reduced by
a factor of two. Although the optimization problem is cast as an unconstrained problem, these
checks are necessary in order to avoid flow solutions for defective geometries and grids, when
the design variable update steps too far in a constrained direction prior to activating a penalty
term. This is especially important during the initial iterations of the optimizer.

At the onset of the optimization, the initial value of the design variables is used to scale the
optimization problem [66] given by

X=L"1X, (3.87)

where L is a diagonal matrix containing values of the initial design variables, Xy. The stopping
criterion for the optimization is based on the scaled Lo norm of the gradient. We require
a reduction of four orders of magnitude in the Ly norm of the gradient in order to ensure

convergence to a local optimum.

3.5 Grid-Perturbation Strategy

As the shape and position of an airfoil evolve during the optimization process, the location of
the grid nodes is adjusted from the baseline configuration to conform to the new configuration.
This could be accomplished by a grid-generation tool, which could generate the required grid at
each iteration of the optimization procedure and also during the computation of the gradient.
Unfortunately, the generation of grids suitable for Navier—Stokes problems is computation-
ally expensive; the process typically requires some user supervision and is difficult to linearize.
Therefore, an algebraic grid-perturbation strategy is used instead. This grid-perturbation strat-
egy is summarized below for the relocation of grid nodes in the normal direction. An analogous
formulation holds for the streamwise direction. First, only airfoil shape changes are considered,
and then the strategy is extended to also include changes in position.
Given a displacement of a B-spline control point in the vertical direction, the grid-perturbation

strategy preserves the location of the outer boundary. The interior nodes along a normal grid
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line are positioned as determined by
PV =yl LAy (1 =Sk k=1,...  kmax — 1 (3.88)
where Ay represents the airfoil shape change. Sy is the normalized arclength distance given by

S1=0

k
1
Sk:L—ZLi k=2,... kmax — 1 (3.89)
g =2

where L; is the length of a segment between nodes k£ and k — 1. Ly is the grid-line length from
the body to the outer boundary given by

Ly = Z L; (3.90)

This grid-perturbation strategy is similar to one of the strategies outlined in [19, 145]. The
strategy works well even for large shape changes in conjunction with both C- and H-topology
grids.

When the optimization problem involves the horizontal and vertical translation design vari-
ables for multi-element configurations, the use of Eq. 3.88 can introduce significantly skewed
grid cells. For example, consider a block in the slot region of the NLR 7301 airfoil, i.e. block 7
in Fig. 3.1(b). This block contains the leading-edge portion of the upper surface of the flap and
the trailing edge of the main airfoil. Figure 3.8(a) shows the original and modified blocks using
Eq. 3.88 for a flap displacement in the positive z-direction. The leading edge of the flap for
the baseline configuration is located at (0.89, —0.025). Note the poor orthogonality of the grid
lines near the body as well as block interfaces. In order to improve the quality of the modified

grid, we introduce a new grid-perturbation strategy given by
new old Ay
Uk =Yk T [1 + cos (mSk)] k=1,... kmax — 1 (3.91)

Fig. 3.8(b) shows the modified block resulting from the new grid-perturbation strategy. The
orthogonality of grid lines near the body is significantly improved. Note that for a given
horizontal and vertical flap displacement, blocks 6 to 9 and 11 to 13 in Fig. 3.1(b) require node
adjustment. Changes in the airfoil shape do not affect blocks upstream of the leading edge and
downstream of the trailing edge.

Elliptic smoothing [119, 167] can be applied to the modified grid, which is shown in Fig. 3.8(c).
The interior grid lines become “more” orthogonal across block boundaries. However, ellip-
tic smoothing is computationally expensive and the resulting accuracy benefits are marginal.

Therefore, we do not apply elliptic smoothing to the perturbed grids.
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(c) Elliptic smoothing for grid based on Eq. 3.91

Figure 3.8: Grid-perturbation strategy due to horizontal element translation
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In the present work, we use Eq. 3.88 for C-topology grids, while Eq. 3.91 is used for H-
topology grids. An example that examines the influence of the grid-perturbation strategy
on the accuracy of the computed aerodynamic coefficients is presented in Subsection 4.5. For
excessively large element displacements, the grid-perturbation strategy may generate overlapped
grid cells. As discussed in Section 2.4, constraint equations are introduced in order to limit the
extent of the displacements. Practical limits of the displacements are somewhat case dependent,
but in general, the maximum changes for the gap and overlap distances should not exceed

+0.5%c and +1%c¢, respectively, when both translational design variables are active.






Chapter 4

VALIDATION

4.1 Overview

The solution of the aerodynamic shape optimization problem is controlled by the optimizer,
as described in Section 3.4. The optimizer requires inputs from two components: 1) the flow
solver described in Subsection 3.2.2; and 2) the gradient computation algorithm described in
Section 3.3. The output from the optimizer, which is the vector of updated design variables, is
processed by the grid-perturbation algorithm described in Section 3.5. These three components
form a critical part of the Newton—Krylov algorithm, and consequently, we carefully validate
each component in Sections 4.2-4.5. The validation of the gradient computation is divided into
two sections. We establish the accuracy of the gradient in Section 4.3, and we present the

efficiency of the gradient computation in Section 4.4.

All validation and design examples (presented in Chapter 5) are based on one of the following
three airfoil geometries: 1) the single-element NACA 0012 airfoil [1] shown in Fig. 3.1(a), 2) the
single-