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- ABSTRACT
: The lincarized primitive cquations for a viscous barotropic fluid in a nonrotating frame are used to investigate
the stability properties and the accuracy of several explicit finite difference approximations. Four diffcrent schemes
< are deseribed and their qualities examined. TFor two schemos the exact numerical solution was derived and com-
pared with the true solution of the differential system. Aclual computations are performed and the errors in phase
and amplitude evaluated to test the theoretical results. ' : "6
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1. BASIC EQUATIONS

Beeause of the increasing application of the primitive
cquations for numerically solving problems in melcomlmry
and oceanography, it seems worth while to examine the

- stability properties and accuracy of various versions' of

. {inite difference approximations.

e nnd ¢z into the positive x-ducctmn
fﬁnf these waves decrease exponentially with time due to fric-
 tional - dissipation. :
'“"condxllons can be “vbtained by applying I<0uncr ex-. .

‘Also'* the “solutions of the finite dillerence ip;"“/*)-—-p("“‘/”—[Wbp"'“’”—-iWW (n+l/2)] Lk

¢
)

As it would be too

luborious to treat the complete sct of primitive equations,

a linearized system, in one space variable, for a baro-

tropic atmosphere on a non-rotating carth was employed.

This restriction is not too severe because the essential

features are maintained when the system is extended.
The basic differentinl equations are the following

ou on op

3= Yo Y ”a‘i+A bx‘
p__yyOp_ duy 4
Se=—U 5575, T4 o Y

Physically « should be looked upon as being a velocity

“disturbance superimposed on a constant basic flow U,

and p as being proportional to the depth of the fluid.
v is the phase velocity of gravity waves and A the co-
efficient of lateral diffusion. v, A are constants=>0.
The first term on the right hand side describes the ad-
vection of the quantities v and p due to the basic {low,
the second term defines the local changes which occur due
to the presence of gravity wuaves, and the third term
illustrites the dissipation due to friction. Although
it is physically incorrect to apply a viscous term to the
sccond equation—derived from the mass conservation
law—this has been done to gain symmetry. In this way,
the system (1) can easily be written in characteristic

form by adding and subtracting both equations. We
assume the initial conditions
2,
(uip) =0y, 2€ ‘]l' , t=0 (2)
and a periodicity condition
w(z, t)y=u(x+L,t); plx,t)=p(xz+L,1t) (3)

instead of boundary conditions. Then the solution of

$)) _'be(:omes .

. —4rt 2yrz
o = T (z—€1,21)
(utp)=a e L' e

- where c,,2=U;1—;7» and o, , are the initial amplitudes
" which might be complex.

Thus the solutions for v and
p are built up by waves traveling with phase velocities

"General solutions for given initial

pnnsion.

4)..

The amplitudes

uppromnutxon can be uprcqented by Bourlcr seues,

Vol.'9§,N
stability of the various finite difference schonws,'it

therefore suflicient to investigate the behavior of
solutions for different Fourier terms.

2. STABILITY

Euch solution of (1) has the property of giving wa-
which decay proportionul to exp (—4ntL7241). In or
to be called numerically stable the solution of a fi,
difference approximation to (1) should .also con
of waves whose amplitudes do not grow with t1
bubsutumw n typical Fourier term .

s A i
-z
(;)-6)-’
P P
into the finite difference equations, the solution for
time t=nAt, where n is the number of time steps,

be written
) ain=n 2
=G =G
<1*,<n)> <Z*)<u—1)> (i,(o))

(0
U . " s
( (0)> is u constunt vector describing the initial an
P '

tude. @ is called the amplification matrix; the clem
of G depend on ¢, 2, 4, L, Az, and At, where Az is the
interval. To get a stable numerical solution as st
above, G hus to be bounded. This leads to the
Neumann necessary condition for stability, namely,
the eigenvalues A\, 2 of @ are not allowed to exceed
absolute value (Lax and Richtmyer [4]). Thus:

iy
4 5

I\1.2| <1 for all possible L

This condition mostly implies a specific choice of
parameters Az and At. TIn the following, several exy
finite difference approximations to (1) are to be exami
Disregarding the {riction term that has been approxim
only to first order accuracy, all schemes but the first
scheme Ju) possess second-order accuracy. Stage
grids werc used since they allow a better approxim:
of space derivatives than the non-staggered grids. It
difference schemes Ia and Ib, u and p ave prescribe
different grid points and different time levels. The

of the schemes II and IIT suggested another tyf
staggering prescribing « and p at the same grid point:
shifting thcsc pomts hulf a grid mterval each tlme

3. SCHEME |

The first finite difference npproxunutmn to (1) t

. Lleated has the following form

,u(n+ 1) ._u(n) __[” 6u (™) iwzazum ]—'176])(” H/?) +F52u(n)

L ‘ _Valt(u+l)+F62 )(u+ll"
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Fravue ‘l —Arrangement of grid points in the zf-plane and values
: needed to compute u{**? and pntad
2
Yoo Tunses the following grid with respect to 2 and ¢ (fig. 1):

u-values are prescribed at even J aud integer tines,
~p-values ave preseribed at odd J and half-odd-integer
times.The prineipal form of the finite difference approxi-
mation Ta was suggested by C. Leith (personal communi-
*eation, 1963) for numerical experiments of the generul
arcnlation of the atmosphere.  Note that the advection
tertns 1°Qu/ar). U@©p/or) have ben approximated
theongh - quadratic interpolation  between three ¢rid
o weinls by those terms stunding inside the brackets,
| )‘I'Liw imterpolation is not quite complete as will be outlined
| Eaer. When starting with known mitial values 4 ©, PO,
the ubove scheme requires an extrapolation in time in
srder to get the value 2%%; this can be done by applying

w bl time step procedure initially. :

v actual computations practically the same results
sere obtained with a slightly different scheme in which
S and pttey were replaced by p@+h and p™; this
Sstene avoids the initial extrapolation. Both scheines
ivasess the same stability propertics. Substituting a

Fourier term futo (Ta) the solution can be written

A A
u(n) u(O)
:G"
A 7 A
1}(n+l,2) ]'“/2)

Phe cigenvalues of @ become-

)

e R ) (I S R T
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;Eh(.. "chssm')’ condition for numerieal stability is that
.l ‘,l'r’(‘s not exceed one as was outlined in section 2,
‘ A’ - ) ’ A
‘“ A= Wf would be zero, the aubsolute value of Ao
:"‘l'd,"?e l)\l.:|=1——41"u7_§1 provided 4F+V2.S_‘1. The
";ﬂn"“: i? true if yayAr=V vanishes, then one would
J . ;’;;‘.‘," Peal=(1 —AIVY—a W (1 —-W2—4F) <1 if o)
! i S Le Thus if cither I/ or v is zcro, the finite differ-
: ;9.;?’"!}!}{!10;” Ii is siable under appropriate conditions

P . . . R

+
“tion to du/dtin (1) which shall bele.\'pressed i‘nlthe‘foll(.m"- K
ing way: I. Cot s TR S L

preseribing u specific relationship between the parame-
ters At and Az.  As it is difficult, to give a closed expression
for N4 with respect to all possible wavelengths if bog, -
W and V are diflerent from zero, we will be satisfied 4o
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evaluate ALz forlong waves only, i.e., for v=sin wTA"<<1-
. ya B ¥
Weussume also that <1, Vv, Wr<<1,aud obtain

: . 2

ool 1—d (1141‘) @FFVI) @
It is immediately seen that our scheme Ta gives exponen-
tially growing solutions with time jf friction is neglected
(I'=0) since then N>1 for W>0, ie., U>0. 1f
I"#0, stability is only retained if 2A>|UlyAt.  Tn order
to satisly this condition A has to be rather large (>10%
em? see.™!) to allow for a reasonable timestep (>200 see.)
if, simulating atinospheric conditions, |Uly is in the order
of 10® em® sec.™* Practieal computations, the results of
which will be discussed in section 6, proved this fact.
There, instability also occurred for neatly all shorter
wave components when the above condition was violuted
and was confined mainly to the wave with phase velocity
[Ul+~.  Also, for some short waves the wave with phase
velocity |Uj—v showed slight instability. An exception
to this is the shortest wave L=2Ar, which is stable when
24124V <. :

A finite difference approximation to (1) that becomes
unstable when [riction is omitted or too small is not
utceptable.  We shall therefore re-cxamine our scheme
with the goal of climinating the unfuvoruble stability
condition and arrive eventually at a stable scheme
independent of the magnitude of A,

Evidently the terms in the brackets of (Ta) should
represent the advection of « and p at the corresponding
centered time levels which shall be written W8+ and
Wep"*" respectively.  Since u at time (n+3%) At and p
at time (n+1)At arc not given directly by the grid (see
fig. 1) the fictitious values have been denoted by @yt
and 77+, Tt can be shown that a stable system according
Lo (5) is obtained il &%{r+12—ypq similarly 83 +P—is
npproximated by the grid point values 30U Y - sumy,
This leads, however, to a partly implicit scheme which is
inconvenient to handle; it shows, on the other hand, that
the shortcomings of the scheme Ia must be due to an
incorrect approximation of the advection terms with
respect to the centered time. To avoid au implicit
scheme and yet arrive at a sufficiently correct approxima-
tion we follow a procedure suggested by Lax und Wendroff -
[5] and expand %+v@ gpd YV into Taylor series in
time retaining only those terms which guarantee the
desired nccuracy. I'his lends, for example, to TP+ =g¢m
bu>"" At

 (n) : . . o
— ) — where o is a finite diference a roxima-
ot/ 2 " T\at/, . pproxuna-
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The second term on the righi-hand side is not evaluated

“at the correct time level nAt, since p is not defined there,

but this cuuses only an error of third order in Af.
The overall scheme can now be written as follows:

D == =3I suy — (31 ey 0 — § e

(Rt 1) g (0) __ (n+1/2) __ {7 (n+1/2) _J_7°82,,(n)
) uf™ —Wai; 5p; - I'8%u;

F’j(n-H) :._1_)](_n+l/2)_ 1 ‘,',’51)](:”1/2)___[%‘Iraaj(n+l)_%I;’&Zi)}n+l/2)]

pl('" +3/2) =1'j(n+.-1/2) ___”'6}')](:1+1) —‘/'57tj("+l) _*_],’621) j(n+l/2) .

(Ib)

This scheme has second order accuracy in At and Az
except for the friction terms which have first order
accurncy in At and second order accuracy in Ar. Re-
ferring to the =, t-dingram (fig. 1), #"**® and {**? are
to be defined at the same points where p{"*t*® and u{*+?
are given respectively. A very similar scheme was
described by Richtmyer [11] but its stability condition
wus not determined.  Another investigation of this
system by A. Kasahara {2] can be found in this issue of
the Monthly Weather Review.

The scheme Ib has been written as a two-step scheme,
where @Yy (D oD 043 Jave to be evaluated
successively.  This way of representation might be
convenient if the same method 1s to be adopted for more
complicated systems.  We can, however, easily arrive
at a one-step scheme by eliminating @ and P in the second
and fourth equations. In doing so for the second equa-
tion, for example, we obtain:

WY =D 1S 4 AW g

+ %v’l{'a?l_)}ui' 1/2) __ %"‘,’]}63,6}1‘)_I/'&I)J(ll+l/2) +]¢’52U1(n) .

Compared with the corresponding expression in the
original scheme, la, an additional second order term
VW py+ v appears.  Both schemes become identical
only if the terms in the brackets in the first and third
cquations of (Ib) are omitted. Note that from the
fields ™, p™+ the field 1"+ cun be computed and
then from the fields w®*, p@+2 (he field p@+3/2),

As it is still very diflicult to give a closed expression
of Al for all wavelengths we shall again confine the
computations to the long wave components. This gives:

LS (1 4¥ ffi>

If Fis neg,lected in the first nnd thn'd equutmns this
ylelds. et , m . '

7o
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|>\12|' (1 er_Az) ) | .,
—4("“‘) W‘[l—(ll"+4F (1:1: )] (8b)

In either case, it is now puossible, without restrictive
assumptions, (o attain stability at least for long waves;
If we neglect friction (F'=0), and then A, does lmt,
exceed 1 when W24 VI <1, thus requiring thnt ‘

U2+|U1~,)( )<1 T % -

which is always possible to achieve. Including the friction
will, for proper values of F, even tend to improve the
stability. So far we have no proof, however, that our
scheme is stuble or if the stability requirement above is
valid for all wavelengths. Numerical computations of
the eigenvalues for F=0, performed by Dr. Kasaharu,
NCAR, revenled however that the scheme 1b is stable for
all wave components and that the shortest possible wave-
length L=2Ar imposes the most restrictive condition for
stability, requiring

(UAt) +7At

(For this wave the eigenvalues are identical to (6) witl
v=1 and u=0.)* Thus we can state that for vanishing
F the scheme is stable if this condition is met. Tncluding
the friction will probably change the stability requirement
mto:

AAt (UAt) +7At

Examples of an actual computation with the schemes Ia
and Ib will be given later in section 6.

It should be mentioned, however, that scheme 1b,
modified for a nonstaggered grid in space, with both
u™ and p@t'® prescribed at, say, even j, might not he
stable in the same range. In this case, applying the same
principles as before, it seems reasonable to transform the
terms in the second equation of (Ib), for example, su
that:

ufr = ) — WP + 1280 4§V Watpfr 1D — Ve,

For simplicitv I has been neglected. Assuming again
v< <1, the eigenv ulues for this system becnme

Al 1= 4("“’ (G zwwm—nm ®
and Stﬂbl]ll) for long waves is ()btnmed only it v WL
1, that is, for supersonic flow. The same _result was

derived by Kasahara [2] through numerlcal computntwn
of the elgenvulues. Co e

A .

‘1t woulq mm ltom an lh‘ipll,“ﬂll of thia equutlon that uw stability condnmn should read '2( LA’) +(’At) Sl Docause thh renults a8 cm tmmcdlnwLy be verlm d.‘

R

T ‘:' e fn |\, ,I-l-z(Uu) <L ButlhlscondltlonIsmorellmltlngthmthntnbovm e g T e g g Ty

LI
a




W

}w

})
157
i

jonuovy 1965

“\ SCHEME u awo- STEP LAX-WENDROFF SCHEME)
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. l\rnpmvd by Phillips [ 19].
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Seheme., 11 (()n\hls similar to 1b, of two different steps

Cand s Ul"(‘d according to Rlchtm) er [12] the two- step
© Jan-W endrofl scheme [3).

In its staggered form it is
identical to the one-dimensional version of the scheme
It is also closely related to the
systent. developed by Knox [3]. The finite difference
erguations take the following form, '

"}»H-l/z)——u(") IWsum —3Vep™m 4 3retu™
PR = —3Wop —1Vsus” +3F6p;”

l("+l) p— u(n) Hfauj(n'i-l/?) -—Vép}"“"”?’ +F62’U;n)

p)(n+l)=pl(n)_‘Vtspj(n%-l/?)_Vauj(n+l/2)+F62p‘;n)_ (ll
wand p are given at the same grid points and are arranged
according to the z, t-diagram shown by figure 2.

At half numbers of time steps, the grid points have
add j; at whole numbers of time steps j is even. In the
«weond step consisting of the two last equations of (11)
varinbles on the right-hand side are centered in time
exveept for the frictional term and are approximnated
by the first step in a similar way as in (Ib). In the
sreond step, the frictional term is not centered in time
to avoid an interpolation between tour grid points, as
i the first step,

The exact solution can be obtained qure easily for
this scheme, as » and p are prescribed at the same grid
pnts, By adding and subtracting the equations for
# wud p one obtains equatlions in the variables (w4 p).
Applving a Fourier term, the solution after n time steps
lweeonies:

the

2ti - nate® 2riz
13,71
—lgx 2["011 2€ L el

,,’u) :h])("))

G120y, 2e L

where

; 91_2=L—2(2p'+ 3 v —2iuwv Cy 2(1—210%)

0, 2|’* (1——41’1/2)2—401 w1 —=C1 =4V (1—Iu*))

Im((]l 2)

‘"-L- .\tc]_ p=arelg -5

€ Relgya) (10)

Heve the amplification matrix reduces to the amplifica-
ten fuctor g, ,, which is identical to its eigenvalue X ..
See g, sdlona=a; , is the amplitude of the numerical
shition which is not allowed to grow with time, a neces-
oy und sufficient condition for stability is thut lg1.2|

“ M <1aceording to (5). This stability requirement

7-‘" fulhlled for ench possxblo L when

.

‘@ h AAt At '
L Az+(|U|+'Y)2( )<1 01
“ F~0 le‘, 1f the natural du‘uy of waves is neglected,

'3 8°en from (10) that there remains an aruﬁcml'

Giinter Fischer . T A _ R

[ t
(n+ Ay (4P s iP P RGP
{n+172)at K\"'E aLeP
) . ,,:/ \\\‘\ o ‘ |
nat [Zup_” Jup up T~ P
" e - X
j=0 2 aX 4

Frerre 2.—Arrangement of grid points in th(\ z, t-plane and \alucs

neceded to compute u*t'?, p{"“/z) and uf"*Y, p"‘*" '

damping proportional to €2 »* and 0<1—C%,<1. This
damping affects mainly the shorter waves. To investizato
the influence of this artificial damping on the larger

wave components, we assume »< <{1. Then after » time

. . . a—a*_[Aa
steps the relative error in the amplitude 2 E(—a—>
is: ’ 4

(Aa) = () [or (b-2r)rona—-cin]

This expression holds as long as n( ><<1 If we

again put F=0, then % .=1/2 would give the lareest
amount of artificial damping for the wave with phase
velocity ¢, With this value, a relative error in the
amplitude of 10 percent is reached after 20 time steps tor
L/Ax=10, after 320 time steps for L/Ar=20, and after
1600 time steps for L/Az=30. Thus the artificial damping
decreases quite rapidly—proportional to (Ar/L)*—with
increasing wavelength.

Evidently either increasing or decreasing the previously
applied value of (% ;=1/2 would result in a smaller error in
the amplitude for the samne number of time steps. To be
uble to compare the error at a fixed timme rather than after
n fixed number ol time steps, we assume that (;’,,25“‘—21;1
is changed by At ouly and that Ar and ¢ ; are kept cou-
stant. For simplicity the frictional terin F is ignored.

~ ~
[1, as reference time, t,=At is chosen, where Af is the
maximumn time step permitted to retain stability according
to (11) (I A=0) and the actual time step is taken as

At==pAt where 0<p<1 (1/p is the number of. timeb sieps
needed to wuch the time t,), then the lelutlve error ut time
{, becomes: ‘ :

1

(%) =1—[1-4p2€'?.zV‘(1 p’(”:)]””
L3 “ SR

=261 ( (1 Ly .),_,,j R



.in phase.

- yd A" )=-const. <1.

i o A -
[ “ . ' s » PR

where. E

~,'H» ¢ th
Cx.z l

( if U>0 thul (J,—-l

(/2—-1 ~1U'y< )Hmd At‘“i )

1

lere the largest error is obtained if (2 ;p?=1/3.  Further-

. . . A .
more it is seen that for a fixed time (;a —0if At—0 and
. L2 -
Ar==constunl.

To investigate the phase dlﬂel(‘uces between the nu-
merical and true solution, we again assume »<<1.

ZLTnAI(, uFeg. nAlcl 2[ (WAx) (1=C} ,—31 )]

("
and the phase lag An= '—'I%rm_\{.(]cl—lc*l) afler n time steps

P\ 3

Thus the phase veloeity of the numerical solution is smaller
in absolute value than that of the true solution when
3 H3F<] and depends on the wavelength.  Opposite
to the true solution (4), the numerical solution creates dis-
persive waves.  If we negleet F'and again assume that

beconmes:

(14)

~
only the time step is diminished by At=pat, we obtuin a

. o~
phase lag at the time t,= At of

(An) e~ “-J) 1ol (1— 02 (15)

Evenif the error in the amplitude becomes smull for p—0,

, At—0 according to (13), the phase error approaches
its maximum value. If, for example, U>0, then it fol-

o~
2 Atl__

(U+) v If
At/Az is chosen in such o way that |Gi]=1/2, ie., p=1/2,
then for L= 10Ax the relutive error in amplitude at {,= At
would be 0.75 percent and the phase lag would be 1.8°.
Diminishing the time step by one half gives p=1/4 and
the errors for the time ¢, then become 0.41 percent and
2.2°, respectively. Obviously the errors in both ampli-
tude and phase would vanish il C'i,2=(7,,2=1; but this
condition cannot be satisfied [or both waves if U0.

To refine only the time interval may reduce the errors
in amplitude. This. leads, however, to increasing errors
If both £ and Ci; are different from zero, the
best way to diminish the crrors would be to refine both
the, tmle nud grid interval such that (At/A7?)(A+
This expression is
fxom 9(»1\'mg (11) with respeet to At As long as this
relation is met when:- At and Az are made snmller and

lows from (11) (with A=0) that ¢?=

.‘ qlpall¢r, the s_tqb{l;ty requirement is automatically ful-
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filled and lhc true so]uh(m is npproachcd in the hm
At—0, Ac—0. 1t is'seen that as long as ClL2As'>>A%

“and Az should be refined at the sanie rate, as in the case «

pure hyperbolic systems.  When 2,422 beeomes simallg
than A% At should be made finer and finer proportion;
to Az?, us ini the case of pure parabolic systems.

We liave seen that a wavelength represented by 2
grid intervals can be damped artificially by 10 percer
after 320 time steps. If we, simulating conditions i
numerical weather forecasting, tuke Ar=300 k., ¢;=130
ni. see.”!t and ¢2=Y4, then Af becomes 700 scee. Wit
L.=204:=6000 km., this wave will be damped artificiall

by 10 percent after 2.6 days and will have a plmsc lag «

33° (I1s assumed to be zero).

It would have been more desirable if this damping wer
confined to the very short waves (L<104x). One coul
perhaps think that applying the sceond time centere
step of (1) several times, say N times, before returning t
the first step would reduce the artificial dwmping.
N=3, Jor example, we compute u? p4/2 from the fir
step and insert. these values into the second step to obtai
u®, p®. Now we continue to employ the equations fe
the second step also to get the values of u®®, p3™ gy
@, p® and then go back to the equations for the fir
step to cevaluate w®®, p®»  Repeating this procedu
leads to the following errors in mnphtudc ot time t=n.
(I'=0).

For N=
A(L " 2 12 2\2[n/4
, 1_1601 21’ (1_ 1,2)(1_2('1;2|( ) l :
L ;
For N=5

(%) == 1—[1“36012. 24 (1— JEa)(1 _40}"2”2)2
12

2=1n;
(1-4e)]

Whereas the original scheme (N——l) wolds, accordin
to (10):
) =1-l—4Gp' =21
1.2

a

If we assume CF,<{1, the schemes with N=3 and N=
show a smaller damping than the original scheme (N=1
ouly for certain short waves, whereas the duwmping

lurger for the very long waves.  Apparently for increasin
N and F=0 there occur more and more places wher
(Aa/a),2 becomes very small or zero beginning at sho
wavelengths, ic., relatively large values of CF <1 an
extending gradually to longer waves so that for N-sa
(Aa/a)y.—0 for all wave numbers. .- Thus, if N is sinal

“thereisnoimprovement {rom applying this method becaus

the advantage of getting rid of the short waves—we sha
explain later why this might be desirable—is lost and tl

'-dlsudvuntnge of dumpmg the longer waves is mumtumg(

\'.' :
! '
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[ \N-orw, which means in practice that except. initially

“ly the two Jast equations of (I1) are used, the scheme
T abiained is ealled the leapfrog b(homc‘ it Wlll be investi-
sated i the next see tion,

5. SCHEME IIl (LEAPFROG SCHEME)

Tuking, the two lasl equations of (I1) for all times
PR T IFSLO B e 8 ), except for the starting point
where we nppl\ the ln~l two equutions to el t}w values
v 0 kA dends to the so-called leapfrog scheme.,  This
whenie i commmonly used in numerical computations
oo Mivakoda {7]).

~ Afreraceertanim number of time steps when the influence
wi the initial gness has practieally disnppeared, the numeri-
cal solution Iu'c'(,i_lm.‘s

) g ey g !y altan g £ T (16)
whe g
v Lo =200 1 — (GFF (7,0t
aned
At et 105
The wonbality condition is fulfilled when
‘A‘;" 7)? (M) <l. 17)
Then the ull)[l““l'nllun fuetor has the absolute value
i = APV (18)

Frhoaal the eaural decay of waves is neglected, it is seen
thet e denplrog seheme contains no artificial damping.
Pordong waves v 1 the relative error in the amplitude

]” 6‘ farcarniey
‘ ‘A
) ( "—) -”:——71( )I’(]—OI’ (19)
«Iing B '
sl the phase lug s given by
, R AVEE y
(an), ’*fc( ”]{)"l('u‘ef(l*(,'f,,—-121"). (20)
\v;'s \ ‘ ’
= 1) Compured with the corresponding results of (12) and (14)
g l»: fir e Lan-Wendrofr scheme, the latter has about four
SINE - Cnew farger phase errors: ulw the errors in the amplitude
hm“’; A bapey, ",
dort
1/
il‘ . 6, RESULTS OF NUMERICAL COMPUTATIONS
mall . P "M'lu ul cotmputations were performed with all schenes

b
bl

|'uxc21't i .lhh inlml mm]llmm u(r 0)—(-09 QI.r p(.r 0)=0
ined. ¥ """‘.lelﬂled i.e.; a,._az: 1.

) ﬂ‘-\
th mbml un the prev u)us (‘huplvlb In mrleoment with

135-‘53“ 85 - _.2

’ Giinter Fischer o ’ : 7

'lll_l.e pcuodmty (QI}dlthDS

. L4
(!&)’\vcro cxtonded'tu 9—;—% (0, t)_.g——',i (I,, l), OH‘ ©, 8

=~—- (L, t) (=0, ] 2, .) in order Lu get also those

\nlucs of w and p for < 0, £>>1. to which the numerical

schemes refer.  The exact solulion (4) also satisfics
these boundary conditions. «%' and P53 were computed

from the finite difference scheme and then uP +p™ was
fmmod and compared with the corresponding true solu-
~tx?

{)
tion which is snnp]y cos --f- crotoe 1T Since in the

schemes In and 1b w and p are not given at the snine erid
points and at the same time, u linear interpolation in
both time and space was upplied to get the desired
value p@’.  Since one gonl of this paper is to simulate
conditions in numerical weather prediction, the following
parameters  were presumed: At=4X10%(2X10% sec.,
Az=2X10" cm., U=5X10® cn., sec.”™? ~y=3X%X10' ¢m.
see.™!, A=10" em? sec.™!, which yields yAt/Ar=1=0.6
0.3), UAt/sar=W=0.1 (0.05), AAt/AR=F=0.001
(0.0005). The values in the parentheses refer to the
scheme la. The errors at time {=4X10* sec. for dif-
ferent wavelengths are shown in tables 1 and 2.

These 1(':.ults confirm what was derived theoretically be-
fore. They show that for the wave with phase \elonl\ ¢
the numerical amplitude in scheme Ta is larger than the
true amplitude and also exceeds the initial mnphtudc =

1, since [\] in (7) is larger than one <I)\1]’-’1+2-S —--))

for L=44r (not presented in table 1) also, the wave with
phase velocity ¢; becomes slightly unstable.  The scheme
Ib, however, is stable for all wavelengths and contains a

TaBLE L.—Lrrors in amplitude (%’)I and phase (an); at (=410
scc. for different wavelengths L.

L=0ar L=10ir L=20A1 L=30Ac
Scheme |
(H) (3 (M) (3n)s (A_") (amh (ﬂ) (3
[ 1 _a ..l a 3 a 1
—2.60 250° | 20,70 60° | —0.15 R.4° | —=0.07 2.K°
010 2100 0.03 40° 0. 004 5.5° 0.00 1.6°
0.96 | 3200 . 0.36 ]0° 0.03 10.6° 0.005 1 3,0°
0.00 100° 0.00 22° 0.00 2.6° 0.00 0.75°

TasLe 2.—Frrors in amplitude (%’)' and phase (an); at t=4X10¢
sec. for different wavelengths L.

L=6at’ L=10ar L=war Le=3osr
N E) o 1T o (2, | o | (2),] @
@ /1| (an) a /1| (am a/y e /s
. 0.70 |.c..... A 0 TSI I WL B O
b.. 0.10 —3%| © 0.08] —a° 0.004 |0, 08° 0.00 | «=0°
- 0.91| 3060° 0.9 85% | - 0.03 {11.0° 0.004 8.4°
1|1 g 0.00 | 105 o) 20| go0p |27 | 0.00 0.8
; i i L ) X b S
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i
tion.  All schemes show, however, rapidly decreasing
errors as the wavelength increases. ;

small urtificial damping which was alrcady predicted by
the cicenvalues (8). The wave with phase velocity ¢,
has very small errors in phase and possesses a numecrical :
phase velocity which is larger than the true phase veloc- °
ity; this is the ouly case where lc*|>]e|. It should Le
mentioned that in the schemes Tu and 1b the errors showed
a tendency to oscillate slightly with time. To obtain
significant values, the crrors in table 1 were interpolated
lincarly in time.

For L=104r, figure 3 shows the various solutions for
% at =0 as a function of ¢. The parameters have the
saine values as before. The true solution u is composed
by a superposition of two waves with phase velocities ¢,
and ¢; respectively. Applying our conditions, this gives

7. CONCLUSION

Our results lead to the conclusion that the leapfrog™
scheme is the most accurate one of all investigated in this :
puper. In nonlincar computations, however, the leap-"
frog approximation may develop the so-called nonlinear
nstability (Phillips [S)), steinming from the fact that -
energy transferred from longer to shorter waves is ac-
cumulated at short wavelengths in the order of L=24az "
As the leapfrog scheme contains no artificial damping, "
this energy cannot be removed if there is no, or inadequate, _53'
frictional dissipation. As Richtmyer [12] pointed out, the ! .
artificial damping of short waves incorporated in the Lax- “
Wendroff scheme will probably prevent the accumu]utinuvif‘i-
: of energy at short wavelengths and thus will give stable’:.
We have selected in our exaunple a time interval ranging  solutions also in the nonlinear sense. v SRR
from t=4X10* sce. to t=6X10* sce, Another argument is that in the leapfrog method there s

The amplification of the scheme Iu is not so obvious in May appear computational inodes different from .the Ph)'s‘,«-f,.
(his .exumple, us the il value of the amplitude ical modc§ (Platzman [10]). In our lineﬂrﬁequatmns thcseji-';."
Hentaz)=1 is only exceeded by about 10 percent. In ('.ornput.ntlo{ml osles B excluded by~a non -.C("nt(f,r,(;fl:[’:
another computation using a time step of t=4X10? scc., “PProximation of the initially unknown quantities uj i

—dy? -
4x 4

U-(O’ t)=<cos ?Ii‘rUt cos —ZLI'yt> et -

a8 in the other schemes, values of more than double the P i Numerical ‘“"°g'j"“°’15 of the nonlinear p}nm]l)t;;']e 7
initial amplitude appeared in this time interval. . The (‘.qu&tlon_.s for a baratropic atmosphers p_erforl‘nt.zd- oy TUR

: : lips [9] with the leapfrog scheme revealed increasing trunca-j:~
tion errors’ near boundaries; these eITors wero probub]y-’ﬁ:
connected with the computational modes because they did

not appear in a modified scheme whicli ‘was cssentinlly thq%‘,j

solution of -the Lax-Wendroff scheme is comparatively
poor becausé l,he' ‘magnitude of the parameters Ci=0.49,
) (=025 impliey relatively ‘large amplitude and phase -

errors for the wavelength. .=10Az.. "The leaplrog scheme two-step Lax-Wendro
" 111 gives by

5o

.

A3

off schemo jii"two, dimensions .using
pid, e r L v

J L 4 " R

o

fur the best approximation to the true solu- Eliassen’s g
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ﬁ) ihe Lax-Wendrofl scheme 11 for nonlnwm cquations.
*analler accuracy of this scheme can be compensated for

e _._

_damping of short waves in the leapfrog scheme.
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JFrom. t}wsc experiences it might he advisable to prefer

The

by u refined net. Our results give some indieation of the
tme und grid intervals needed to gain a cerlain accuracy

for a cortain wavelength,

On the other hand, however, it is also possible to force
This can,
for instance, be accomplished by the common smoothing
techniques, by selective filtering using Phillips’ [8] method,
or by applying approprinte dissiputive terms.  Referring
1o the latter, our “natural” sccond-order diffusion terms
«an he considered us such a means for damping waves.
But corresponding higher order terms could also enforce
Jamping, particularly of short waves. If, for example,
terms proportional to the finite difference approximation
of 0 for*™ and 0*"p/or*™ (m=1,2, . . .) were added to
the w-equation and p-equation respeetively, then the am-
plification fuctor (18) would contain an additional termn
proportional to »?™. With the proper sign and proper
coellicients, this term implies a damping which is the more
ronfined to short waves the larger mis.  The influence on
the phase lag in (20) would be in the order of (wAz/L)™*,
Thus for sulficiently large mn, these terms practically do
aol affeet the longer waves, whereas short waves are
vhinated.  For @7>>2 this method is more cffective in
daunping short wuves than the Lax-Wendroff method. Tt
hus. however, (he disadvantage that the order of the dJif-
ferenee equations and thus the number of computational
boundary conditions are raised.

second-order linear or mnonlinear diffusion terms,
which are moreover physically justified, have becn
applied in practically all cases of numerical weather
tredictious  using  the leapfrog approximation to the
primitive equations and they obviously did prevent the
~eeurrence of nonlinear instubility. Nonlinear diffusion
terms  were, for example, cmployed successfully
siagoringky [13] in his general circulation experiments.
ko the artificial damping in the schemes Ib and IT is
busieally produced by diffusion-like second order terms
m the difference system with coefficients equal to 1/2U2
and 1/2((/"‘—{—7’) respectively. This can be seen il the
tirst steps in (Ib) and (11) are substituted into the second
nh])s

The difficultics connected with computational modes
i the I apfrog scheme which were, as already men-
Honed, observed by Phillips [9] arose at a very special
. king of boundary (near the overlapping boundaries of
the Mereqtor and stereograplic grids).. Usually com-
Puhmonnl modes are suppressed by an appropriate

‘\- unuul approsimation of the dependent variables at time

A (Miyukoda [7]).

Thus, in principle, there
mluq {

0 be no hindrance to (‘mploylnv the leapfrog
N‘h"’“c wlgo for nonlinear equations. :

The” Svhcme Ib is the most efficient one because it
]f. Q}Wa,ys to use the latest information and there-

_is proportional to W3?*

by -

Giinter Fischer ‘ » | ‘ -' _v '-‘9.

fore oceupies relatively small room in the computer.
(The leapfrog scheme requires about twice as mnuch
storage room.) 1t also contains artificinl damping which
and thus depends on the particle
velocity of the flow. Unfortunately it was not possible
to get such an extensive insight into the behavior of this
scheme as in the other cases. In our examples (tuble 1
and {fig. 3) the scheme Ib was more accurate than the

" Lax-Wendrofl' scheme 1T, but less accurate than the

leapfrog scheme 111

The scheme In is not to be recommended because its
stability depends merely on the magnitude of the diffusion
cocflicient A and on the time step.

Although our examples are given for one space v lll‘l.ll‘le
only, the principal features are maintained if the grid is
extended to two space varinbles x and 3. In this case,
neglecting the diffusion term, the stability criterion for
the schemes 1I and 111 should be changed to (|U|++)?

A
Af) <1/2 where U is the scalar particle velocity and

As=Ar=Ay, the grid interval. Stubility for the scheme

1bis probably retained when 2 ( ) +42 7At

The extension of our stuggelcd erid fm thc schemes
1L and T to two space variables can be done in essen-
tially two different ways using cither the already men-
tioned Elinssen [1] grid system, where the dependent
variables are staggered in space too, or the more straight-
forward method proposed by TLilly [6], where all de-
pendent variables are kept at the same grid point in the
x,y-plane. There are also no difliculties in adopting the
grid applied for the scheme Ib to two space variables.
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