Sample PROJECT: COMPUTATION OF LINEARIZED EULER EQUATIONS by Lax
Wendroff

This project solves the linearized Euler equations for flow past a thin airfoil. Flow is
assumed to be uniform ( p = 1,4 = My,v =0 ) at inflow and is used as the reference
state for the local linearization.

We also simplify the equations by assuming constant temperature, i.e. Pressure = p.

Equations: The Euler equations for flow about a slender body in two dimensions can be
written as (before linearization)
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Note: Q,E,F are 3 x 1 vectors.

We rewrite in quasi-linear form, using e.g.
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To simplify the application we freeze A and B at the reference state p = 1,u = My, v =0
to give us
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Now we are working with a small disturbance form of the Euler equations where p, u and
v are the pertubation components from a uniform flow in the z direction. The Mach
number is My, and the equations can be used to study subsonic to supersonic small
disturbance flow over slender bodies or past surfaces with small surface variations. The
matrix A has real distinct eigenvalues My, My, + 1, My — 1 and B the eigenvalues

0,1, —1, so that the system is hyperbolic in time.



Geometry: The grid is uniform in —1 <z < 3.0 and 0 < y < 2, although you can choose
any limits you want. At the lower surface, a biconvex thin airfoil is used with

Ywan = T(l—2)/2 0<z<1
Ywall = 0 z<0,z2>1 (7)

where 7 is the thickness.
Boundary conditions:

1. At inflow (z = —1), fix pu = M, pv =0, and set % =
2. At the top (y = 2) fix all the variables p = 1,u = My,v = 0.
3. At outflow, (z = 3), use %—g =

4. Assume that v is specified at the lower boundary (y = 0) in z using thin airfoil
conditions, that is

v = My

d
y“;a” imposed at y =0 (8)

Project: Lax-Wendroff Numerical Marching Method.
Discretize the field using a uniform grid with z;; = (j — 1)Az and y;, = (k — 1)Ay.
Expand @ in time (i.e. @"*! about Q") as
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Now from Eq. 5
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and
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Therefore Eq. 9 can be written as
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Approximating the z,y derivatives with second order accurate central differences, this
process leads to a numerical scheme which is referred to as the explicit one-step Lax



Wendroff scheme:
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Equation 13 can be integrated from the uniform initial condition Q(O) = (Moo> to a

steady state.
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A sample Matlab code is provided for you. It uses the Lax Wendroff scheme. It is stable
for CFL <1.0. Try CFL = 1.0 and nz = 10, (nz is used to define the grid in z and y). I
put nz points on the airfoil, then Az = 1.0/(nz — 1), let Ay = Az and compute the total
number of points for the problem. Study this code as a starting point for your choosen
project. It produces plots of C, = (p — 1)/(0.5 * M2) at the wall, some density contours,
and residual history, ||R)||2-



