Numerically Generated Chaos In Iterative Solution to Nonlinear ODEs

Taken from Transition To Chaos In An Open Unforced 2-D Flow, J Comp Physics,
Vol. 105 No. 1, PP.133-149 1993, Pulliam. T. H. and Vastano,J. A.

This short note is not intended to be a complete treatment of nonlinear dynamics
and chaos theory. The reader can find numerous texts on those subjects and will no
doubt find more rigorous developments and explanations. The purpose for intro-
ducing these concepts here within the context of relaxation is to demonstrate that
our classical way of thinking about relaxation applied to linear problems may lead
us to conclusions which are not strictly valid for nonlinear problems. Typically, one
uses results from linear analysis as guidelines for nonlinear problems. The stability
and convergence characteristics of methods as analyzed by linear theory guides us
in choices for nonlinear applications. But one can question whether linear analysis
is strictly extendedable to nonlinear problems, where does the linear analysis break-
down, do linear and nonlinear problems behave consistently, along with a hosts of
other such questions. Although we will not attempt here to answer such questions,
these notes are intended to introduce the reader to an example where linear analysis
doesn’t tell the whole story. Where the behavior of the discrete approximation to
nonlinear application can lead us astray.

Linear theory and numerical experimentation only provide a limited analysis of
the effects of numerics and computational error on the computed solutions of a
system of fluid dynamics equations. Typically, the numerical analyst relies on model
problems, linear theory and past experience as a guideline in assessing and using
numerical methods. Linear theory, while useful, can sometimes fail to uncover all the
interesting characteristics of a method applied to a nonlinear problem. Recent work
(Priifer [1] and Lorenz [2]) has shown that simple numerical solution techniques for
a nonlinear ODE can produce the equivalent of a chaotic “map” such as the logistic
C(map” .

2" = R2™(1 - 27) (1)

which for 3 < R < 4 produces the asymptotic behavior of z as shown in Fig. 1.
A “map” is generated by iterating Eq. (1) from the initial value 2° = 0.25 for
400 unplotted iterations and then ploting 2' for 401 < i < 600. For R < 3.0 the
asymptotic behavior is a fixed point, i.e., z2iT! = 2z'. At R = 3.0, a period-doubling
cascade to chaos begins. followed by a region of mixed chaotic and periodic states up
to R = 4.0 past which 2! diverges to infinity, typically characterized as instability.
In this context, period doubling refers to the bifurcation of a single fixed point, (i.e.,
one solution value z*) into two solution values which are now two stable fixed points
(ie., 2'T1 £ 2' but 22 = z%). They are stable in the sense that, perturbations
from those two fixed points always return uniquely to those two points for a given
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value of R which lies at a doubling value. The next doubling leads to four fixed
points and so on to values of R where the solution z* lies in certain bounded regions,
seen as the milky areas in Fig. 1. One can find many treatments and explanations
of this map with discussions such as the significance of the “windows” (the fully
black areas after the milky regions) and other interesting features. These are mostly
irrelevant for our purposes here, we are only interested in the unusual nature of the
map and as we shall see how it pertains to chosen iterative schemes for nonlinear

ODE’s.

R

Fic. 1. Logistic Map z"*! = Rz"(1 — 2z") for R = 3.0 — 4.0

To see how such behavior can arise in a numerical solution to an ODE consider

the simple ODE

yi=y(l—y), y(0) =y, 0<y <1 (2)
which has the well behaved exact solution
Yo
y(t) : (3)

Cyo+ (1 —yo)et
A numerical solution may be obtained by applying Euler explicit time differencing.
y" T =yt Aty (1 - y") = fy"). (4)

Prufer [1] points out that Eq. (4) may be transformed into Eq. (1) by substituting
2" = (At/(1 4+ At))y™ and R = 1 + At. Since we know Eq. (1) has the behavior
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Fic. 2. Solutions From Different Initial Conditions for Eq. 2

shown in Fig. 1, then for some At, the solution given by Eq. (4) will behave
chaotically for some initial conditions. The true solution, given by Eq. (3), is well-
behaved, as is clear from Fig. 2, but the numerical behavior for some fixed At will
be as shown in Fig. 1.

Let’s examine the linear stability of the discrete approximation given by Eq. (4).
Linearizing Eq. (4) about the fixed point y = 1 yields

g = (1 - AtyT (3)

which has the linear stability bound At# < 2. The location of the bifurcation to the
first period two solution for the iterative map is determined by solving the nonlinear
system

u=f(v) v=f(u)

for u,v in terms of At. The critical point y. is given by

(24 A) £ /(A1)2 4
Ye = 2At ’
which only has real solutions for At > 2.0, coinciding with the linear stability

bound. In this case the linear instability bound is also the point at which the
discrete map approximation of the ODE bifurcates to a period two solution. Other
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discrete approximations to the Eq.(3) also have linear stability bounds coinciding
with bifurcation boundaries, although this may not always be the case. For example,
MacCormack’s scheme has the linear stability bound At < 2.0 and bifurcation
boundary At > 2.0, but has a different bifurcation map past the boundary than
Euler explicit (i.e. the logistic map), see Fig. 3 for the lower half of the bifurcation
diagram past At = 2.
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Fic. 3. Quadratic Like Chaotic Map For MacCormack’s Scheme

Stuart [3] has studied systems of nonlinear PDE’s and has shown that for a fairly
general class of nonlinear reaction-diffusion equations, linearized instability leads to
spurious periodic solutions in the nonlinear discretization.

These results are rather interesting in that they imply that there is a region of
time steps where the solution is bounded but not convergent to the correct solution.
Above a certain time step, one obtains the expected response of unbounded growth
but between the linear stability bound and the unstable limit the numerical solution
can behave as above, i1.e. chaotically. This implies that in some situations, a new
region of “unusual” stability can be defined. An example where one may take
advantage of this behavior would be for stiff reaction equations where one part of a
system lies in this bounded (but chaotic) region and other parts in the fixed point
region. This opens up a new avenue of research into “nonlinear stability theory”
which extends the usual “linear stability bounds”. In practice, numerical analysts
rely upon linear stability theory to determine limits for integrations. But this new
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area, especially when applied to basically nonlinear equations such as the Navier-
Stokes equations. may lead to new understanding and algorithms.
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