AA214 — Fall 1999 - MIDTERM ANSWER SHEET
Instructor: Thomas H. Pulliam
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c(%>ja + (%>g = (auj + buj_1) /Az

1. Using the Taylor Table approach on the finite difference approximation of the 15 derivative

(a) Find the coefficients a, b, and ¢ in terms of o which minimize the error er;. (Points:6)

(HINT: uj_o = uj — aAw(%)j + %(ozAac)2 (%)J — %(an)?’(%)j +.-2)

(b) Find the resulting value of ery, in term of « and find the value of « which further minimizes

the error. (Points:4)

ANSWER Problem #1 From the Taylor table
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The Taylor series error of this difference scheme is
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This shows that the scheme is second order for arbitrary a.
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To further minimize the error, let o = %, thereby eliminating the above term and forcing the error

out to the next term
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Now a third order method.



2. Find the expression for the modified wave number of the scheme in terms of Az and k. Cast the
result in terms of sin’s and cos’s and where indicated use series expansion to identify the accuracy
of the scheme.

(a) (0gu); = (uj—2 — 4uj—1 + 4ujq1 — uji2) /(4Az) and identify the accuracy of the scheme. (Points:3)

(b) (bzzzzu)j = (wj—2 — 4uj_1 + 6u; — 4ujr1 + ujtre) /Az* and identify the accuracy of the scheme.
(Points:3)

(HINT: §ppppe®2% = (k*)2e®I22 | find (k*)* = k* + O(AxP), that is, don’t try to take the 4th
root..)

() (6zzw)j—1+ (0zzu)j + (622u)j+1 = 3 (uj—2 — 2uj + ujt2) /(4Az?) Don’t attempt to deter-
mine the accuracy, (too algebraically messy), it’s a 4* order accurate method .
(Points:2)

(HINT: get the expression for (k*)?)

ANSWER Problem #2a
We apply u; = e*IA% 16 both sides and get
(ik*eiijz) _ cikiAz (e—mm — e~ kAT 4 gotikAT _ e2ichz) /(4Az)

which give us
4sin(kAx) — sin(2kAx))

. N
k* =
! ! 2Ax

Expanding the sin function gives

k* :k+%k3Aw2+---
showing a 2nd order approximation to the first derivative.
ANSWER Problem #2b
We apply u; = e'*IA% to both sides and get

((k*)zleiij:c) _ otkiAz (efm’km _ fe kAT 6 _ getikdz e2ikAm) /A$4

which give us
6 — 8cos(kAx) + 2cos(2kAx))

Az?
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Expanding the cos function gives
1
(") =kt — EkGAxQ SERP

showing a 2nd order approximation to the fourth derivative.
ANSWER Problem #2c¢
We apply u; = e'*IA% to both sides and get
_(1*¥\2 tkjAx [ —ikAzx +ikAz\ _ ikjAx —2ikAz 2ikAx
(k*)%e (e +1+e ) e —4Ax2(e 2+e )

which give us
3 (—2+4 2cos(2kAx))

4Az? 1+ 2cos(kAx)

_(k*)Z —

Expanding the cos functions gives
—(k")? = =K% + O(Az?)

a 4th order approximation to the second derivative.



3. Consider the predictor- corrector method

Uptl = Up1+ 2h(ﬂl)n

Unt1 = Up + AT )nt1
applied to the representative equation
u' = \u+ aet
(a) Identify the characteristic and particular operators as discussed in class, [P(E)] and Q(E) and

find the characteristic polynomial P(F). (Points:3)

b) Find the o’s for this method (HINT: it is a 2 root method). (Points:2)

(
(c
(

)

) Identify the principal and spurious roots and justify your choice. (Points:2)
d) Find er) and identify the order of this method. (Points:2)
)

)
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(f

Find the particular solution,us,. (Optional:Points:1)

Determine the stability of the method, i.e., conditions on Ah.(Optional:Points:2)

(Note: The ~ in (@), for the predictor step)
ANSWER Problem #3a

For the predictor-corrector combination

Uptl = Up—1+ 2h(ﬂl)n

Unp+1 = Up + h(ﬂ')n+1

Applying the time-marching scheme to the representative equation

du
— “t
7 Au + ae

results in the following equation set

Upy1 = Up—1 + 2h ()\ﬁn + ae“’m)

Upy1 = Up + D ()«&nH + aeth ("+1))
Introducing the difference operator, F, the equation set may be expressed in matrix form as
E—-2\h —E7! U | _ | 2h | uhn
—AE FE-1 Up, hE
The results for [P(E)] and Q(E) are obviously from the previous equation.
The characteristic polynomial equals the determinant of the matrix
P(E) = E* — (1+2)\R)E + \h

The particular polynomial, Q(E), for the final family u,, (as opposed to the intermediate family ,,)
is given by



B E—2\h 2n | |,
Q(E)_det[ hE hE]—hE

ANSWER Problem #3b

The characteristic polynomial is

P(0) =0 — (1 +2X\h)o + Ak

giving
1 1
0'1,2 = 5 +>\hi 5\/ ]. +4>\2h2

ANSWER Problem #3c
1 1
g1 = §+Ah+§\/1+4A2h2

and

1 1
02:—+>\h—§\/1+4/\2h2

2

An easy way to check for the principal and spurious roots is to let h = 0. For the principal root
o = 1 is consistent with e’ for h = 0 and the spurious root will not equal 1. In this case o1 = 1
and o9 = 0 identifying the two types.

ANSWER Problem #3d

Expanding the square root for the principal root

o1 =14+ Xh+A2n% ...
and the transient error is .

ery = —5()\/1)2 +0(h?)
a first order method.
ANSWER Problem #3e
The exact numerical solution to v’ = \u + ae** is then

Qe
Up = €107 + €205 + aeuhn%
which give us the Particular Solution

he2uh
e2th — (14 2X\h)erh + \h

Uoo = aeti™ .

ANSWER Problem #3f

Determine the stability of the method, i.e., conditions on Ah. This is a little hard to do from the
definition of the o roots directly. The basic condition is |o1] < 1 and we also have to check the
spurious root |og| < 1. Probably the best way to proceed is to plot the o roots in both the complex-o
and complex-\ planes as in Chapter 7 of the notes. From a matlab program we have

From the complex-\ plane figure one can pick off the stability bound as approximately |Ah| < %
Functional analysis confirms it.



Midterm 1999 Question 3: Two Roots
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Figure 1: The complex-\ plane plot of |o| =1
Midterm 1999 Question 3: Two Roots
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Figure 2: The complex-o plane plot for Real-A and Pure Imaginary-A



