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Abstract 

 
A genetic-algorithm-based optimization approach is described and evaluated using a simple hill-climbing 
model problem. The model problem utilized herein allows for the broad specification of a large number of 
search spaces including spaces with an arbitrary number of genes or decision variables and an arbitrary 
number hills or modes. In the present study, only single objective problems are considered. Results 
indicate that the genetic algorithm optimization approach is flexible in application and extremely reliable, 
providing optimal results for all problems attempted. The most difficult problems—those with large hyper-
volumes and multi-mode search spaces containing a large number of genes—require a large number of 
function evaluations for GA convergence, but they always converge. 
 
 

Nomenclature 
 
D  multi-mode design space parameter defined by Eq. (12) 
E  normalized error defined by Eq. (10) 
Gn   GA generation nth

NSEED  user-specified parameter that controls how many solutions with different initializing 
random number generator seeds are averaged together to construct a single 
convergence history curve 

NC  number of chromosomes in each GA generation 
NG  number of genes in each chromosome 
NM  number of modes (hills or peaks) in the model problem defined by Eq. (9) 
NO  number of scalar objective functions 
P  user-specified vector with four elements that controls which modification operators are 

used in going from G  to Gn n+1 
p1 user-specified parameter controlling the probability that a specific gene will be modified 

using the perturbation mutation operator (0 ≤ p1 ≤1)  
p2  user-specified parameter controlling the probability that a specific gene will be modified 

using the mutation operator (0 ≤ p2 ≤1) 
R  user-specified parameter that controls the size or range of the design space associated 

with MP1 [see Eq. (4)] 
R(0,1)  random number generator that returns a random value between 0 and 1 
x i,j

n   gene from the j  chromosome from the n  GA generation i th th th

X j
n   chromosome from the n  GA generation j th th

xmaxi
 user-specified maximum limit on the i  gene th

xmini
 user-specified minimum limit on the i  gene th

β  user-specified parameter controlling the size of the perturbation mutations (0 ≤ β ≤1) 
 
subscripts 

 gene or decision variable index i
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j  chromosome index 
k  objective function index 
m  mode index associated with the model problem defined by Eq. (9) 
 
superscripts 

  GA generation or population index n
temp  temporary chromosome and gene values obtained after selection but before operator 

modification 
 
 

Background 
 
Numerical methods for optimizing the performance of engineering problems have been studied for many 
years. Perhaps the most widely used general approach involves the computation of sensitivity gradients. 
These methods—called gradient methods—have been utilized to produce optimal engineering 
performance in a wide variety of different forms. The reliability and success of gradient methods generally 
requires a smooth design space and the existence of only a single extremum or an initial guess close 
enough to the global extremum that will ensure proper convergence. 
 
In contrast to gradient based methods, design space search methods such as genetic algorithms (GA) 
offer an alternative approach with several attractive features. The basic idea associated with the GA 
approach is to search for optimal solutions using an analogy to the theory of evolution. The problem to be 
optimized is parameterized into a set of decision variables or genes. Each set of genes that fully defines 
one design is called an individual or a chromosome. A set of chromosomes is called a population or a 
generation. Each complete design or chromosome is evaluated using a fitness function that determines 
survivability of that particular chromosome. For example, in aerospace applications, the genes may be a 
series of geometric parameters associated with an aerospace vehicle that is to be optimized for payload 
delivered to orbit, aerodynamic performance or structural weight. The fitness function takes as input all 
the geometric parameters and returns the fitness—the size of the payload, the aerodynamic performance 
or the structural weight.  
 
During solution advance (or “evolution” using GA terminology) each chromosome is ranked according to 
its fitness. The higher-ranking chromosomes are selected to continue to the next generation—usually 
multiple times—while the lower-ranking chromosomes are not selected at all. The newly selected 
chromosomes in the next generation are manipulated using various operators (combination, crossover or 
mutation) to create the final set of chromosomes for the new generation. These chromosomes are then 
evaluated for fitness and the process continues—from generation to generation—steadily improving the 
design. 
 
Constraints can easily be included in the GA optimization approach either by direct inclusion into the 
fitness function definition or by preprocessing the candidate design.  For example, if a design violates a 
constraint, its fitness is set to zero (for cases involving maximization), i.e., it does not survive to the next 
evolution level. Because GA optimization is not a gradient-based optimization technique, it does not need 
sensitivity derivatives. It theoretically works well in non-smooth design spaces containing several or 
perhaps many local extrema. 
 
General GA details including descriptions of genetic algorithms can be found in Goldberg,1 Davis,2 and 
Beasley, et al.3,4 Additional useful studies which survey recent activities in the area of genetic algorithm or 
evolutionary algorithm research including the presentation of model problems useful for evaluating GA 
performance are given in Deb,5 Jiménez, et al.6 and Van Veldhuizen and Lamont.7
 
A disadvantage of the GA approach is expense.  In general, the number of function evaluations required 
for the GA optimization process to converge exceeds the number required by a finite-difference-based 
gradient optimization (see the results presented in Obayashi and Tsukahara,8 Bock9 and Pulliam, et al.10). 
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This situation is offset, to an extent, by the ease with which GAs can be implemented in parallel or 
distributed computing environments. 
 
Despite being relatively new, genetic algorithms have already been applied in a broad variety of 
aerospace design applications. A few single discipline applications include a micropump optimization by 
Sharatchandra, et al.,11 wing induced drag minimization by Gage and Kroo,12 control systems engineering 
applications by Fleming and Purshouse,13 transonic wing aerodynamic shape optimization by Holst and 
Pulliam,14 computer system efficiency enhancements by Globus, et al.,15 circuit design by Lohn and 
Colombano,16 antenna design by Linden and Altshuler,17 space vehicle atmospheric reentry optimization 
by Peigin,18 airfoil design by Tse and Chan,19 actuator placement optimization by Sheng and Kapania20 
and Cook and Crossley,21 air traffic control optimization by Cheng, et al.,22 and turbine blade shape 
optimization by Cravero and Satta.23

 
Other applications involving GA search methods have been in the area of multi-objective or multi-
discipline optimization. GA optimization techniques are especially attractive in this area because they 
offer the ability to directly compute so-called “pareto optimal sets” instead of the limited single design 
point traditionally provided by other methods. Examples of multi-objective optimization applications 
include airfoil optimization by Marco, et al.,24 Naujoks, et al.,25 Quagliarella and Della Cioppa,26 Vicini and 
Quagliarella,27 and Hämäläinen, et al.,28 missile aerodynamic shape optimization by Anderson, et al.,29 
wing optimization by Anderson and Gebert,30 Sasaki, et al.,31 Oyama,32 and Obayashi, et al.,33 and rocket 
engine turbopump design by Oyama and Liou.34 In some of these examples the multiple objectives were 
obtained by considering two different aerodynamic design points. In others, the multiple objectives 
involved different disciplines including aerodynamics, structures, controls and/or electromagnetics. 
 
The Genetic Algorithm used in the present study is described next. Details associated with each of the 
operators, including selection, passthrough, random average crossover, perturbation mutation and 
mutation are presented. Genetic Algorithm convergence efficiency is then evaluated using a multi-mode, 
multi-gene hill-climbing problem from two general points of view—the effect of design space 
characteristics on GA convergence and the effect of GA control parameter specification on GA 
convergence. 
 
 

Problem Statement: Single Objective Optimization 
 
A single-objective optimization problem can be stated as follows: Let f  be a scalar objective function of 

 independent variables, x , defined on some domain NG i Ω  
 

 
f = f (X) = f (x1,L,xi ,L,xNG

)    (1a) 
 

In this notation X  is the vector of design space decision variables. The maximum value of f , indicated by 
f∗ , is obtained by finding the values of X = X∗  such that†
 

  
  
f ∗ = max f{}= f (X∗) = f (x1

∗,L,xi
∗,L,xNG

∗ )          (1b) 
 

The above maximization operation is subject to N  conditions or constraints indicated by CO
 

 cn(X) ≤ 0 n = 1,2,L,NCO     (1c) 
 

The constraints placed on the decision variable vector X  by Eqs. (1c) serve to limit the design space 
within Ω  for which the optimal solution is sought. 

                                                 
† For the purpose of simplifying the discussion of algorithmic details, maximization is generally assumed. 
The logic for minimization is a straightforward modification and will not be discussed. 
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Genetic Algorithm 
 
The genetic algorithm optimization procedure utilized to solve the optimization problem, as described by 
Eqs. (1), is now presented. As mentioned above the general idea behind GA optimization is to discretely 
describe the design space using a number of decision variables, x . In GA parlance these parameters 
are called genes, and the i  subscript is called the gene number. Each set of genes that leads to the 
complete specification of an individual design, i.e., each decision variable vector, X , is called a 
chromosome and is indicated by 

i

 
                                     (2) 

 
X j

n = X(x1, j
n ,x2, j

n ,L,xi, j
n ,L,xNG ,j

n )
 
The  subscript, which has been added to j X , is the chromosome number. The  subscript has also been 
added to each gene, so as to identify which chromosome each gene value is identified with. The  
superscript has been added to indicate the GA generation number, which iteratively advances as the 
solution converges. In this notation,X  is the  chromosome for the n  generation that consists of N  
genes. 

j
n

j
n j th th

G

 
For aerodynamic shape optimization problems, the design space genes are typically a series of 
geometric parameters, e.g., airfoil thickness and camber and/or wing sweep, twist and taper. For many 
GA applications genes are computationally represented using bit strings and the operators used to 
manipulate them are designed to accommodate bit string data. In the present approach, following the 
arguments of Oyama,35 Houck, et al.36 and Michalewicz,37 real-number encoding is used to represent all 
genes. The key reason for using real number encoding is that it has been shown to be more efficient in 
terms of CPU time relative to binary encoded GAs.37 In addition, real numbers are used for all genes in 
the present implementation because many engineering applications involve decision variables that are 
best described using real numbers, e.g., the geometric parameters in aerodynamic shape optimization. 
Thus, using real number encoding eliminates the need for binary-to-real number conversions.  
 
Initialization 
 
Once the design space has been defined in terms of a set of real-number genes, the next step is to form 
an initial generation, G ,  represented by 0

 

 
G0 = (X1

0,X2
0,L,X j

0 ,L,XNC

0 )  
 
where N  is the total number of chromosomes. Each gene within each chromosome is assigned an initial 
numerical value using a process that randomly chooses numbers between fixed user-specified limits. For 
example, the i  gene in an arbitrary chromosome is initially computed using 

C

th

 
                xi = R(0,1)(xmaxi

− xmini
) + xmini

         (3) 
 

where  and x  are the upper and lower limits for the i  gene, respectively, and R  is a 
random number generator that delivers an arbitrary numerical value between 0.0 and 1.0. 

xmaxi mini

th (0,1)

 
The random number generator used in the present study requires an integer input—a seed value. If the 
integer is positive, the next number in the current random number sequence is returned. If the integer is 
negative, the random number sequence is reset. Utilization of the same negative seed value will always 
reset the random number generator to the same sequence. Each new solution begins by resetting the 
random number generator using a single call to R  with a negative seed value. All other calls to R (0,1)
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during that solution use a positive seed value. Thus, a solution can be repeated by simply using the same 
initial seed value or rerun to determine statistical variation by using a different initial seed value. 
 
For simplicity in the present study, the gene limit values for each gene are forced to be equal, and the 
minimum values are forced to be equal to the negative of the maximum values. This is indicated by 
 

       

xmax1
= xmax2

= … = xmaxNG
= xmax

xmin1
= xmin2

= … = xminNG
= xmin

xmin = −xmax

 

 
With these assumptions the complete specification of all gene limits can be made using a single 
parameter given by 
 

           R = xmax − xmin      (4) 
 

This provides a simple way to study the effect of gene limits on GA convergence performance. Use of this 
simplifying assumption does not limit the generality of the present GA. Separate specification of each 
gene limit is retained as an option, but is not utilized in this study. 
 
Fitness evaluation 
 
After each generation is established—this includes the initial generation, as well as each succeeding 
generation in the evolutionary process—fitness values, f , are computed for each chromosome using a 
suitable function evaluation. This is analogous to the objective function evaluation in gradient methods 
and is represented using 

j
n

 
                     f                     (5) j

n = f (X j
n )

 
For aerodynamic shape optimization, f  represents a suitable CFD flow analysis that provides a 
quantitative evaluation for the desired objective, which is typically some function of lift, drag or some 
integral on the surface pressure distribution. 
 
Ranking 
 
Fitness evaluation is followed by a ranking process where the chromosome with the highest fitness is 
given a number one ranking ( IR = 1), the individual with the second highest fitness is ranked number two 
( IR = 2 ), and so on. This process is represented as follows:  
 

ic = 1
if (fj

n < fjj
n ) ic = ic + 1 j j = 1,NC

IRj
n = ic

⎫ 

⎬ 
⎪ 

⎭ 
⎪ 

j = 1,NC  

 
where  and  are special counters that range over all chromosomes in the current population or 
generation level.  

j jj

 
This completes the GA ranking process. The next several subsections describe the GA selection process 
and how the chromosomes, once selected, are then modified.  
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Selection 
 
The first operation required to produce generation n + 1 is selection. The chromosomes that will be used 
by the GA modification operators (to be discussed shortly) must be selected from the n  generation of 
chromosomes, i.e., from G . The selection operation used in the present study, sometimes called 
“greedy selection,” is given by  

th

n = (X j
n )

 
jj = 1

if (IRj
n ≤ jj) then

X jj
temp = X j

n

jj = j j + 1
endif

⎫ 

⎬ 
⎪ ⎪ 

⎭ 
⎪ 
⎪ 

j = 1,NC

if ( jj > NC ) stop

⎫ 

⎬ 

⎪ 
⎪ ⎪ 

⎭ 

⎪ 
⎪ 
⎪ 

it = 1,NC
 

 
where each selected chromosome X jj

temp  is placed in a temporary holding array indicated by 
 

 
Gtemp = (X1

temp ,L,XNC

temp ) 
 

Note how the individuals with highest fitness in the n  generation are always selected multiple times, 
thus, the name greedy selection. The individuals with average fitness are selected a small number of 
times, and the individuals with lowest fitness are not selected at all. This biasing toward individuals with 
highest fitness, although a key element in any GA, is taken to the extreme in the present greedy selection 
algorithm. The chromosomes stored in G

th

temp  are used by succeeding operators to produce Gn +1.  
 
P Vector 
 
The next phase of the GA process is chromosome modification. In the present implementation four 
modification operators are used—passthrough, random average crossover, perturbation mutation and 
mutation. The number of chromosomes modified with each operator is controlled by the P  vector, which 
consists of four parameters—p , , , . Each parameter controls one modification operator. The 
value of each parameter ranges from 0 to 1.0, and, for consistency, the sum of all four parameters must 
always equal one. A P  vector equal to 0.1, 0.3, 0.3, 0.3, for example, will cause the first 10 percent of the 
chromosomes to be modified using the passthrough operator, the next 30 percent to be modified using 
random average crossover, the next 30 percent to be modified using perturbation mutation and the last 
30 percent to be modified using mutation. That is, 

B pA pP pM

pB = 0.1, pA =0.3 , pP = 0.3 , and . pM = 0.3
 
The passthrough operator is always performed first. After passthrough is complete, the implementation 
order of the remaining operators is immaterial. Once all values of Gn +1 have been established, the 
algorithm proceeds to fitness evaluation, ranking and then onto succeeding generations until the 
optimization is sufficiently converged. 
 
Passthrough 
 
The simplest operator used in the present GA is “passthrough.” As the name implies, a certain number of 
chromosomes with the highest ranks are simply “passed through” to the next generation from Gtemp  to 

 without modification. The passthrough operator is always performed first on the first chromosome in Gn +1

Gtemp , which is always the chromosome with the highest fitness. This guarantees that the maximum 
fitness never drops from generation to generation. The number of chromosomes that are passed through 
to the next generation is controlled by the first parameter in the P  vector, p . B
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Random Average Crossover 
 
The next GA operator is called the random average crossover operator and is implemented by first 
randomly selecting two chromosomes, X j1

temp  and X j 2
temp , from Gtemp . Next, the two selected 

chromosomes are combined on a gene-by-gene basis using the following formula: 
 

  
x i,j

n+1 =
1
2

(xi ,j 1
temp + xi ,j 2

temp ) i = 1,2,L,NG            (6) 

 
where  corresponds to the  gene in the  chromosome associated with xi ,j

n +1 i th j th Gn +1 and 

xi,j 1
temp and xi, j2

temp  correspond to the  genes from the randomly chosen chromosomes i th X j1
temp  and X j 2

temp . 
The number of chromosomes modified using the random average crossover operator is contolled by the 
parameter p —the second element in the P  vector. A

 
Perturbation Mutation 
 
The next GA operator is called the perturbation mutation operator and is implemented by first selecting a 
random chromosome X j

temp  from Gtemp . Next, a probability test is performed for each gene xi,j
temp  in the 

selected chromosome involving a call to the random number generator, R , described above. If the 
random number is greater than p —a user-specified control parameter—the gene is not modified. If the 
random number is less than p  the gene is modified using 

(0,1)
1

1
 
         xi,j

n+1 = xi, j
temp + (xmaxi

− xmini
)[R(0,1) − 0.5]β            (7) 

 
where β  is a user-specified tolerance that controls the size of the perturbation mutation. The p  
parameter is specified to statistically control the number of genes that are modified within a specific 
chromosome. Small values of p  result in the modification of few genes. Large values ofp  result in the 
modification of many genes. For sensible results, the values of 

1

1 1
β  and p  must lie between 0 and 1.0. 1

 
Because this operator can cause the value of a particular gene to exceed one of its constraints (x  or 

), checks are required to make sure this does not happen. The number of chromosomes modified 
using the perturbation mutation operator is controlled by the parameter p —the third element in the P  
vector. 

maxi

xmini

P

 
Mutation 
 
The last GA operator used in the present study is called the mutation operator and is implemented 
similarly to the perturbation mutation operator. First, a random chromosome X j

temp  is chosen from Gtemp . 

Next, a probability test is performed for each gene xi,j
temp  in the selected chromosome involving a call to 

the random number generator, R . If the returned random number is greater than p —a user-
specified control parameter—the gene is not modified. If the returned random number is less than , the 
gene is given a completely different value using 

(0,1) 2
p2

 
            xi,j

n+1 = (xmaxi
− xmini

)R(0,1) + xmini
        (8) 

 
The  parameter is specified to statistically control the number of genes that are modified within a 
specific chromosome. Small values of p  result in the modification of few genes. Large values of  result 

p2

2 p2
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in the modification of many genes. For sensible results,  must be between 0.0 and 1.0. The number of 
chromosomes modified using the mutation operator is determined by the parameter p —the fourth 
element in the P  vector. 

p2

M

 
 

Computed Results 
 
Model Hill-Climbing Problem 
 
It is useful to use a simplified model problem to study the relative merits of different GA variations. In the 
present study, a multi-gene, multi-modal, hill-climbing problem is used. This model problem is given by 
 

     

  

am,k = (xi
i =1

NG

∑ − ci,m,k )2

bm,k = hm,k e
-am ,k

NG

⎫ 

⎬ 
⎪ ⎪ 

⎭ 
⎪ 
⎪ 

m = 1,2,L,NM

zk = max b1,k ,L,bNM ,k{ }

⎫ 

⎬ 

⎪ 
⎪ 
⎪ 

⎭ 

⎪ 
⎪ 
⎪ 

k = 1,2,L,NO   (9) 

 
where the z ’s are the hill altitudes (design space objectives), the x ’s are the genes (design space 
decision variables—note that the  subscript has been omitted), the c ’s are free parameters, the h ’s are 
peak values for each hill or mode and the a, b quantities are intermediate results. The c and h parameter 
values can either be user input or specified via a random number generator. Once established for a 
particular problem, they do not change. The i  subscript is the gene number and varies from 1 to N , the 
maximum number of genes. The m  subscript is the mode number and varies from 1 to , the maximum 
number of modes or hills in each design space. Finally, the k  subscript is the objective number and 
varies from 1 to N , the maximum number of objectives. For the present study, N , i.e., only single 
objective problems will be studied. In Eq. (9), the goal is to find values of the 

j

G
NM

O O = 1
x ’s that will maximize the z  

values, and, of course, to do so without using any knowledge one might obtain by looking at Eq. (9). With 
the hill-climbing model presented in Eq. (9), the effect of N ,  and N  can be studied, either 
collectively or individually. 

G NM O

 
During the discussion of results, design space attributes such as “volume” will be mentioned. For design 
spaces with many dimensions, i.e., many genes, the concept of volume is not a precise one—“hyper-
volume” being more appropriate. Even the concept of a “hill” in a design space with many dimensions is 
difficult to consider. In the present study terms such as “hill,” “peak” or “volume” will be retained with the 
understanding that the “hyper-” counterparts are, in most cases, more appropriate. 
 
Single-mode computations 
 
Stochastic Characteristics of Genetic Algorithms—Genetic algorithms are stochastically-based search 
algorithms and, as such, produce results with statistical variation from case to case, even if the only 
quantity being varied is the initializing seed in the random number generator. An example of this is 
displayed in Fig. 1 where two GA convergence histories—maximum fitness error versus number of 
function evaluations—are compared. The number of function evaluations is used as a measure of 
computational work throughout this study (not including the computational work associated with GA 
algorithm overhead), because it is easy to define and because it does not vary from computer to 
computer. For most applications, the computational work associated with the GA optimization is easily 
dominated by function evaluation computation, and thus, the present results are useful in determining 
which GA parameter and design space attributes produce the most efficient computational results. The 

 generation error in the maximum fitness (nth E n ) plotted on the vertical axis in Fig. 1 is defined by 
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         E n =
f n − fmax

fmax
     (10) 

 
where fn  is the n  generation maximum fitness, and f  is the global maximum fitness for the model 
problem defined by Eq. (9). The parameter f  is equal to 

th
max

max
 

  
fmax = max hm,k{ }, m = 1,L,NM and k = 1,L,NO  

 
Both convergence histories in Fig. 1 are from the model problem defined by Eq. (9) and utilize design 
space parameter values given by NG = 32 , NM =1 and R = 10.0  and GA parameter values given by 

, NC = 10 β = 0.01, p p2 nd P1 = 0.2 , = 0.05 a = (0.1,0.3,0.3,0.3) . The single h  value from Eq. (9) required 
for this problem is taken to be 100.0, and the c  values are determined via random number generator 
using 
 

 ci,m,k = R(0,1) −
1
2

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 
R
2

    (11) 

 
where R  is the previously defined random number generator. For each value of c  a unique random 
value is generated using Eq. (11). With this problem setup the location of the global optimum is always 
within the gene limits. Once established, these h  and c  values are used for each computation in the 
single-mode (N ) section of this report. 

(0,1)

M =1
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Fig. 1 Two arbitrary GA convergence histories utilizing different initial seed values with all other GA and 
design space parameters held fixed, NG = 32 , NM =1, R = 10.0 , NC = 10 , , P = (0.1,0.3,0.3,0.3)
β = 0.01, p  and p . 1 = 0.2 2 = 0.05
 
The above set of parameter values defines the so-called single-mode baseline solution for this study. The 
GA parameters utilized in this solution were determined via trial and error and represent an efficient set of 
GA parameters for the given design space definition, i.e., for the given values of R , , ,  and c . 
All design space and GA parameters not being varied in the single-mode section of this report utilize the 
values that are established above. 

NG NM h

Except for the seed value used to initialize the random number generator at the beginning of each GA 
convergence, all GA and problem parameters are the same for the two convergence histories displayed 
in Fig.1. But, as can be seen, the two convergence histories are different—in some locations by as much 
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as 30-50%. These differences are caused by statistical differences encountered during solution execution 
and are typical for a GA search process. For multi-modal cases or cases with noise in the design space, 
the statistical variations can be much larger. 
 
To study the relative effects of various GA or design space parameters on GA convergence, it is 
important to remove this statistical variation—at least most of it—so that the average effect of each 
parameter being studied can be ascertained. This is accomplished by running each case many times with 
different initializing seed values, and then averaging the results. The first step in this process is to 
determine how many solutions to use in the average, i.e., the NSEED value. An acceptable value for 
NSEED can be determined by re-computing a typical case many times with different initializing seed 
values, and then plotting the number of function evaluations required for GA convergence as a running or 
ensemble average. 
 
Figure 2 displays such an exercise for the problem from Fig. 1. Running averages are produced for four 
specific convergence levels, E = 10−2, 10−3, 10−4 and 10−5. In this figure the error is the same as that 
defined by Eq. (10). Also plotted on the right are the running average asymptotes computed by setting the 
NSEED value to 1000. The difference between the asymptotic values and the running totals at NSEED = 
30 for each of the error levels starting at E = 10−2 is 1.5%, 1.0%, 1.3% and 2.1%, respectively. As can be 
seen, sample-size independence is obtained at about 10-20 solutions for the larger levels of convergence 
error and at about 30 solutions for the smallest convergence error. It should be pointed out that this result 
is only valid for single-mode results, NM =1. Multi-mode results require even larger NSEED values for 
sample-size independence. As a result of the information presented in Fig. 2, the sample size (NSEED 
value) for all single-mode computations presented in this study will be set to 30.  
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Fig. 2 Effect of running sample size average (NSEED value) on GA convergence to several different 
levels of convergence error, N , G = 32 NM =1, R = 10.0 , NC = 10 , P = (0.1,0.3,0.3,0.3) , β = 0.01, 

 and p . p1 = 0.2 2 = 0.05
 
Effect of P vector on GA convergence—The effect of the P  vector on GA convergence efficiency is 
presented in this section. As described above, the elements of the P  vector—p , , , —are 
used to control which operators will be used to modify the newly selected chromosomes at the beginning 
of each new generation. Figure 3 presents results showing the effect of this group of parameters on GA 
convergence. In keeping with many of the results in this section, GA convergence information is 
presented across a range of chromosome values—N

B pA pP pM

C = 10 , 20, 30, 40, 50, 60, 80, 100, 150, 200—for 
two different levels of GA convergence, E = 10−2 and 10−4. The P vector notation used in Fig. 3, e.g., 

, is shorthand for P . The scale used on the vertical axis—always dedicated to 
the number of function evaluations required for GA convergence—will generally vary from 0 to 100,000 
allowing cross comparison between many of the results presented in this section. 

P = 1333 = (0.1,0.3,0.3,0.3)
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As can be seen from Fig. 3, the effect of the P vector on GA convergence efficiency—all other 
parameters held fixed—is small and ranges from a few tens of percent to a factor of two for the different P 
vectors studied. For each value of N  and for both values of E displayed in Fig. 3, the optimal P vector is 

. The effect of N  on GA convergence efficiency is also small. Regardless of which P 
vector from Fig. 3 is utilized, the number of chromosomes that optimizes GA performance is 10. 

C
P = (0.1,0.3,0.3,0.3) C
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Fig. 3 Average number of function evaluations required to achieve GA convergence as a function of P 
and N , NSEED , R , , C = 30 = 10.0 NG = 32 NM =1, β = 0.01, p1 = 0.2  and p2 = 0.05. 
 
There is another facet to this situation that bears mention. In the present study all chromosomes are 
reevaluated with a new function evaluation each generation, including the passthrough chromosomes. 
This fact is reflected in all the function evaluation totals that are presented in this report. But the 
passthrough chromosomes never change from the old generation to the new generation. Thus, the old 
function evaluation is identical to the new one and would not have to be repeated. If this algorithm 
modification were included in the present implementation, the function evaluation totals would be reduced 
by 10%. This should be considered when comparing the present results to those outside this study. 
 
Each operator controlled by the P vector performs a specialized function in the GA optimization process. 
To help understand these functions and how efficiently they are performed, a counter for each operator—
passthrough, random average crossover, perturbation mutation and mutation—is incremented each time 
one of the chromosomes produced from that operator generates an increase in fitness over the previous 
generation’s maximum fitness. Results from this statistical analysis are presented in Fig. 4 for the single-
mode baseline problem described above. In addition to statistical results from individual operators, a 
curve labeled “TOTAL,” which is the total number of function evaluations from all operators that generate 
an improvement in fitness value, is also included. As can be seen from the TOTAL curves the percentage 
of max-fitness-improving function evaluations decreases as the NC value increases. This is primarily 
manifested in decreasing efficiencies for the perturbation mutation operation, as the random average 
crossover operation efficiency is relatively constant.  
Another obvious result from Fig. 4 is that statistics for the passthrough operator are not included. This is 
due to the fact that this operator does not allow for chromosome modification and thus contains no 
mechanism for improving the fitness. Its job is to make sure that the best chromosome does not digress, 
a task that is amply served for single-objective optimizations when pB = 0.1. 
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By comparing Figs. 4a and 4b, it can be seen that the max-fitness-improving percentages from all 
operators decrease somewhat from E = 10−2 to E = 10−4. Thus, GA efficiency decreases as the search 
process converges, which qualitatively agrees with the shape of the convergence histories displayed in 
Fig. 1. 
 
Lastly, the effect of mutation on GA convergence is seen to be small, as the number of mutation function 
evaluations that improve the fitness is generally less than one percent. For the present problem, this 
operator is not important, but for many applications, especially those that are noisy or multi-modal in 
nature, mutation plays an important role, as will be seen later in this report. 
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a) E = 10−2 
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b) E = 10−4 

Fig. 4 Average number of function evaluations (in percent) producing an increase in the fitness relative to 
the previous generation maximum fitness for different values of N , C NSEED= 30, , R = 10.0 NG = 32 , 

, P , NM =1 = (0.1,0.3,0.3,0.3) β = 0.01, p1 = 0.2  and p2 = 0.05. 
 
Effect of design space size on GA convergence—Implementation of the GA described above requires the 
specification of upper and lower limits for each gene (x  and x ). These user-specified limits (along 
with the value of N ), in fact, define the size of the design space that is to be searched for the optimal 
solution. The specification of these gene limit parameters has a rather dramatic effect on GA operation. If 
the limits for each gene are set too far apart the design space will be unnecessarily large and GA 
convergence will be slowed. Conversely, if the limits do not include the problem’s global optimum within 
their specified range, which can result if they are set too close together, convergence will be improved, 
but the final result will not be the desired global optimum. As a means of reducing the complication of this 
coefficient specification process, all of the x  and x  gene-limit values have been reduced to a 
single parameter, R , by utilizing Eqs. (4) and (11). 

maxi mini

G
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The purpose of this section is to study the effect of R  on GA convergence. Results showing the effect of 

 on GA convergence efficiency are presented in Figs. 5 and 6. Figures 5a and 5b show the effect of R  
in combination with  for two different levels of the convergence
R

NC , E = 10−2 an −4. As readily seen 
for most values of R , the number of function evaluations required for convergence increases as the 
number of chromosomes increases. Generally, NC

d 10

= 10  provides optimal convergence for most 
situations being as much as a factor of four faster than the results at NC =150 or 200. More will be given 
in later sections describing the effects of population size (NC ) on GA convergence. 
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As expected, the average number of function evaluations required to obtain GA convergence increases 
with R , but the rate of increase is not as intuitive. From Figs. 5a and 5b it can be seen that the value of R  
increases by a factor of 100, but the number of function evaluations required for GA convergence 
generally increases by only a factor of 10—a little more than ten for all values of N  in Fig. 5a—a little 
less than 10 for most of the results in Fig. 5b. For N

C

C = 10  and E = 10−4, the increase in the number of 
function evaluations due to a 100-fold increase in R  is only about 4.5. 
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b) E = 10−4 

Fig. 5 Average number of function evaluations required to achieve GA convergence for different values of 
 and R , NSEED , N , NNC = 30 G = 32 M =1, P = (0.1,0.3,0.3,0.3) , β = 0.01, p1 = 0.2  and p . 2 = 0.05

 
A clearer picture of this behavior is displayed in Fig. 6 where the average number of function evaluations 
for GA convergence is plotted versus R  for NC = 10 . Results for eight different levels of GA 
convergence, ranging from E = 10−1 to 10−8, are included. From an analysis of the data in Fig. 6—with 
the proper set of curve fitting tools—the number of function evaluations (n) generally varies as a 1/3 
power law in the R  that is, 
 

n ∝ R1/3  
 
This relation becomes increasingly accurate for tighter levels of convergence, E = 10−3 to 10 . For this 
set of E values the computed exponent actually varies from 0.30 to 0.39. This relation is also valid for 
larger values of N  providing the exponent is adjusted to suitably higher values. 

−8

C
 
Of course, as R  increases, the size of the design space increases. For 32 genes a doubling in the value 
of R  from say 10.0 to 20.0—would cause the design space to increase by a factor of 232 or 4 billion times! 
If a simple trial and error search were implemented for this problem, the search time would be 
proportional to the size of the design space. The GA search time, on the other hand—assuming optimal 
GA parameters—would increase by a factor of 1.26. 
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Fig. 6 Average number of function evaluations required to achieve GA convergence as a function of R  
and E, NSEED , N= 30 G = 32 , N , NM =1 C = 10 , P = (0.1,0.3,0.3,0.3) , β = 0.01, p  and p1 = 0.2 2 = 0.05 . 
 
Effect of number of genes on GA convergence—The effect of the number of genes utilized in defining the 
design space on GA convergence is studied next. Computed results for wide variations in the population 
size (N ) and the number of design space genes (N ) are presented in Fig. 7 for two different levels of 
GA convergence, 

C G

E = 10−2 and 10 . As can be seen, the optimal population size is reasonably 
independent of the specified level of convergence, but varies with the number of genes. For all but the 
smallest values of N , optimal GA convergence is generally achieved for a population size of 10, being 
as much as a factor of four faster than for the larger population sizes. For smaller values of NG the 
optimal population size is mixed, but generally resides around a values near fifty. 

−4
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a) E = 10−2 
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b) E = 10−4 

Fig. 7 Average number of function evaluations required to achieve GA convergence as a function of N  
and N , NSEED , R , , P

C

G = 30 = 10.0 NM =1 = (0.1,0.3,0.3,0.3) , β = 0.01, p1 = 0.2  and p . 2 = 0.05
 
Figure 8 presents the average number of function evaluations required for GA convergence versus N  
for eight different convergence levels ranging from 

G

E = 10−1 to 10−8. The number of function evaluations 
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grows linearly (approximately) with the number of genes, regardless of the specified convergence 
tolerance. Thus the following approximate relationship is established: 
 

n ∝ NG  
 
As can be seen from Fig. 8, GA convergence slows as smaller levels of error are achieved. This is in 
agreement with the convergence histories presented in Fig.1. Analysis of the data used to establish Fig. 8 
shows that the rate of increase is a factor of 1.5 (approximately) for every decade change in the value of 
E. Thus, the following approximate relationship is established: 
 

n ∝ 1.5− logE  
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Fig. 8 Average number of function evaluations required to achieve GA convergence as a function of N  
and convergence error, NSEED , 

G
= 30 R = 10.0 , NM =1, NC = 10 , P = (0.1,0.3,0.3,0.3) , β = 0.01, 

 and p . p1 = 0.2 2 = 0.05
 
Effect of perturbation mutation on GA convergence—The effect of perturbation mutation parameters—β  
and —on GA convergence efficiency is studied in this section. The p1 β  parameter is used to control the 
size of perturbations in the perturbation mutation operator, and the p  parameter is used to control the 
probability that any given gene will be perturbed. Figures 9-13 present results showing the effect of these 
parameters on GA convergence. 

1

 
Figure 9 displays the average number of function evaluations required to achieve GA convergence as a 
function of N  and C β  for two different values of the convergence, E = 10−2 and 10 . The effect of −4 β  on 
GA convergence is moderate. The difference in number of function evaluations between the best and the 
worst values of β —all other parameters held fixed—is a factor of 2 to 4. 
 
Generally speaking, the optimal value of β  does not vary with N . This can be seen more clearly in Fig. 
10 where the roles of N  and 

C

C β  have been interchanged. As seen from Figs. 10a and 10b, the optimal 
values of β  for E = 10−2 and 10  are 0.05 and 0.01, respectively. −4
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b) E = 10−4 
 

Fig. 9 Average number of function evaluations required to achieve GA convergence as a function of N  
and 

C
β , NSEED , R , N , N= 30 = 10.0 G = 32 M =1, P = (0.1,0.3,0.3,0.3) , p1 = 0.2  and p . 2 = 0.05
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b) E = 10−4 
 

Fig. 10 Average number of function evaluations required to achieve GA convergence as a function of β  
and N , NSEED , R , , C = 30 = 10.0 NG = 32 NM =1, P = (0.1,0.3,0.3,0.3) , p1 = 0.2  and p . 2 = 0.05
 
But it is interesting to note that the optimal value of β  for E = 10−2 is not the optimal value for E = 10−4. In 
fact, there is a dramatic reversal in behavior. The optimal value of β  for E = 10−2 (β  = 0.05) is one of the 
worst values for E = 10−4. This can be seen more clearly in Fig. 11, where the number of function 
evaluations required for GA convergence is plotted as a function of β  for eight values of E ranging from 

 to 10 . The optimal value of 10−1 −8 β  starts at 0.1 for E = 10−1 and falls to a value near 0.001 for 
E = 10−8. Thus, optimal GA convergence requires a correlation with the convergence level, E, that is 
sought. 
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Fig. 11 Average number of function evaluations required to achieve GA convergence as a function of β  
and E, NSEED , R , N , N= 30 = 10.0 G = 32 M =1, NC = 10 , P = (0.1,0.3,0.3,0.3) , p  and p1 = 0.2 2 = 0.05. 
 
The explanation for this behavior is straightforward. As the GA process converges the perturbations 
required to improve the solution become smaller, and thus, smaller values of β  are more beneficial for 
tighter levels of GA convergence. The theoretical optimal would be to vary the value of β  during GA 
convergence, starting with a larger value and automatically moving to smaller values as the GA process 
converges. A limited amount of work has been performed in this area with some success, but it is difficult 
for a general implementation as the evaluation of convergence error is generally unknown for practical 
applications. An “on the fly” statistical analysis of the perturbations that achieved improvement in the 
optimal fitness value might be a more successful alternative for choosing an optimal variation of β , but to 
date nothing along that line has been studied. 
 
The perturbation mutation probability, p , is used to control whether a particular gene is modified by the 
perturbation mutation operator or not and was defined in conjunction with Eq. (7). The effect this 
parameter has on GA convergence is presented in Figs. 12 and 13. Figure 12 shows convergence 
information as a function of  and p1 for two different levels of convergenc

1

 NC  e, E = 10−2 a 10nd −4. As 
with other results seen in this section, NC  has a moderate effect on convergence for most values of p1 
with the smaller values of NC  always producing the best convergence. 
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Fig. 12 Average number of function evaluations required to achieve GA convergence as a function of p1 
and N , NSEED , R , , C = 30 = 10.0 NG = 32 NM =1, P = (0.1,0.3,0.3,0.3) , β = 0.01 and p . 2 = 0.05
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The effect of p1 on GA convergence is more complex. The optimal values of p  for 1 E = 10−2 and 10−4 are 
1.0 and 0.2, respectively. Thus, like the β  results presented above, the optimal value of p1 changes 
depending on the level of convergence. Figure 13 presents a global picture of this behavior. The optimal 
value of p  is 1.0 at 1 E = 10−1. It decreases from that point to 0.1 at E =10−5 ~10−6 and then increases 
again reaching a value of 1.0 at E = 10−8. The optimal regions for the E =10−6 −10−8 curves are 
relatively flat, and thus, it is difficult to be precise about the optimal values or p  for smaller values of E. 1
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Fig. 13 Average number of function evaluations required to achieve GA convergence as a function of p1 
and E, NSEED , R , N , N= 30 = 10.0 G = 32 M =1, NC = 10 , P = (0.1,0.3,0.3,0.3) , β = 0.01 and p2 = 0.05. 
 
So far most of the results have involved the analysis of a single GA parameter over a suitable error or 
chromosome range while all the other parameters were held fixed at their baseline values. Figure 14 
presents results where variations of both perturbation mutation parameters—β  and p —are performed 
simultaneously for two values of convergence error—

1

E = 10−2 and 10−4. This allows a more complete 
analysis of GA convergence efficiency for non-optimal parameter values. For all computational results 
presented in Fig. 14, N . From Fig. 14, it can be seen that the optimal values of C = 10 β  and p  occur at 
0.02 and 1.0, respectively, for 

1

E = 10−2 and at 0.01 and 0.2 for E = 10−4. Generally speaking, midrange 
values of β  and larger values of p  (for the ranges studied) typically produce acceptable convergence, 
while the results associated with the smallest values of 

1
β  and p  are poor. 1

 
Effect of mutation on GA convergence—The effect of the mutation operator parameter— —on GA 
convergence efficiency is studied in this section. The  parameter is used to control the probability that 
any given gene will be mutated. Figures 15-16 present results showing the effect of this parameter on GA 
convergence. Figure 15 shows the average number of function evaluations required to achieve GA 
convergence as a function of p  in combination with N  for two different values of the convergence 
tolerance, 

p2
p2

2 C

E = 10−2 and 10 . The effect of  on GA convergence is moderate. The difference in 
number of function evaluations between the best and the worst values of p

−4 p2

2—all other parameters held 
fixed—is a factor of 1.5 to 3.  
 
Note that results for p2 = 0.0  are included. This value of the mutation probability does not allow any 
genes to be selected in the mutation operator. Thus, the chromosomes selected by the mutation operator 
become pure “passthrough” chromosomes, that is, they are unmodified from generation to generation. 
GA convergence is not as efficient for this value of p , but the process still converges with reasonable 
efficiency. This result strongly supports the observation made in conjunction with Fig. 4. The mutation 
operator is not important for single-mode optimization, i.e., it is not important for optimization problems 
involving pure “hill-climbing.” 
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b) E = 10−4 
 

Fig. 14 Average number of function evaluations required to achieve GA convergence as a function of p1 

and β , NSEED , R , N , N= 30 = 10.0 G = 32 M =1, NC = 10 , P = (0.1,0.3,0.3,0.3)  and p . 2 = 0.05
 
Generally speaking, the optimal value of p  does not vary with N . This behavior is similar to that of the 2 C
β  parameter (see Fig. 9). However, unlike the β  parameter, the optimal value of p  does not vary from 2

E = 10−2 to E = 10−4. It is 0.05 for both curves. The effect of p  over a broad range of convergence error 
can be seen in Fig. 16, where the number of function evaluations required for GA convergence is plotted 
versus  for eight values of E ranging from 10

2

p2
−1 to 10−8. The optimal value of p  starts at 0.05 for 2

E = 10−1 and remains relatively constant, increasing only slightly as the smaller values of E are 
approached.  
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b) E = 10−4 

Fig. 15 Average number of function evaluations required to achieve GA convergence as a function of p2 
and N , NSEED , R , , C = 30 = 10.0 NG = 32 NM =1, P = (0.1,0.3,0.3,0.3) , β = 0.01 and p . 1 = 0.2
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Fig. 16 Average number of function evaluations required to achieve GA convergence as a function of p2 
and E, NSEED , R , N , N= 30 = 10.0 G = 32 M =1, NC = 10 , P = (0.1,0.3,0.3,0.3) , β = 0.01 and p1 = 0.2 . 
 
Multi-modal computations 
 
The results in this section focus on multi-modal design spaces—that is, design spaces with more than 
one, perhaps many, local extrema. Of course, one solution is always best—the so-called global optimum. 
The goal for any optimization algorithm is to find the global optimum without getting hung up by one or 
more of the local extrema. This is difficult for most gradient-based methods, especially as the number of 
modes in the design space increases. 
 
For this section all computations utilize the model problem described by Eq. (9). The value of , which 
was always equal to one in the previous section, will now be greater than one. The multi-modal 
characteristic creates a difficulty because there are so many new problem variables that must be 
specified and so many different ways in which to specify them. For example, for a design space with four 
modes and eight genes, i.e., N  and N

NM

M = 4 G = 8, there are 32 independent c  parameters—eight c ’s for 
each of the four modes—and 4 independent h  parameters. Each requires a value to completely define 
the design space given by Eq. (9).  
 
These values, while not being part of the GA, define the shape of the design space and thus, affect GA 
convergence. For example, a design space containing two modes with nearly identical peak values, one 
being the desired global optimum, represents a difficulty for any optimization procedure including the 
present GA approach. Once on the lower peak, it is difficult to move to the peak that contains the global 
optimum. As the two peak values approach each other, the number of function evaluations required for 
GA convergence, averaged over a suitably large sample of solutions, will approach infinity. Of course, if 
the two peaks are close, one might not care which peak is found, as either would be a suitable answer to 
the optimization problem. Although GA convergence performance as two or more peaks approach the 
global optimum will not specifically be examined in this study, GA performance for a wide variety of multi-
modal scenarios will be presented. 
 
Stochastic variations of multi-mode solutions—First, as was done at the beginning of the previous 
section, it is of interest to determine how much statistical variation exists in a typical GA convergence 
history—one that involves a multi-modal design space. This is accomplished by re-computing a specific 
case many times with different initializing seed values, and then plotting the number of function 
evaluations required for convergence as a running or ensemble average. Figure 17 displays such a plot 
for two different multi-mode cases that utilize the same design space parameters—RANGE = 5.0 , 
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NG = 8 and . Each solution in Fig. 17 was continued until the convergence error—defined by Eq. 
(10)—was reduced below 10 . The eight h -values required for Eq. (9) are taken to be 

NM = 8
−4

 

 

h1 = 100.0
h2 = h3 = L = h8 = 80.0

 

 
Note that the k  subscript—the objective subscript from Eq. (9)—has been dropped from  for simplicity, 
as N  is always one. The c  values from Eq. (9) are determined via random number generator using Eq. 
(11). Once established, these h  and c  values are used for each re-computation for both cases. 

h
O

 
The GA parameters utilized for the two convergence histories displayed in Fig. 17 are different. Case A 
consists of N , , C = 10 P = (0.1,0.2,0.2,0.5) β = 0.01 p1 = 0.2  and p2 = 1.0 , and Case B consists of 

, P , NC = 200 = (0.1,0.7,0.1,0.1) β = 0.01 p1 = 0.2  and p2 = 1.0 . Note that only the P vector and number of 
chromosomes in the fixed population size are different. 
 
Case A produces nearly optimal convergence, at least for this definition of the design space, and will be 
used as the multi-mode baseline for this section. All design space and GA parameters not being varied in 
the multi-mode section of this report utilize the values that are established in this baseline solution. Case 
B is far from optimal and is close to a worst case scenario, for this design space configuration. 
 
As can be seen from Fig. 17, the running average is plagued with oscillations. Each time the GA 
becomes “stuck” on one of the design space’s lesser peaks, the running average jumps. Each time 
convergence “finds” the global optimum quickly the running average drops. As the running average 
continues to higher NSEED values, each curve becomes smoother, especially case A—the baseline 
solution. The two solid lines to the right of each curve indicate the maximum and minimum extent of each 
running average from NSEED  to 1000, and the dashed curve is the final value at = 101 NSEED=1000. 
The total variation beyond an NSEED value of 100 for Case A is –8.4% to +14.8%, and for Case B it is –
10.7% to +35.0%. 
 
It is easy to see that multi-modal cases involve more statistical variation than single-mode cases. As 
such, more averaging is required to obtain sensible results. Thus, for each solution in this section the 
minimum NSEED value will be 100. Even then, a statistical variation of at least 10 percent is typical and 
several tens of percent possible.  
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Fig. 17 Effect of running sample size average (NSEED value) on GA convergence for two different multi-
modal solutions, E = 10−4, , R = 5.0 NG = 8, NM = 8, β = 0.01, p1 = 0.2  and p2 = 1.0 . 
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Effect of P vector on multi-modal GA convergence—Figure 18 presents results showing the effect of the 
P vector on GA convergence for the multi-mode conditions. Because some the results associated with 
Fig. 18 have more statistical variation than other multi-mode sections, an NSEED value of 200 is used. In 
keeping with other results in this study, GA convergence information is presented across a range of 
chromosome values— , 20, 30, 40, 50, 60, 80, 100, 150, 200—for two different levels of 
convergence, 

NC = 10
E = 10−2 and 10 . −4

 
A quick comparison of Figs. 18a and 18b suggests that they are the same, but a more careful 
examination indicates a slight difference. Each data point in Fig. 18b is slightly higher than the 
corresponding point in Fig. 18a, indicating (as expected) more work required to attain the tighter level of 
convergence. The reason they are close is simply that most function evaluations for the present multi-
mode computations are used to find the proper peak in the design space. Once that is accomplished 
climbing to the top of that peak requires only a small fraction of the total computational effort. Thus, there 
is not much difference in the work required to achieve E = 10−2 relative to that of E = 10−4. For that 
matter there is not much difference in the work required to achieve any two values of E (for sufficiently 
complex multi-modal conditions) providing they both require being on the “primary hill” in the design 
space. 
 
As can be seen from Fig. 18, the effect of the P vector on GA convergence efficiency for the present 
multi-modal case—all other parameters being held fixed—is large. The most efficient cases converge 5 to 
10 time faster than the least efficient cases. Having at least 50% mutation, i.e., p , is critical for 
good GA convergence efficiency. In particular, the best convergence efficiency from Fig. 18 corresponds 
to P  and 1117. This behavior is in dramatic contrast with the single-mode results displayed in Fig. 
3 where the P vector had little effect on convergence. Although there is little variation in GA efficiency 
across the N  range, relatively speaking, the optimal value of N  for the most efficient high-mutation P 
vectors is 10 and between 100 and 200 for the less efficient low-mutation P vectors. The latter 
observation for the low-mutation P vectors is tentative at best, as these results are noisy and thus, less 
amenable to trend analysis. 
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b) E = 10−4 
 

Fig. 18 Average number of function evaluations required to achieve GA convergence as a function of the 
P vector and , NSEED , R , NNC = 200 = 5.0 G = 8, NM = 8, β = 0.01, p1 = 0.2  and p . 2 = 1.0
 
Figure 19 presents a statistical analysis for how often each P vector operator produced a chromosome 
with a fitness that exceeded the previous generation’s maximum fitness value. These results are for the 
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multi-modal baseline solution. Results for two different levels of convergence are included—E = 10−2 and 

. In addition to statistical results from individual operators, a curve labeled “TOTAL”—the total 
number of function evaluations from all operators that produced an improvement in maximum fitness 
value—is also included. 

10−4

 
As can be seen from Fig. 19, N  has only a small effect on each of these curves. Crossover and 
perturbation are equally effective (approximately) in producing improvement to the maximum fitness, but 
mutation (seemingly) is a disappointment, as it barely registers on the plot. 

C

 
Further insight into the present results can be obtained by comparing the multi-modal results of Fig. 19 
with the single-mode results of Fig. 4. Because these two problems are quite different, a quantitative 
comparison is not possible. Nevertheless, interesting contrasts between the two sets of results can be 
drawn. First of all, the success rate of all operators is dramatically lower for the multi-modal computations, 
especially the mutation operator. Crossover and perturbation mutation are reduced in efficiency by a 
factor ranging from 3 to 8, but mutation is reduced in efficiency by a factor of 50 to 120. This is a direct 
result of the GA search becoming “stalled” on one or more of the lower peaks—potentially for large 
numbers of generations—before finding its way to the global optimum. The mechanism by which the GA 
moves from a local optimum to the global optimum is mutation. For this “peak jumping” operation the 
mutation operator is best served by setting p  to one. (The numerical demonstration of this will be 
presented in a later section). This is because, for peak jumping, all gene values, in general, need to be 
changed simultaneously, and p  forces this to be the case. Because of this, the ability of mutation 
to produce fitness improvements in the hill-climbing part of the GA process is dramatically reduced. Thus, 
it serves its role in jumping from one peak to another but does little else for multi-modal search spaces. 
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b) E = 10−4 

Fig. 19 Average number of function evaluations producing and increase in the fitness relative to the 
previous generation maximum fitness for different values of N , C NSEED = 200, , R = 5.0 NG = 8, 

, P , NM = 8 = (0.1,0.2,0.2,0.5) β = 0.01, p1 = 0.2  and p2 = 1.0 . 
 
Effect of design space on GA convergence for multi-modal applications—The effect of design space 
size—R  and N —on GA convergence efficiency is studied next. Figure 20 presents the effect of these 
two parameters on GA convergence performance. Note that Fig. 20a utilizes a full-extent semi-log scale 
on the vertical axis, and Fig. 20b utilizes a truncated linear scale on the vertical axis. Otherwise these two 
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figures are the same. All computations were averaged over 100 solutions (NSEED ) each being 
continued until 

=100
E = 10−4  was achieved. 

 
As can be seen from Fig. 20a, the combination of large values of R  and large numbers of genes creates 
a difficulty for the present GA optimization process. The GA always converges, but the number of function 
evaluations becomes quite large. This, of course, is not unexpected. As the size and dimensionality of 
any multi-modal optimization problem increases, any optimization approach will become bogged down. 
This is the co-called “curse of dimensionality.”  
 
Nevertheless, in examining the results of Fig. 20 further, it is interesting to note that the curves 
corresponding to the first two values of R —1.0 and 2.0—are essentially linear (see Fig. 20b), increasing 
by approximately 700 function evaluations for each additional gene added to the design space. The other 
curves seem to follow this linear trend until a critical value of N  is reached after which they increase 
exponentially. The critical value of N  becomes smaller as the R  is increased. This indicates the 
importance of setting the proper values for xmin

G

G

i and xmaxi in any GA optimization problem. As seen in 
the previous section, this was important for single mode computations. It is much more important for 
multi-mode computations. 
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a) Log scale along vertical axis (full extent) 
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b) Linear scale along vertical axis (truncated) 

Fig. 20 Average number of function evaluations required to achieve GA convergence for different values 
of N  and R , G E = 10−4, NSEED , N=100 M = 8, P = (0.1,0.2,0.2,0.5), β = 0.01, p  and p1 = 0.2 2 = 1.0 . 
 
The effect of design space modality on GA convergence efficiency—i.e., the number and relative sizes of 
each of the modes—is studied next. Of course, there are literally an infinite number of design space 
variations that can be studied in this area. Using the model problem of Eq. (9) alone and fixing N  and 

, the variations in the values of h  and c  create many possibilities that can affect the functioning of an 
optimization scheme’s convergence. 

G
R

 
To facilitate the necessary reduction of possibilities, it is assumed that the single global peak—h —
utilized in Eq. (9), will be fixed at100.0 and that the remaining values of , no matter what value of N  
is utilized, will be equal to each other. With this assumption a new parameter—D —is defined as 

max
hm,k M

 

D =
hmax − h

hmax
     (12) 

  
where h  is the constant height of all secondary peaks in the design space. 
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Figure 21 presents the effect of D  and N  on GA convergence performance. All computations were 
averaged over 100 solutions (NSEED ) each being continued until 

M

=100 E = 10−4  was achieved. As can 
be seen from Fig. 21, there is little variation in GA convergence efficiency with . At most a factor of 3 
or 4 increase in the average number of function evaluations for GA convergence is seen as N  
increases from 2 to 64—and this for only the smaller values of D . But the variation of GA convergence 
efficiency with D —all other parameters held fixed—is more dramatic, being two orders of magnitude for 
the values of D  studied. The reason for this behavior—discussed at the beginning of this section—is due 
to the inefficiencies associated with “peak-jumping” as opposed to “hill-climbing.” As D  becomes small 
the peak-jumping difficulties increase. The GA optimization never fails to converge, but the average 
number of function evaluations required for convergence increases dramatically. 

NM

M

 
In is interesting to note that the curves in Fig. 21 corresponding to D = 0.5  and 0.8 are nearly flat as N  
increases. In fact the convergence history for any case with these values of  and N  is essentially 
the same as a single mode case with N

M
D M > 2

M =1—assuming all other parameters are also the same. For 
these values of D  the design space is more representative of a single mode design space with 
superimposed noise—the higher the value of N , the higher the noise frequency. With this interpretation 
for the D  and 0.8 curves presented in Fig. 21, it can be concluded that the present GA convergence 
efficiency does not degrade in the presence of noise at least for low to moderate frequencies.  

M
= 0.5
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Fig. 21 Average number of function evaluations required to achieve GA convergence for different values 
of  and , NM D E = 10−4, , NSEED =100 R = 5.0 , NG = 8, P = (0.1,0.2,0.2,0.5), β = 0.01, p1 = 0.2  and 

. p2 = 1.0
 
 
Effect of perturbation mutation on GA convergence for multi-modal applications—The effect of the 
perturbation mutation parameters—β  and p —on GA convergence efficiency for multi-modal applications 
is studied in this section. Figure 22 presents results showing the effect of these parameters on GA 
convergence for two levels of error, 

1

E = 10−2 and 10−4. In each case all averages are performed with 
. NSEED =100
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b) E = 10−4 
 

Fig. 22 Average number of function evaluations required to achieve GA convergence for different values 
of β  and p , NSEED , R , N1 =100 = 5.0 C = 10 , NG = 8, NM = 8, P = (0.1,0.2,0.2,0.5) and p . 2 = 1.0
 
As can be seen from Fig. 22, the optimal value of β  is 0.01, and the optimal value of p1 is 0.2. These 
optimal values hold for both levels of convergence and are the same as the E = 10−4 results reported for 
the single mode case (see Fig. 14). The general trends presented in Fig. 22 also agree reasonably well 
with the results of Fig. 14, especially Fig. 14b. However, the results presented in Fig. 22 generally require 
an order of magnitude more function evaluations for convergence than those in Fig. 14. Figure 14 
represents a pure hill-climbing process, while Fig. 22 represents a combined hill-climbing and peak-
jumping process. As with Fig. 14, Fig. 22 suggests that small values of β  in conjunction with small values 
of p —for the ranges studied—produce particularly poor convergence efficiency and should be avoided. 1
 
Effect of mutation on GA convergence for multi-modal applications—The effect of the mutation operator—
the  parameter—on GA convergence efficiency for multi-modal applications is studied in this section. 
Figure 23 presents results showing the effect of this parameter on GA convergence across a range of N  
values for a convergence error of 

p2

C

E = 10−4. (The curves for all other  levels—above a value of 0.2—
virtually over plot the corresponding curves displayed in Fig. 23). Due to increased levels of statistical 
variation, especially for smaller values of p

E

2, NSEED = 200. 
 
As can be seen from Fig. 23 the mutation operator has a profound effect on GA convergence efficiency 
for the present multi-modal problem. As the value of  is decreased, GA convergence efficiency drops 
dramatically. As was seen from Fig. 19, the mutation operator does not often produce new chromosomes 
that improve the fitness relative to the previous generation’s maximum fitness. But the small number of 
times that it does, for multi-modal problems, is crucial in the “peak-jumping” process. When the value of 

 is reduced, the mutation operator is not nearly as efficient in peak-jumping. The number of GA 
function evaluations goes up as the GA process becomes “stuck” on local optima for larger numbers of 
function evaluations. This is because, in general, all gene values must be changed to jump from a local 
optimum to the global optimum and that is best achieved when p

p2

p2

2 = 1.0 . 
 
The variation of GA convergence efficiency with N  is small, especially relative to the variations caused 
by . The noise in these results—especially for the smaller values of —make additional specific 
observations in this area difficult. 

C
p2 p2
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Fig. 23 Average number of function evaluations required to achieve GA convergence for different values 
of  and , NC p2 E = 10−4, , NSEED = 200 R = 5.0 , NG = 8, NM = 8, P = (0.1,0.2,0.2,0.5), β = 0.01 and 

. p1 = 0.2
 
 

Conclusions 
 
A genetic algorithm (GA) procedure suitable for performing engineering optimizations has been 
presented. It uses real-number encoding to represent all design space decision variables as genes and 
populations of fixed size to go from generation to generation. Four gene modification operators are 
utilized to advance from one generation to the next. They include passthrough, random average 
crossover, perturbation mutation and mutation.  
 
The GA optimization procedure converged to the global optimum for every case attempted, 
demonstrating robustness and wide applicability. In some cases convergence was achieved quickly, 
while in other cases convergence was much slower. A systematic study exploring the effects of design 
space attributes and GA parameter selection on GA convergence performance was conducted with the  
following specific conclusions: 
 
Increasing the design space size, including the number of genes,N , and the distance between gene 
maximum and minimum values, R , diminished GA convergence performance and made the search for 
an optimum more difficult and more costly. In addition, for multi-modal applications a large number of 
modes in conjunction with small values of D—the normalized difference between the global and local 
optimal peak values—decreased GA performance. Cases involving moderately large values of D (~ 0.8 to 
0.5) showed almost no degradation in performance, even as the number of modes increased to a large 
value (N ). These conditions are akin to noise (of low to moderate frequency) and suggest that the 
present GA optimization procedure is reasonably unaffected by design space noise.  

G

M ~ 64

 
The above conclusion, which states that GA convergence slows for increasing design space size, is 
reasonably intuitive. A more difficult less intuitive aspect to assess is the effect of algorithm parameters 
on GA convergence performance. The conclusions in this area  are presented by looking at each GA 
parameter separately. 
 
The number of chromosomes used in each generation, N , had a surprisingly small effect on GA 
convergence efficiency for most situations encountered, especially relative to other parameters studied. 
The optimal value was almost always the smallest value studied—N

C

C = 10 . A small number of cases 
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generally utilizing non-optimal GA parameters or lower levels of GA convergence, yielded a mid-range 
optimal value for the number of chromosomes—N . C ~ 50
 
The four-element P vector controls which operators are used to modify the selected chromosomes for 
each new generation. P vector variations produced little change in GA convergence efficiency for single 
mode cases, but large changes in efficiency for multi-mode cases. The first operator, passthrough, keeps 
the maximum fitness from degrading by passing the chromosome with the highest fitness through to the 
next generation without modification. The second and third P vector operators—random average 
crossover and perturbation mutation—create generally small variations about the higher ranked 
chromosomes and are the primary mechanism for “hill climbing” in the GA convergence process. 
Mutation, the final P vector operator, is not important for single-mode applications, but is very important 
for multi-mode applications, being the chief mechanism for changing from one design space hill to 
another—i.e., “hill jumping.” 
 
The perturbation mutation parameters—β  and p —had optimal values of 0.01 and 0.2 (respectively) for 
most cases tested, both single and multi-mode problems, providing nominal values of the GA 
convergence error were used—

1

E ~10−4. However, optimal values for both of these parameters, 
especially β , exhibited a considerable dependence on convergence error. For example, the optimal value 
of β  ranged from 0.1 for E = 10−1 to 0.001 for E = 10−8 (single mode cases). As the hill-climbing part of 
the optimization process converges, smaller perturbations—smaller values of β —are required for optimal 
convergence. 
 
Of all GA parameters, mutation probability, p , had the most dramatic effect on GA convergence 
efficiency. For single-mode cases the optimal value was 0.05—a value that did not vary significantly with 
other GA parameters or the level of convergence error requested. For multi-mode cases the optimal 
value of p  was 1.0. Any value of p  slightly smaller than 1.0, for multi-mode cases, produced significant 
degradations in GA convergence performance. 

2

2 2

 
The purpose of this report has been to study the convergence efficiency of Genetic Algorithms when used 
for single-objective optimization. Part II of this report will look at the same topic in conjunction with multi-
objective problems. 
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