
NASA/TM–2003-212812

Evaluation of Genetic Algorithm Concepts
Using Model Problems
Part I: Single-Objective Optimization

Terry L. Holst and Thomas H. Pulliam

December 2003

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA Scientific and Technical Information (STI)
Program Office plays a key part in helping NASA
maintain this important role.

The NASA STI Program Office is operated by
Langley Research Center, the Lead Center for
NASA’s scientific and technical information. The
NASA STI Program Office provides access to the
NASA STI Database, the largest collection of
aeronautical and space science STI in the world.
The Program Office is also NASA’s institutional
mechanism for disseminating the results of its
research and development activities. These results
are published by NASA in the NASA STI Report
Series, which includes the following report types:

• TECHNICAL PUBLICATION. Reports of
completed research or a major significant phase
of research that present the results of NASA
programs and include extensive data or theoreti-
cal analysis. Includes compilations of significant
scientific and technical data and information
deemed to be of continuing reference value.
NASA’s counterpart of peer-reviewed formal
professional papers but has less stringent
limitations on manuscript length and extent
of graphic presentations.

• TECHNICAL MEMORANDUM. Scientific and
technical findings that are preliminary or of
specialized interest, e.g., quick release reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

The NASA STI Program Office . . . in Profile

• CONFERENCE PUBLICATION. Collected
papers from scientific and technical confer-
ences, symposia, seminars, or other meetings
sponsored or cosponsored by NASA.

• SPECIAL PUBLICATION. Scientific, technical,
or historical information from NASA programs,
projects, and missions, often concerned with
subjects having substantial public interest.

• TECHNICAL TRANSLATION. English-
language translations of foreign scientific and
technical material pertinent to NASA’s mission.

Specialized services that complement the STI
Program Office’s diverse offerings include creating
custom thesauri, building customized databases,
organizing and publishing research results . . . even
providing videos.

For more information about the NASA STI
Program Office, see the following:

• Access the NASA STI Program Home Page at
http://www.sti.nasa.gov

• E-mail your question via the Internet to
help@sti.nasa.gov

• Fax your question to the NASA Access Help
Desk at (301) 621-0134

• Telephone the NASA Access Help Desk at
(301) 621-0390

• Write to:
NASA Access Help Desk
NASA Center for AeroSpace Information
7121 Standard Drive
Hanover, MD 21076-1320

NASA/TM–2003-212812

Evaluation of Genetic Algorithm Concepts
Using Model Problems
Part I: Single-Objective Optimization

Terry L. Holst
Ames Research Center, Moffett Field, California

Thomas H. Pulliam
Ames Research Center, Moffett Field, California

December 2003

National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035-1000

Available from:

NASA Center for AeroSpace Information National Technical Information Service
7121 Standard Drive 5285 Port Royal Road
Hanover, MD 21076-1320 Springfield, VA 22161
(301) 621-0390 (703) 487-4650

EVALUATION OF GENETIC ALGORITHM CONCEPTS
USING MODEL PROBLEMS

PART I: SINGLE-OBJECTIVE OPTIMIZATION

Terry L. Holst and Thomas H. Pulliam
NASA Ames Research Center

Moffett Field, CA 94035

Abstract

A genetic-algorithm-based optimization approach is described and evaluated using a simple hill-climbing
model problem. The model problem utilized herein allows for the broad specification of a large number of
search spaces including spaces with an arbitrary number of genes or decision variables and an arbitrary
number hills or modes. In the present study, only single objective problems are considered. Results
indicate that the genetic algorithm optimization approach is flexible in application and extremely reliable,
providing optimal results for all problems attempted. The most difficult problems—those with large hyper-
volumes and multi-mode search spaces containing a large number of genes—require a large number of
function evaluations for GA convergence, but they always converge.

Nomenclature

D multi-mode design space parameter defined by Eq. (12)
E normalized error defined by Eq. (10)
Gn GA generation nth

NSEED user-specified parameter that controls how many solutions with different initializing
random number generator seeds are averaged together to construct a single
convergence history curve

NC number of chromosomes in each GA generation
NG number of genes in each chromosome
NM number of modes (hills or peaks) in the model problem defined by Eq. (9)
NO number of scalar objective functions
P user-specified vector with four elements that controls which modification operators are

used in going from G to Gn n+1
p1 user-specified parameter controlling the probability that a specific gene will be modified

using the perturbation mutation operator (0 ≤ p1 ≤1)
p2 user-specified parameter controlling the probability that a specific gene will be modified

using the mutation operator (0 ≤ p2 ≤1)
R user-specified parameter that controls the size or range of the design space associated

with MP1 [see Eq. (4)]
R(0,1) random number generator that returns a random value between 0 and 1
x i,j

n gene from the j chromosome from the n GA generation i th th th

X j
n chromosome from the n GA generation j th th

xmaxi
 user-specified maximum limit on the i gene th

xmini
 user-specified minimum limit on the i gene th

β user-specified parameter controlling the size of the perturbation mutations (0 ≤ β ≤1)

subscripts

 gene or decision variable index i

1

j chromosome index
k objective function index
m mode index associated with the model problem defined by Eq. (9)

superscripts

 GA generation or population index n
temp temporary chromosome and gene values obtained after selection but before operator

modification

Background

Numerical methods for optimizing the performance of engineering problems have been studied for many
years. Perhaps the most widely used general approach involves the computation of sensitivity gradients.
These methods—called gradient methods—have been utilized to produce optimal engineering
performance in a wide variety of different forms. The reliability and success of gradient methods generally
requires a smooth design space and the existence of only a single extremum or an initial guess close
enough to the global extremum that will ensure proper convergence.

In contrast to gradient based methods, design space search methods such as genetic algorithms (GA)
offer an alternative approach with several attractive features. The basic idea associated with the GA
approach is to search for optimal solutions using an analogy to the theory of evolution. The problem to be
optimized is parameterized into a set of decision variables or genes. Each set of genes that fully defines
one design is called an individual or a chromosome. A set of chromosomes is called a population or a
generation. Each complete design or chromosome is evaluated using a fitness function that determines
survivability of that particular chromosome. For example, in aerospace applications, the genes may be a
series of geometric parameters associated with an aerospace vehicle that is to be optimized for payload
delivered to orbit, aerodynamic performance or structural weight. The fitness function takes as input all
the geometric parameters and returns the fitness—the size of the payload, the aerodynamic performance
or the structural weight.

During solution advance (or “evolution” using GA terminology) each chromosome is ranked according to
its fitness. The higher-ranking chromosomes are selected to continue to the next generation—usually
multiple times—while the lower-ranking chromosomes are not selected at all. The newly selected
chromosomes in the next generation are manipulated using various operators (combination, crossover or
mutation) to create the final set of chromosomes for the new generation. These chromosomes are then
evaluated for fitness and the process continues—from generation to generation—steadily improving the
design.

Constraints can easily be included in the GA optimization approach either by direct inclusion into the
fitness function definition or by preprocessing the candidate design. For example, if a design violates a
constraint, its fitness is set to zero (for cases involving maximization), i.e., it does not survive to the next
evolution level. Because GA optimization is not a gradient-based optimization technique, it does not need
sensitivity derivatives. It theoretically works well in non-smooth design spaces containing several or
perhaps many local extrema.

General GA details including descriptions of genetic algorithms can be found in Goldberg,1 Davis,2 and
Beasley, et al.3,4 Additional useful studies which survey recent activities in the area of genetic algorithm or
evolutionary algorithm research including the presentation of model problems useful for evaluating GA
performance are given in Deb,5 Jiménez, et al.6 and Van Veldhuizen and Lamont.7

A disadvantage of the GA approach is expense. In general, the number of function evaluations required
for the GA optimization process to converge exceeds the number required by a finite-difference-based
gradient optimization (see the results presented in Obayashi and Tsukahara,8 Bock9 and Pulliam, et al.10).

2

This situation is offset, to an extent, by the ease with which GAs can be implemented in parallel or
distributed computing environments.

Despite being relatively new, genetic algorithms have already been applied in a broad variety of
aerospace design applications. A few single discipline applications include a micropump optimization by
Sharatchandra, et al.,11 wing induced drag minimization by Gage and Kroo,12 control systems engineering
applications by Fleming and Purshouse,13 transonic wing aerodynamic shape optimization by Holst and
Pulliam,14 computer system efficiency enhancements by Globus, et al.,15 circuit design by Lohn and
Colombano,16 antenna design by Linden and Altshuler,17 space vehicle atmospheric reentry optimization
by Peigin,18 airfoil design by Tse and Chan,19 actuator placement optimization by Sheng and Kapania20
and Cook and Crossley,21 air traffic control optimization by Cheng, et al.,22 and turbine blade shape
optimization by Cravero and Satta.23

Other applications involving GA search methods have been in the area of multi-objective or multi-
discipline optimization. GA optimization techniques are especially attractive in this area because they
offer the ability to directly compute so-called “pareto optimal sets” instead of the limited single design
point traditionally provided by other methods. Examples of multi-objective optimization applications
include airfoil optimization by Marco, et al.,24 Naujoks, et al.,25 Quagliarella and Della Cioppa,26 Vicini and
Quagliarella,27 and Hämäläinen, et al.,28 missile aerodynamic shape optimization by Anderson, et al.,29
wing optimization by Anderson and Gebert,30 Sasaki, et al.,31 Oyama,32 and Obayashi, et al.,33 and rocket
engine turbopump design by Oyama and Liou.34 In some of these examples the multiple objectives were
obtained by considering two different aerodynamic design points. In others, the multiple objectives
involved different disciplines including aerodynamics, structures, controls and/or electromagnetics.

The Genetic Algorithm used in the present study is described next. Details associated with each of the
operators, including selection, passthrough, random average crossover, perturbation mutation and
mutation are presented. Genetic Algorithm convergence efficiency is then evaluated using a multi-mode,
multi-gene hill-climbing problem from two general points of view—the effect of design space
characteristics on GA convergence and the effect of GA control parameter specification on GA
convergence.

Problem Statement: Single Objective Optimization

A single-objective optimization problem can be stated as follows: Let f be a scalar objective function of

 independent variables, x , defined on some domain NG i Ω

f = f (X) = f (x1,L,xi ,L,xNG

) (1a)

In this notation X is the vector of design space decision variables. The maximum value of f , indicated by
f∗ , is obtained by finding the values of X = X∗ such that†

f ∗ = max f{}= f (X∗) = f (x1

∗,L,xi
∗,L,xNG

∗) (1b)

The above maximization operation is subject to N conditions or constraints indicated by CO

 cn(X) ≤ 0 n = 1,2,L,NCO (1c)

The constraints placed on the decision variable vector X by Eqs. (1c) serve to limit the design space
within Ω for which the optimal solution is sought.

† For the purpose of simplifying the discussion of algorithmic details, maximization is generally assumed.
The logic for minimization is a straightforward modification and will not be discussed.

3

Genetic Algorithm

The genetic algorithm optimization procedure utilized to solve the optimization problem, as described by
Eqs. (1), is now presented. As mentioned above the general idea behind GA optimization is to discretely
describe the design space using a number of decision variables, x . In GA parlance these parameters
are called genes, and the i subscript is called the gene number. Each set of genes that leads to the
complete specification of an individual design, i.e., each decision variable vector, X , is called a
chromosome and is indicated by

i

 (2)

X j

n = X(x1, j
n ,x2, j

n ,L,xi, j
n ,L,xNG ,j

n)

The subscript, which has been added to j X , is the chromosome number. The subscript has also been
added to each gene, so as to identify which chromosome each gene value is identified with. The
superscript has been added to indicate the GA generation number, which iteratively advances as the
solution converges. In this notation,X is the chromosome for the n generation that consists of N
genes.

j
n

j
n j th th

G

For aerodynamic shape optimization problems, the design space genes are typically a series of
geometric parameters, e.g., airfoil thickness and camber and/or wing sweep, twist and taper. For many
GA applications genes are computationally represented using bit strings and the operators used to
manipulate them are designed to accommodate bit string data. In the present approach, following the
arguments of Oyama,35 Houck, et al.36 and Michalewicz,37 real-number encoding is used to represent all
genes. The key reason for using real number encoding is that it has been shown to be more efficient in
terms of CPU time relative to binary encoded GAs.37 In addition, real numbers are used for all genes in
the present implementation because many engineering applications involve decision variables that are
best described using real numbers, e.g., the geometric parameters in aerodynamic shape optimization.
Thus, using real number encoding eliminates the need for binary-to-real number conversions.

Initialization

Once the design space has been defined in terms of a set of real-number genes, the next step is to form
an initial generation, G , represented by 0

G0 = (X1

0,X2
0,L,X j

0 ,L,XNC

0)

where N is the total number of chromosomes. Each gene within each chromosome is assigned an initial
numerical value using a process that randomly chooses numbers between fixed user-specified limits. For
example, the i gene in an arbitrary chromosome is initially computed using

C

th

 xi = R(0,1)(xmaxi

− xmini
) + xmini

 (3)

where and x are the upper and lower limits for the i gene, respectively, and R is a
random number generator that delivers an arbitrary numerical value between 0.0 and 1.0.

xmaxi mini

th (0,1)

The random number generator used in the present study requires an integer input—a seed value. If the
integer is positive, the next number in the current random number sequence is returned. If the integer is
negative, the random number sequence is reset. Utilization of the same negative seed value will always
reset the random number generator to the same sequence. Each new solution begins by resetting the
random number generator using a single call to R with a negative seed value. All other calls to R (0,1)

4

during that solution use a positive seed value. Thus, a solution can be repeated by simply using the same
initial seed value or rerun to determine statistical variation by using a different initial seed value.

For simplicity in the present study, the gene limit values for each gene are forced to be equal, and the
minimum values are forced to be equal to the negative of the maximum values. This is indicated by

xmax1
= xmax2

= … = xmaxNG
= xmax

xmin1
= xmin2

= … = xminNG
= xmin

xmin = −xmax

With these assumptions the complete specification of all gene limits can be made using a single
parameter given by

 R = xmax − xmin (4)

This provides a simple way to study the effect of gene limits on GA convergence performance. Use of this
simplifying assumption does not limit the generality of the present GA. Separate specification of each
gene limit is retained as an option, but is not utilized in this study.

Fitness evaluation

After each generation is established—this includes the initial generation, as well as each succeeding
generation in the evolutionary process—fitness values, f , are computed for each chromosome using a
suitable function evaluation. This is analogous to the objective function evaluation in gradient methods
and is represented using

j
n

 f (5) j

n = f (X j
n)

For aerodynamic shape optimization, f represents a suitable CFD flow analysis that provides a
quantitative evaluation for the desired objective, which is typically some function of lift, drag or some
integral on the surface pressure distribution.

Ranking

Fitness evaluation is followed by a ranking process where the chromosome with the highest fitness is
given a number one ranking (IR = 1), the individual with the second highest fitness is ranked number two
(IR = 2), and so on. This process is represented as follows:

ic = 1
if (fj

n < fjj
n) ic = ic + 1 j j = 1,NC

IRj
n = ic

⎫

⎬
⎪

⎭
⎪

j = 1,NC

where and are special counters that range over all chromosomes in the current population or
generation level.

j jj

This completes the GA ranking process. The next several subsections describe the GA selection process
and how the chromosomes, once selected, are then modified.

5

Selection

The first operation required to produce generation n + 1 is selection. The chromosomes that will be used
by the GA modification operators (to be discussed shortly) must be selected from the n generation of
chromosomes, i.e., from G . The selection operation used in the present study, sometimes called
“greedy selection,” is given by

th

n = (X j
n)

jj = 1

if (IRj
n ≤ jj) then

X jj
temp = X j

n

jj = j j + 1
endif

⎫

⎬
⎪ ⎪

⎭
⎪
⎪

j = 1,NC

if (jj > NC) stop

⎫

⎬

⎪
⎪ ⎪

⎭

⎪
⎪
⎪

it = 1,NC

where each selected chromosome X jj

temp is placed in a temporary holding array indicated by

Gtemp = (X1

temp ,L,XNC

temp)

Note how the individuals with highest fitness in the n generation are always selected multiple times,
thus, the name greedy selection. The individuals with average fitness are selected a small number of
times, and the individuals with lowest fitness are not selected at all. This biasing toward individuals with
highest fitness, although a key element in any GA, is taken to the extreme in the present greedy selection
algorithm. The chromosomes stored in G

th

temp are used by succeeding operators to produce Gn +1.

P Vector

The next phase of the GA process is chromosome modification. In the present implementation four
modification operators are used—passthrough, random average crossover, perturbation mutation and
mutation. The number of chromosomes modified with each operator is controlled by the P vector, which
consists of four parameters—p , , , . Each parameter controls one modification operator. The
value of each parameter ranges from 0 to 1.0, and, for consistency, the sum of all four parameters must
always equal one. A P vector equal to 0.1, 0.3, 0.3, 0.3, for example, will cause the first 10 percent of the
chromosomes to be modified using the passthrough operator, the next 30 percent to be modified using
random average crossover, the next 30 percent to be modified using perturbation mutation and the last
30 percent to be modified using mutation. That is,

B pA pP pM

pB = 0.1, pA =0.3 , pP = 0.3 , and . pM = 0.3

The passthrough operator is always performed first. After passthrough is complete, the implementation
order of the remaining operators is immaterial. Once all values of Gn +1 have been established, the
algorithm proceeds to fitness evaluation, ranking and then onto succeeding generations until the
optimization is sufficiently converged.

Passthrough

The simplest operator used in the present GA is “passthrough.” As the name implies, a certain number of
chromosomes with the highest ranks are simply “passed through” to the next generation from Gtemp to

 without modification. The passthrough operator is always performed first on the first chromosome in Gn +1

Gtemp , which is always the chromosome with the highest fitness. This guarantees that the maximum
fitness never drops from generation to generation. The number of chromosomes that are passed through
to the next generation is controlled by the first parameter in the P vector, p . B

6

Random Average Crossover

The next GA operator is called the random average crossover operator and is implemented by first
randomly selecting two chromosomes, X j1

temp and X j 2
temp , from Gtemp . Next, the two selected

chromosomes are combined on a gene-by-gene basis using the following formula:

x i,j

n+1 =
1
2

(xi ,j 1
temp + xi ,j 2

temp) i = 1,2,L,NG (6)

where corresponds to the gene in the chromosome associated with xi ,j

n +1 i th j th Gn +1 and

xi,j 1
temp and xi, j2

temp correspond to the genes from the randomly chosen chromosomes i th X j1
temp and X j 2

temp .
The number of chromosomes modified using the random average crossover operator is contolled by the
parameter p —the second element in the P vector. A

Perturbation Mutation

The next GA operator is called the perturbation mutation operator and is implemented by first selecting a
random chromosome X j

temp from Gtemp . Next, a probability test is performed for each gene xi,j
temp in the

selected chromosome involving a call to the random number generator, R , described above. If the
random number is greater than p —a user-specified control parameter—the gene is not modified. If the
random number is less than p the gene is modified using

(0,1)
1

1

 xi,j

n+1 = xi, j
temp + (xmaxi

− xmini
)[R(0,1) − 0.5]β (7)

where β is a user-specified tolerance that controls the size of the perturbation mutation. The p
parameter is specified to statistically control the number of genes that are modified within a specific
chromosome. Small values of p result in the modification of few genes. Large values ofp result in the
modification of many genes. For sensible results, the values of

1

1 1
β and p must lie between 0 and 1.0. 1

Because this operator can cause the value of a particular gene to exceed one of its constraints (x or

), checks are required to make sure this does not happen. The number of chromosomes modified
using the perturbation mutation operator is controlled by the parameter p —the third element in the P
vector.

maxi

xmini

P

Mutation

The last GA operator used in the present study is called the mutation operator and is implemented
similarly to the perturbation mutation operator. First, a random chromosome X j

temp is chosen from Gtemp .

Next, a probability test is performed for each gene xi,j
temp in the selected chromosome involving a call to

the random number generator, R . If the returned random number is greater than p —a user-
specified control parameter—the gene is not modified. If the returned random number is less than , the
gene is given a completely different value using

(0,1) 2
p2

 xi,j

n+1 = (xmaxi
− xmini

)R(0,1) + xmini
 (8)

The parameter is specified to statistically control the number of genes that are modified within a
specific chromosome. Small values of p result in the modification of few genes. Large values of result

p2

2 p2

7

in the modification of many genes. For sensible results, must be between 0.0 and 1.0. The number of
chromosomes modified using the mutation operator is determined by the parameter p —the fourth
element in the P vector.

p2

M

Computed Results

Model Hill-Climbing Problem

It is useful to use a simplified model problem to study the relative merits of different GA variations. In the
present study, a multi-gene, multi-modal, hill-climbing problem is used. This model problem is given by

am,k = (xi
i =1

NG

∑ − ci,m,k)2

bm,k = hm,k e
-am ,k

NG

⎫

⎬
⎪ ⎪

⎭
⎪
⎪

m = 1,2,L,NM

zk = max b1,k ,L,bNM ,k{ }

⎫

⎬

⎪
⎪
⎪

⎭

⎪
⎪
⎪

k = 1,2,L,NO (9)

where the z ’s are the hill altitudes (design space objectives), the x ’s are the genes (design space
decision variables—note that the subscript has been omitted), the c ’s are free parameters, the h ’s are
peak values for each hill or mode and the a, b quantities are intermediate results. The c and h parameter
values can either be user input or specified via a random number generator. Once established for a
particular problem, they do not change. The i subscript is the gene number and varies from 1 to N , the
maximum number of genes. The m subscript is the mode number and varies from 1 to , the maximum
number of modes or hills in each design space. Finally, the k subscript is the objective number and
varies from 1 to N , the maximum number of objectives. For the present study, N , i.e., only single
objective problems will be studied. In Eq. (9), the goal is to find values of the

j

G
NM

O O = 1
x ’s that will maximize the z

values, and, of course, to do so without using any knowledge one might obtain by looking at Eq. (9). With
the hill-climbing model presented in Eq. (9), the effect of N , and N can be studied, either
collectively or individually.

G NM O

During the discussion of results, design space attributes such as “volume” will be mentioned. For design
spaces with many dimensions, i.e., many genes, the concept of volume is not a precise one—“hyper-
volume” being more appropriate. Even the concept of a “hill” in a design space with many dimensions is
difficult to consider. In the present study terms such as “hill,” “peak” or “volume” will be retained with the
understanding that the “hyper-” counterparts are, in most cases, more appropriate.

Single-mode computations

Stochastic Characteristics of Genetic Algorithms—Genetic algorithms are stochastically-based search
algorithms and, as such, produce results with statistical variation from case to case, even if the only
quantity being varied is the initializing seed in the random number generator. An example of this is
displayed in Fig. 1 where two GA convergence histories—maximum fitness error versus number of
function evaluations—are compared. The number of function evaluations is used as a measure of
computational work throughout this study (not including the computational work associated with GA
algorithm overhead), because it is easy to define and because it does not vary from computer to
computer. For most applications, the computational work associated with the GA optimization is easily
dominated by function evaluation computation, and thus, the present results are useful in determining
which GA parameter and design space attributes produce the most efficient computational results. The

 generation error in the maximum fitness (nth E n) plotted on the vertical axis in Fig. 1 is defined by

8

 E n =
f n − fmax

fmax
 (10)

where fn is the n generation maximum fitness, and f is the global maximum fitness for the model
problem defined by Eq. (9). The parameter f is equal to

th
max

max

fmax = max hm,k{ }, m = 1,L,NM and k = 1,L,NO

Both convergence histories in Fig. 1 are from the model problem defined by Eq. (9) and utilize design
space parameter values given by NG = 32 , NM =1 and R = 10.0 and GA parameter values given by

, NC = 10 β = 0.01, p p2 nd P1 = 0.2 , = 0.05 a = (0.1,0.3,0.3,0.3) . The single h value from Eq. (9) required
for this problem is taken to be 100.0, and the c values are determined via random number generator
using

 ci,m,k = R(0,1) −
1
2

⎡
⎣ ⎢

⎤
⎦ ⎥
R
2

 (11)

where R is the previously defined random number generator. For each value of c a unique random
value is generated using Eq. (11). With this problem setup the location of the global optimum is always
within the gene limits. Once established, these h and c values are used for each computation in the
single-mode (N) section of this report.

(0,1)

M =1

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

0 5000 10000 15000 20000 25000

M
A

XI
M

U
M

 F
IT

N
ES

S
ER

R
O

R
 --

E

NUMBER OF FUNCTION EVALUATIONS

Fig. 1 Two arbitrary GA convergence histories utilizing different initial seed values with all other GA and
design space parameters held fixed, NG = 32 , NM =1, R = 10.0 , NC = 10 , , P = (0.1,0.3,0.3,0.3)
β = 0.01, p and p . 1 = 0.2 2 = 0.05

The above set of parameter values defines the so-called single-mode baseline solution for this study. The
GA parameters utilized in this solution were determined via trial and error and represent an efficient set of
GA parameters for the given design space definition, i.e., for the given values of R , , , and c .
All design space and GA parameters not being varied in the single-mode section of this report utilize the
values that are established above.

NG NM h

Except for the seed value used to initialize the random number generator at the beginning of each GA
convergence, all GA and problem parameters are the same for the two convergence histories displayed
in Fig.1. But, as can be seen, the two convergence histories are different—in some locations by as much

9

as 30-50%. These differences are caused by statistical differences encountered during solution execution
and are typical for a GA search process. For multi-modal cases or cases with noise in the design space,
the statistical variations can be much larger.

To study the relative effects of various GA or design space parameters on GA convergence, it is
important to remove this statistical variation—at least most of it—so that the average effect of each
parameter being studied can be ascertained. This is accomplished by running each case many times with
different initializing seed values, and then averaging the results. The first step in this process is to
determine how many solutions to use in the average, i.e., the NSEED value. An acceptable value for
NSEED can be determined by re-computing a typical case many times with different initializing seed
values, and then plotting the number of function evaluations required for GA convergence as a running or
ensemble average.

Figure 2 displays such an exercise for the problem from Fig. 1. Running averages are produced for four
specific convergence levels, E = 10−2, 10−3, 10−4 and 10−5. In this figure the error is the same as that
defined by Eq. (10). Also plotted on the right are the running average asymptotes computed by setting the
NSEED value to 1000. The difference between the asymptotic values and the running totals at NSEED =
30 for each of the error levels starting at E = 10−2 is 1.5%, 1.0%, 1.3% and 2.1%, respectively. As can be
seen, sample-size independence is obtained at about 10-20 solutions for the larger levels of convergence
error and at about 30 solutions for the smallest convergence error. It should be pointed out that this result
is only valid for single-mode results, NM =1. Multi-mode results require even larger NSEED values for
sample-size independence. As a result of the information presented in Fig. 2, the sample size (NSEED
value) for all single-mode computations presented in this study will be set to 30.

0

2000

4000

6000

8000

10000

12000

0 10 20 30 40

E = 0.01
 = 0.001
 = 0.0001
 = 0.00001
ASYMPTOTES

N
U

M
B

ER
 O

F
FU

N
C

TI
O

N
 E

VA
LU

A
TI

O
N

S

NUMBER OF SOLUTIONS IN AVERAGE -- NSEED

Fig. 2 Effect of running sample size average (NSEED value) on GA convergence to several different
levels of convergence error, N , G = 32 NM =1, R = 10.0 , NC = 10 , P = (0.1,0.3,0.3,0.3) , β = 0.01,

 and p . p1 = 0.2 2 = 0.05

Effect of P vector on GA convergence—The effect of the P vector on GA convergence efficiency is
presented in this section. As described above, the elements of the P vector—p , , , —are
used to control which operators will be used to modify the newly selected chromosomes at the beginning
of each new generation. Figure 3 presents results showing the effect of this group of parameters on GA
convergence. In keeping with many of the results in this section, GA convergence information is
presented across a range of chromosome values—N

B pA pP pM

C = 10 , 20, 30, 40, 50, 60, 80, 100, 150, 200—for
two different levels of GA convergence, E = 10−2 and 10−4. The P vector notation used in Fig. 3, e.g.,

, is shorthand for P . The scale used on the vertical axis—always dedicated to
the number of function evaluations required for GA convergence—will generally vary from 0 to 100,000
allowing cross comparison between many of the results presented in this section.

P = 1333 = (0.1,0.3,0.3,0.3)

10

As can be seen from Fig. 3, the effect of the P vector on GA convergence efficiency—all other
parameters held fixed—is small and ranges from a few tens of percent to a factor of two for the different P
vectors studied. For each value of N and for both values of E displayed in Fig. 3, the optimal P vector is

. The effect of N on GA convergence efficiency is also small. Regardless of which P
vector from Fig. 3 is utilized, the number of chromosomes that optimizes GA performance is 10.

C
P = (0.1,0.3,0.3,0.3) C

0

20000

40000

60000

80000

100000

0 50 100 150 200

P = 1333
 = 1117
 = 1171
 = 1711

N
U

M
B

ER
 O

F
FU

N
C

TI
O

N
 E

VA
LU

A
TI

O
N

S

NUMBER OF CHROMOSOMES -- N
C

a) E = 10−2

0

20000

40000

60000

80000

100000

0 50 100 150 200

P = 1333
 = 1117
 = 1171
 = 1711

N
U

M
B

ER
 O

F
FU

N
C

TI
O

N
 E

VA
LU

A
TI

O
N

S

NUMBER OF CHROMOSOMES -- N
C

b) E = 10−4

Fig. 3 Average number of function evaluations required to achieve GA convergence as a function of P
and N , NSEED , R , , C = 30 = 10.0 NG = 32 NM =1, β = 0.01, p1 = 0.2 and p2 = 0.05.

There is another facet to this situation that bears mention. In the present study all chromosomes are
reevaluated with a new function evaluation each generation, including the passthrough chromosomes.
This fact is reflected in all the function evaluation totals that are presented in this report. But the
passthrough chromosomes never change from the old generation to the new generation. Thus, the old
function evaluation is identical to the new one and would not have to be repeated. If this algorithm
modification were included in the present implementation, the function evaluation totals would be reduced
by 10%. This should be considered when comparing the present results to those outside this study.

Each operator controlled by the P vector performs a specialized function in the GA optimization process.
To help understand these functions and how efficiently they are performed, a counter for each operator—
passthrough, random average crossover, perturbation mutation and mutation—is incremented each time
one of the chromosomes produced from that operator generates an increase in fitness over the previous
generation’s maximum fitness. Results from this statistical analysis are presented in Fig. 4 for the single-
mode baseline problem described above. In addition to statistical results from individual operators, a
curve labeled “TOTAL,” which is the total number of function evaluations from all operators that generate
an improvement in fitness value, is also included. As can be seen from the TOTAL curves the percentage
of max-fitness-improving function evaluations decreases as the NC value increases. This is primarily
manifested in decreasing efficiencies for the perturbation mutation operation, as the random average
crossover operation efficiency is relatively constant.
Another obvious result from Fig. 4 is that statistics for the passthrough operator are not included. This is
due to the fact that this operator does not allow for chromosome modification and thus contains no
mechanism for improving the fitness. Its job is to make sure that the best chromosome does not digress,
a task that is amply served for single-objective optimizations when pB = 0.1.

11

By comparing Figs. 4a and 4b, it can be seen that the max-fitness-improving percentages from all
operators decrease somewhat from E = 10−2 to E = 10−4. Thus, GA efficiency decreases as the search
process converges, which qualitatively agrees with the shape of the convergence histories displayed in
Fig. 1.

Lastly, the effect of mutation on GA convergence is seen to be small, as the number of mutation function
evaluations that improve the fitness is generally less than one percent. For the present problem, this
operator is not important, but for many applications, especially those that are noisy or multi-modal in
nature, mutation plays an important role, as will be seen later in this report.

0

5

10

15

20

0 50 100 150 200

TOTAL
CROSSOVER
PERTURBATION
MUTATION

FU
N

C
TI

O
N

 E
VA

LU
A

TI
O

N
S

PR
O

D
U

C
IN

G
IN

C
R

EA
SE

 IN
 M

A
X

FI
TN

ES
S

--
%

NUMBER OF CHOMOSOMES -- N
C

a) E = 10−2

0

5

10

15

20

0 50 100 150 200

TOTAL
CROSSOVER
PERTURBATION
MUTATION

FU
N

C
TI

O
N

 E
VA

LU
A

TI
O

N
S

PR
O

D
U

C
IN

G
IN

C
R

EA
SE

 IN
 M

A
X

FI
TN

ES
S

--
%

NUMBER OF CHROMOSOMES -- N
C

b) E = 10−4

Fig. 4 Average number of function evaluations (in percent) producing an increase in the fitness relative to
the previous generation maximum fitness for different values of N , C NSEED= 30, , R = 10.0 NG = 32 ,

, P , NM =1 = (0.1,0.3,0.3,0.3) β = 0.01, p1 = 0.2 and p2 = 0.05.

Effect of design space size on GA convergence—Implementation of the GA described above requires the
specification of upper and lower limits for each gene (x and x). These user-specified limits (along
with the value of N), in fact, define the size of the design space that is to be searched for the optimal
solution. The specification of these gene limit parameters has a rather dramatic effect on GA operation. If
the limits for each gene are set too far apart the design space will be unnecessarily large and GA
convergence will be slowed. Conversely, if the limits do not include the problem’s global optimum within
their specified range, which can result if they are set too close together, convergence will be improved,
but the final result will not be the desired global optimum. As a means of reducing the complication of this
coefficient specification process, all of the x and x gene-limit values have been reduced to a
single parameter, R , by utilizing Eqs. (4) and (11).

maxi mini

G

maxi mini

The purpose of this section is to study the effect of R on GA convergence. Results showing the effect of

 on GA convergence efficiency are presented in Figs. 5 and 6. Figures 5a and 5b show the effect of R
in combination with for two different levels of the convergence
R

NC , E = 10−2 an −4. As readily seen
for most values of R , the number of function evaluations required for convergence increases as the
number of chromosomes increases. Generally, NC

d 10

= 10 provides optimal convergence for most
situations being as much as a factor of four faster than the results at NC =150 or 200. More will be given
in later sections describing the effects of population size (NC) on GA convergence.

12

As expected, the average number of function evaluations required to obtain GA convergence increases
with R , but the rate of increase is not as intuitive. From Figs. 5a and 5b it can be seen that the value of R
increases by a factor of 100, but the number of function evaluations required for GA convergence
generally increases by only a factor of 10—a little more than ten for all values of N in Fig. 5a—a little
less than 10 for most of the results in Fig. 5b. For N

C

C = 10 and E = 10−4, the increase in the number of
function evaluations due to a 100-fold increase in R is only about 4.5.

102

103

104

105

106

0 50 100 150 200

R = 1.0
 = 2.0
 = 5.0
 = 10.0
 = 20.0
 = 50.0
 = 100.0

N
U

M
B

ER
 O

F
FU

N
C

TI
O

N
 E

VA
LU

A
TI

O
N

S

NUMBER OF CHROSOMES -- N
C

a) E = 10−2

102

103

104

105

106

0 50 100 150 200

R = 1.0
 = 2.0
 = 5.0
 = 10.0
 = 20.0
 = 50.0
 = 100.0N

U
M

B
ER

 O
F

FU
N

C
TI

O
N

 E
VA

LU
A

TI
O

N
S

NUMBER OF CHROMOSOMES -- N
C

b) E = 10−4

Fig. 5 Average number of function evaluations required to achieve GA convergence for different values of
 and R , NSEED , N , NNC = 30 G = 32 M =1, P = (0.1,0.3,0.3,0.3) , β = 0.01, p1 = 0.2 and p . 2 = 0.05

A clearer picture of this behavior is displayed in Fig. 6 where the average number of function evaluations
for GA convergence is plotted versus R for NC = 10 . Results for eight different levels of GA
convergence, ranging from E = 10−1 to 10−8, are included. From an analysis of the data in Fig. 6—with
the proper set of curve fitting tools—the number of function evaluations (n) generally varies as a 1/3
power law in the R that is,

n ∝ R1/3

This relation becomes increasingly accurate for tighter levels of convergence, E = 10−3 to 10 . For this
set of E values the computed exponent actually varies from 0.30 to 0.39. This relation is also valid for
larger values of N providing the exponent is adjusted to suitably higher values.

−8

C

Of course, as R increases, the size of the design space increases. For 32 genes a doubling in the value
of R from say 10.0 to 20.0—would cause the design space to increase by a factor of 232 or 4 billion times!
If a simple trial and error search were implemented for this problem, the search time would be
proportional to the size of the design space. The GA search time, on the other hand—assuming optimal
GA parameters—would increase by a factor of 1.26.

13

0

20000

40000

60000

80000

100000

0 20 40 60 80 100

E = 0.1
 = 0.01
 = 0.001
 = 0.0001
 = 0.00001
 = 0.000001
 = 0.0000001
 = 0.00000001

N
U

M
B

ER
 O

F
FU

N
C

TI
O

N
 E

VA
LU

A
TI

O
N

S

DESIGN SPACE RANGE -- R

Fig. 6 Average number of function evaluations required to achieve GA convergence as a function of R
and E, NSEED , N= 30 G = 32 , N , NM =1 C = 10 , P = (0.1,0.3,0.3,0.3) , β = 0.01, p and p1 = 0.2 2 = 0.05 .

Effect of number of genes on GA convergence—The effect of the number of genes utilized in defining the
design space on GA convergence is studied next. Computed results for wide variations in the population
size (N) and the number of design space genes (N) are presented in Fig. 7 for two different levels of
GA convergence,

C G

E = 10−2 and 10 . As can be seen, the optimal population size is reasonably
independent of the specified level of convergence, but varies with the number of genes. For all but the
smallest values of N , optimal GA convergence is generally achieved for a population size of 10, being
as much as a factor of four faster than for the larger population sizes. For smaller values of NG the
optimal population size is mixed, but generally resides around a values near fifty.

−4

G

102

103

104

105

106

107

0 50 100 150 200

N
G
 = 2

 = 4
 = 8
 = 16
 = 32
 = 64
 = 96

N
U

M
B

ER
 O

F
FU

N
C

TI
O

N
 E

VA
LU

A
TI

O
N

S

NUMBER OF CHROMOSOMES -- N
C

a) E = 10−2

102

103

104

105

106

107

0 50 100 150 200

NG = 2
 = 4
 = 8
 = 16
 = 32
 = 64
 = 96

N
U

M
B

ER
 O

F
FU

N
C

TI
O

N
 E

VA
LU

A
TI

O
N

S

NUMBER OF CHROMOSOMES -- N
C

b) E = 10−4

Fig. 7 Average number of function evaluations required to achieve GA convergence as a function of N
and N , NSEED , R , , P

C

G = 30 = 10.0 NM =1 = (0.1,0.3,0.3,0.3) , β = 0.01, p1 = 0.2 and p . 2 = 0.05

Figure 8 presents the average number of function evaluations required for GA convergence versus N
for eight different convergence levels ranging from

G

E = 10−1 to 10−8. The number of function evaluations

14

grows linearly (approximately) with the number of genes, regardless of the specified convergence
tolerance. Thus the following approximate relationship is established:

n ∝ NG

As can be seen from Fig. 8, GA convergence slows as smaller levels of error are achieved. This is in
agreement with the convergence histories presented in Fig.1. Analysis of the data used to establish Fig. 8
shows that the rate of increase is a factor of 1.5 (approximately) for every decade change in the value of
E. Thus, the following approximate relationship is established:

n ∝ 1.5− logE

0

20000

40000

60000

80000

100000

0 20 40 60 80 100

E = 0.1
 = 0.01
 = 0.001
 = 0.0001
 = 0.00001
 = 0.000001
 = 0.0000001
 = 0.00000001

N
U

M
B

ER
 O

F
FU

N
C

TI
O

N
 E

VA
LU

A
TI

O
N

S

NUMBER OF GENES -- N
G

Fig. 8 Average number of function evaluations required to achieve GA convergence as a function of N
and convergence error, NSEED ,

G
= 30 R = 10.0 , NM =1, NC = 10 , P = (0.1,0.3,0.3,0.3) , β = 0.01,

 and p . p1 = 0.2 2 = 0.05

Effect of perturbation mutation on GA convergence—The effect of perturbation mutation parameters—β
and —on GA convergence efficiency is studied in this section. The p1 β parameter is used to control the
size of perturbations in the perturbation mutation operator, and the p parameter is used to control the
probability that any given gene will be perturbed. Figures 9-13 present results showing the effect of these
parameters on GA convergence.

1

Figure 9 displays the average number of function evaluations required to achieve GA convergence as a
function of N and C β for two different values of the convergence, E = 10−2 and 10 . The effect of −4 β on
GA convergence is moderate. The difference in number of function evaluations between the best and the
worst values of β —all other parameters held fixed—is a factor of 2 to 4.

Generally speaking, the optimal value of β does not vary with N . This can be seen more clearly in Fig.
10 where the roles of N and

C

C β have been interchanged. As seen from Figs. 10a and 10b, the optimal
values of β for E = 10−2 and 10 are 0.05 and 0.01, respectively. −4

15

0

20000

40000

60000

80000

100000

0 50 100 150 200

β = 0.001
 = 0.002
 = 0.005
 = 0.01
 = 0.02
 = 0.05
 = 0.1

N
U

M
B

ER
 O

F
FU

N
C

TI
O

N
 E

VA
LU

A
TI

O
N

S

NUMBER OF CHROMOSOMES -- N
C

a) E = 10−2

0

20000

40000

60000

80000

100000

0 50 100 150 200

β = 0.001
 = 0.002
 = 0.005
 = 0.01
 = 0.02
 = 0.05
 = 0.1

N
U

M
B

ER
 O

F
FU

N
C

TI
O

N
 E

VA
LU

A
TI

O
N

S

NUMBER OF CHROMOSOMES -- N
C

b) E = 10−4

Fig. 9 Average number of function evaluations required to achieve GA convergence as a function of N
and

C
β , NSEED , R , N , N= 30 = 10.0 G = 32 M =1, P = (0.1,0.3,0.3,0.3) , p1 = 0.2 and p . 2 = 0.05

0

10000

20000

0 0.02 0.04 0.06 0.08 0.1

N
C
 = 10

 = 20
 = 30
 = 40
 = 50
 = 60
 = 80
 = 100
 = 150
 = 200

N
U

M
B

ER
 O

F
FU

N
C

TI
O

N
 E

VA
LU

A
TI

O
N

S

PERTURBATION MUTATION PARAMETER -- β

a) E = 10−2

0

20000

40000

60000

80000

100000

0 0.02 0.04 0.06 0.08 0.1

N
C
 = 10

 = 20
 = 30
 = 40
 = 50
 = 60
 = 80
 = 100
 = 150
 = 200

N
U

M
B

ER
 O

F
FU

N
C

TI
O

N
 E

VA
LU

A
TI

O
N

S

PERTURBATION MUTATION PARAMETER -- β

b) E = 10−4

Fig. 10 Average number of function evaluations required to achieve GA convergence as a function of β
and N , NSEED , R , , C = 30 = 10.0 NG = 32 NM =1, P = (0.1,0.3,0.3,0.3) , p1 = 0.2 and p . 2 = 0.05

But it is interesting to note that the optimal value of β for E = 10−2 is not the optimal value for E = 10−4. In
fact, there is a dramatic reversal in behavior. The optimal value of β for E = 10−2 (β = 0.05) is one of the
worst values for E = 10−4. This can be seen more clearly in Fig. 11, where the number of function
evaluations required for GA convergence is plotted as a function of β for eight values of E ranging from

 to 10 . The optimal value of 10−1 −8 β starts at 0.1 for E = 10−1 and falls to a value near 0.001 for
E = 10−8. Thus, optimal GA convergence requires a correlation with the convergence level, E, that is
sought.

16

103

104

105

106

0.001 0.01 0.1

E = 0.1
 = 0.01
 = 0.001
 = 0.0001
 = 0.00001
 = 0.000001
 = 0.0000001
 = 0.00000001

N
U

M
B

ER
 O

F
FU

N
C

TI
O

N
 E

VA
LU

A
TI

O
N

S
PERTURBATION MUTATION PARAMETER -- β

Fig. 11 Average number of function evaluations required to achieve GA convergence as a function of β
and E, NSEED , R , N , N= 30 = 10.0 G = 32 M =1, NC = 10 , P = (0.1,0.3,0.3,0.3) , p and p1 = 0.2 2 = 0.05.

The explanation for this behavior is straightforward. As the GA process converges the perturbations
required to improve the solution become smaller, and thus, smaller values of β are more beneficial for
tighter levels of GA convergence. The theoretical optimal would be to vary the value of β during GA
convergence, starting with a larger value and automatically moving to smaller values as the GA process
converges. A limited amount of work has been performed in this area with some success, but it is difficult
for a general implementation as the evaluation of convergence error is generally unknown for practical
applications. An “on the fly” statistical analysis of the perturbations that achieved improvement in the
optimal fitness value might be a more successful alternative for choosing an optimal variation of β , but to
date nothing along that line has been studied.

The perturbation mutation probability, p , is used to control whether a particular gene is modified by the
perturbation mutation operator or not and was defined in conjunction with Eq. (7). The effect this
parameter has on GA convergence is presented in Figs. 12 and 13. Figure 12 shows convergence
information as a function of and p1 for two different levels of convergenc

1

 NC e, E = 10−2 a 10nd −4. As
with other results seen in this section, NC has a moderate effect on convergence for most values of p1
with the smaller values of NC always producing the best convergence.

0

10000

20000

30000

0 50 100 150 200

p
1
 = 0.005

 = 0.01
 = 0.02
 = 0.05
 = 0.1
 = 0.2
 = 0.5
 = 1.0

N
U

M
B

ER
 O

F
FU

N
C

TI
O

N
 E

VA
LU

A
TI

O
N

S

NUMBER OF CHROMSOMES -- N
C

a) E = 10−2

0

20000

40000

60000

80000

100000

0 50 100 150 200

p1 = 0.005
 = 0.01
 = 0.02
 = 0.05
 = 0.1
 = 0.2
 = 0.5
 = 1.0

N
U

M
B

ER
 O

F
FU

N
C

TI
O

N
 E

VA
LU

A
TI

O
N

S

NUMBER OF CHROMOSOMES -- N
C

b) E = 10−4

Fig. 12 Average number of function evaluations required to achieve GA convergence as a function of p1
and N , NSEED , R , , C = 30 = 10.0 NG = 32 NM =1, P = (0.1,0.3,0.3,0.3) , β = 0.01 and p . 2 = 0.05

17

The effect of p1 on GA convergence is more complex. The optimal values of p for 1 E = 10−2 and 10−4 are
1.0 and 0.2, respectively. Thus, like the β results presented above, the optimal value of p1 changes
depending on the level of convergence. Figure 13 presents a global picture of this behavior. The optimal
value of p is 1.0 at 1 E = 10−1. It decreases from that point to 0.1 at E =10−5 ~10−6 and then increases
again reaching a value of 1.0 at E = 10−8. The optimal regions for the E =10−6 −10−8 curves are
relatively flat, and thus, it is difficult to be precise about the optimal values or p for smaller values of E. 1

103

104

105

106

0.01 0.1 1

E = 0.1
 = 0.01
 = 0.001
 = 0.0001
 = 0.00001
 = 0.000001
 = 0.0000001
 = 0.0000000

N
U

M
B

ER
 O

F
FU

N
C

TI
O

N
 E

VA
LU

A
TI

O
N

S

PERTURBATION MUTATION PROBABILITY -- p
1

Fig. 13 Average number of function evaluations required to achieve GA convergence as a function of p1
and E, NSEED , R , N , N= 30 = 10.0 G = 32 M =1, NC = 10 , P = (0.1,0.3,0.3,0.3) , β = 0.01 and p2 = 0.05.

So far most of the results have involved the analysis of a single GA parameter over a suitable error or
chromosome range while all the other parameters were held fixed at their baseline values. Figure 14
presents results where variations of both perturbation mutation parameters—β and p —are performed
simultaneously for two values of convergence error—

1

E = 10−2 and 10−4. This allows a more complete
analysis of GA convergence efficiency for non-optimal parameter values. For all computational results
presented in Fig. 14, N . From Fig. 14, it can be seen that the optimal values of C = 10 β and p occur at
0.02 and 1.0, respectively, for

1

E = 10−2 and at 0.01 and 0.2 for E = 10−4. Generally speaking, midrange
values of β and larger values of p (for the ranges studied) typically produce acceptable convergence,
while the results associated with the smallest values of

1
β and p are poor. 1

Effect of mutation on GA convergence—The effect of the mutation operator parameter— —on GA
convergence efficiency is studied in this section. The parameter is used to control the probability that
any given gene will be mutated. Figures 15-16 present results showing the effect of this parameter on GA
convergence. Figure 15 shows the average number of function evaluations required to achieve GA
convergence as a function of p in combination with N for two different values of the convergence
tolerance,

p2
p2

2 C

E = 10−2 and 10 . The effect of on GA convergence is moderate. The difference in
number of function evaluations between the best and the worst values of p

−4 p2

2—all other parameters held
fixed—is a factor of 1.5 to 3.

Note that results for p2 = 0.0 are included. This value of the mutation probability does not allow any
genes to be selected in the mutation operator. Thus, the chromosomes selected by the mutation operator
become pure “passthrough” chromosomes, that is, they are unmodified from generation to generation.
GA convergence is not as efficient for this value of p , but the process still converges with reasonable
efficiency. This result strongly supports the observation made in conjunction with Fig. 4. The mutation
operator is not important for single-mode optimization, i.e., it is not important for optimization problems
involving pure “hill-climbing.”

2

18

103

104

105

0.001 0.01 0.1

p
1
 = 0.01

 = 0.02
 = 0.05
 = 0.1
 = 0.2
 = 0.5
 = 1.0

N
U

M
B

ER
 O

F
FU

N
C

TI
O

N
 E

VA
LU

A
TI

O
N

S

PERTURBATION MUTATION PARAMETER -- β

a) E = 10−2

103

104

105

0.001 0.01 0.1

p
1
 = 0.01

 = 0.02
 = 0.05
 = 0.1
 = 0.2
 = 0.5
 = 1.0

N
U

M
B

ER
 O

F
FU

N
C

TI
O

N
 E

VA
LU

A
TI

O
N

S

PERTURBATION MUTATION PARAMETER -- β

b) E = 10−4

Fig. 14 Average number of function evaluations required to achieve GA convergence as a function of p1

and β , NSEED , R , N , N= 30 = 10.0 G = 32 M =1, NC = 10 , P = (0.1,0.3,0.3,0.3) and p . 2 = 0.05

Generally speaking, the optimal value of p does not vary with N . This behavior is similar to that of the 2 C
β parameter (see Fig. 9). However, unlike the β parameter, the optimal value of p does not vary from 2

E = 10−2 to E = 10−4. It is 0.05 for both curves. The effect of p over a broad range of convergence error
can be seen in Fig. 16, where the number of function evaluations required for GA convergence is plotted
versus for eight values of E ranging from 10

2

p2
−1 to 10−8. The optimal value of p starts at 0.05 for 2

E = 10−1 and remains relatively constant, increasing only slightly as the smaller values of E are
approached.

0

20000

40000

60000

80000

100000

0 50 100 150 200

p2 = 0.0
 = 0.01
 = 0.02
 = 0.05
 = 0.1
 = 0.2
 = 0.5
 = 1.0

N
U

M
B

ER
 O

F
FU

N
C

TI
O

N
 E

VA
LU

A
TI

O
N

S

NUMBER OF CHROMSOMES -- N
C

a) E = 10−2

0

20000

40000

60000

80000

100000

0 50 100 150 200

p
2
 = 0.0

 = 0.01
 = 0.02
 = 0.05
 = 0.1
 = 0.2
 = 0.5
 = 1.0

N
U

M
B

ER
 O

F
FU

N
C

TI
O

N
 E

VA
LU

A
TI

O
N

S

NUMBER OF CHROMOSOMES -- N
C

b) E = 10−4

Fig. 15 Average number of function evaluations required to achieve GA convergence as a function of p2
and N , NSEED , R , , C = 30 = 10.0 NG = 32 NM =1, P = (0.1,0.3,0.3,0.3) , β = 0.01 and p . 1 = 0.2

19

103

104

105

106

0.01 0.1 1

E = 0.1
 = 0.01
 = 0.001
 = 0.0001
 = 0.00001
 = 0.000001
 = 0.0000001
 = 0.00000001

N
U

M
B

ER
 O

F
FU

N
C

TI
O

N
 E

VA
LU

A
TI

O
N

S

MUTATION PROBABILITY -- p
2

Fig. 16 Average number of function evaluations required to achieve GA convergence as a function of p2
and E, NSEED , R , N , N= 30 = 10.0 G = 32 M =1, NC = 10 , P = (0.1,0.3,0.3,0.3) , β = 0.01 and p1 = 0.2 .

Multi-modal computations

The results in this section focus on multi-modal design spaces—that is, design spaces with more than
one, perhaps many, local extrema. Of course, one solution is always best—the so-called global optimum.
The goal for any optimization algorithm is to find the global optimum without getting hung up by one or
more of the local extrema. This is difficult for most gradient-based methods, especially as the number of
modes in the design space increases.

For this section all computations utilize the model problem described by Eq. (9). The value of , which
was always equal to one in the previous section, will now be greater than one. The multi-modal
characteristic creates a difficulty because there are so many new problem variables that must be
specified and so many different ways in which to specify them. For example, for a design space with four
modes and eight genes, i.e., N and N

NM

M = 4 G = 8, there are 32 independent c parameters—eight c ’s for
each of the four modes—and 4 independent h parameters. Each requires a value to completely define
the design space given by Eq. (9).

These values, while not being part of the GA, define the shape of the design space and thus, affect GA
convergence. For example, a design space containing two modes with nearly identical peak values, one
being the desired global optimum, represents a difficulty for any optimization procedure including the
present GA approach. Once on the lower peak, it is difficult to move to the peak that contains the global
optimum. As the two peak values approach each other, the number of function evaluations required for
GA convergence, averaged over a suitably large sample of solutions, will approach infinity. Of course, if
the two peaks are close, one might not care which peak is found, as either would be a suitable answer to
the optimization problem. Although GA convergence performance as two or more peaks approach the
global optimum will not specifically be examined in this study, GA performance for a wide variety of multi-
modal scenarios will be presented.

Stochastic variations of multi-mode solutions—First, as was done at the beginning of the previous
section, it is of interest to determine how much statistical variation exists in a typical GA convergence
history—one that involves a multi-modal design space. This is accomplished by re-computing a specific
case many times with different initializing seed values, and then plotting the number of function
evaluations required for convergence as a running or ensemble average. Figure 17 displays such a plot
for two different multi-mode cases that utilize the same design space parameters—RANGE = 5.0 ,

20

NG = 8 and . Each solution in Fig. 17 was continued until the convergence error—defined by Eq.
(10)—was reduced below 10 . The eight h -values required for Eq. (9) are taken to be

NM = 8
−4

h1 = 100.0
h2 = h3 = L = h8 = 80.0

Note that the k subscript—the objective subscript from Eq. (9)—has been dropped from for simplicity,
as N is always one. The c values from Eq. (9) are determined via random number generator using Eq.
(11). Once established, these h and c values are used for each re-computation for both cases.

h
O

The GA parameters utilized for the two convergence histories displayed in Fig. 17 are different. Case A
consists of N , , C = 10 P = (0.1,0.2,0.2,0.5) β = 0.01 p1 = 0.2 and p2 = 1.0 , and Case B consists of

, P , NC = 200 = (0.1,0.7,0.1,0.1) β = 0.01 p1 = 0.2 and p2 = 1.0 . Note that only the P vector and number of
chromosomes in the fixed population size are different.

Case A produces nearly optimal convergence, at least for this definition of the design space, and will be
used as the multi-mode baseline for this section. All design space and GA parameters not being varied in
the multi-mode section of this report utilize the values that are established in this baseline solution. Case
B is far from optimal and is close to a worst case scenario, for this design space configuration.

As can be seen from Fig. 17, the running average is plagued with oscillations. Each time the GA
becomes “stuck” on one of the design space’s lesser peaks, the running average jumps. Each time
convergence “finds” the global optimum quickly the running average drops. As the running average
continues to higher NSEED values, each curve becomes smoother, especially case A—the baseline
solution. The two solid lines to the right of each curve indicate the maximum and minimum extent of each
running average from NSEED to 1000, and the dashed curve is the final value at = 101 NSEED=1000.
The total variation beyond an NSEED value of 100 for Case A is –8.4% to +14.8%, and for Case B it is –
10.7% to +35.0%.

It is easy to see that multi-modal cases involve more statistical variation than single-mode cases. As
such, more averaging is required to obtain sensible results. Thus, for each solution in this section the
minimum NSEED value will be 100. Even then, a statistical variation of at least 10 percent is typical and
several tens of percent possible.

104

105

106

0 20 40 60 80 100 120

P = 1225
N

C
 = 10

MAXIMUM
NSEED = 1000
MINIMUM

P = 1711
N

C
 = 200

MAXIMUM
NSEED = 1000
MINIMUM

N
U

M
B

ER
 O

F
FU

N
C

TI
O

N
 E

VA
LU

A
TI

O
N

S

NUMBER OF SOLUTIONS IN AVERAGE-- NSEED

Fig. 17 Effect of running sample size average (NSEED value) on GA convergence for two different multi-
modal solutions, E = 10−4, , R = 5.0 NG = 8, NM = 8, β = 0.01, p1 = 0.2 and p2 = 1.0 .

21

Effect of P vector on multi-modal GA convergence—Figure 18 presents results showing the effect of the
P vector on GA convergence for the multi-mode conditions. Because some the results associated with
Fig. 18 have more statistical variation than other multi-mode sections, an NSEED value of 200 is used. In
keeping with other results in this study, GA convergence information is presented across a range of
chromosome values— , 20, 30, 40, 50, 60, 80, 100, 150, 200—for two different levels of
convergence,

NC = 10
E = 10−2 and 10 . −4

A quick comparison of Figs. 18a and 18b suggests that they are the same, but a more careful
examination indicates a slight difference. Each data point in Fig. 18b is slightly higher than the
corresponding point in Fig. 18a, indicating (as expected) more work required to attain the tighter level of
convergence. The reason they are close is simply that most function evaluations for the present multi-
mode computations are used to find the proper peak in the design space. Once that is accomplished
climbing to the top of that peak requires only a small fraction of the total computational effort. Thus, there
is not much difference in the work required to achieve E = 10−2 relative to that of E = 10−4. For that
matter there is not much difference in the work required to achieve any two values of E (for sufficiently
complex multi-modal conditions) providing they both require being on the “primary hill” in the design
space.

As can be seen from Fig. 18, the effect of the P vector on GA convergence efficiency for the present
multi-modal case—all other parameters being held fixed—is large. The most efficient cases converge 5 to
10 time faster than the least efficient cases. Having at least 50% mutation, i.e., p , is critical for
good GA convergence efficiency. In particular, the best convergence efficiency from Fig. 18 corresponds
to P and 1117. This behavior is in dramatic contrast with the single-mode results displayed in Fig.
3 where the P vector had little effect on convergence. Although there is little variation in GA efficiency
across the N range, relatively speaking, the optimal value of N for the most efficient high-mutation P
vectors is 10 and between 100 and 200 for the less efficient low-mutation P vectors. The latter
observation for the low-mutation P vectors is tentative at best, as these results are noisy and thus, less
amenable to trend analysis.

M ≥ 0.5

= 1225

C C

0 100

1 105

2 105

0 50 100 150 200

P = 1225
 = 1252
 = 1522
 = 1117
 = 1171
 = 1711

N
U

M
B

ER
 O

F
FU

N
C

TI
O

N
 E

VA
LU

A
TI

O
N

S

NUMBER OF CHROMOSOMES -- N
C

a) E = 10−2

0

1 105

2 105

0 50 100 150 200

P = 1225
 = 1252
 = 1522
 = 1117
 = 1171
 = 1711

N
U

M
B

ER
 O

F
FU

N
C

TI
O

N
 E

VA
LU

A
TI

O
N

S

NUMBER OF CHROMOSOMES -- N
C

b) E = 10−4

Fig. 18 Average number of function evaluations required to achieve GA convergence as a function of the
P vector and , NSEED , R , NNC = 200 = 5.0 G = 8, NM = 8, β = 0.01, p1 = 0.2 and p . 2 = 1.0

Figure 19 presents a statistical analysis for how often each P vector operator produced a chromosome
with a fitness that exceeded the previous generation’s maximum fitness value. These results are for the

22

multi-modal baseline solution. Results for two different levels of convergence are included—E = 10−2 and

. In addition to statistical results from individual operators, a curve labeled “TOTAL”—the total
number of function evaluations from all operators that produced an improvement in maximum fitness
value—is also included.

10−4

As can be seen from Fig. 19, N has only a small effect on each of these curves. Crossover and
perturbation are equally effective (approximately) in producing improvement to the maximum fitness, but
mutation (seemingly) is a disappointment, as it barely registers on the plot.

C

Further insight into the present results can be obtained by comparing the multi-modal results of Fig. 19
with the single-mode results of Fig. 4. Because these two problems are quite different, a quantitative
comparison is not possible. Nevertheless, interesting contrasts between the two sets of results can be
drawn. First of all, the success rate of all operators is dramatically lower for the multi-modal computations,
especially the mutation operator. Crossover and perturbation mutation are reduced in efficiency by a
factor ranging from 3 to 8, but mutation is reduced in efficiency by a factor of 50 to 120. This is a direct
result of the GA search becoming “stalled” on one or more of the lower peaks—potentially for large
numbers of generations—before finding its way to the global optimum. The mechanism by which the GA
moves from a local optimum to the global optimum is mutation. For this “peak jumping” operation the
mutation operator is best served by setting p to one. (The numerical demonstration of this will be
presented in a later section). This is because, for peak jumping, all gene values, in general, need to be
changed simultaneously, and p forces this to be the case. Because of this, the ability of mutation
to produce fitness improvements in the hill-climbing part of the GA process is dramatically reduced. Thus,
it serves its role in jumping from one peak to another but does little else for multi-modal search spaces.

2

2 = 1.0

0

1

2

3

4

0 50 100 150 200

TOTAL
CROSSOVER
PERTURBATION
MUTATIONFU

N
C

TI
O

N
 E

VA
LU

A
TI

O
N

S
PR

O
D

U
C

IN
G

IN
C

R
EA

SE
 IN

 M
A

X
FI

TN
ES

S
--

%

NUMBER OF CHROMOSOMES -- N
C

a) E = 10−2

0

1

2

3

4

0 50 100 150 200

TOTAL
CROSSOVER
PERTURBATION
MUTATIONFU

N
C

TI
O

N
 E

VA
LU

A
TI

O
N

S
PR

O
D

U
C

IN
G

IN
C

R
EA

SE
 IN

 M
A

X
FI

TN
ES

S
--

%

NUMBER OF CHROMOSOMES -- N
C

b) E = 10−4

Fig. 19 Average number of function evaluations producing and increase in the fitness relative to the
previous generation maximum fitness for different values of N , C NSEED = 200, , R = 5.0 NG = 8,

, P , NM = 8 = (0.1,0.2,0.2,0.5) β = 0.01, p1 = 0.2 and p2 = 1.0 .

Effect of design space on GA convergence for multi-modal applications—The effect of design space
size—R and N —on GA convergence efficiency is studied next. Figure 20 presents the effect of these
two parameters on GA convergence performance. Note that Fig. 20a utilizes a full-extent semi-log scale
on the vertical axis, and Fig. 20b utilizes a truncated linear scale on the vertical axis. Otherwise these two

G

23

figures are the same. All computations were averaged over 100 solutions (NSEED) each being
continued until

=100
E = 10−4 was achieved.

As can be seen from Fig. 20a, the combination of large values of R and large numbers of genes creates
a difficulty for the present GA optimization process. The GA always converges, but the number of function
evaluations becomes quite large. This, of course, is not unexpected. As the size and dimensionality of
any multi-modal optimization problem increases, any optimization approach will become bogged down.
This is the co-called “curse of dimensionality.”

Nevertheless, in examining the results of Fig. 20 further, it is interesting to note that the curves
corresponding to the first two values of R —1.0 and 2.0—are essentially linear (see Fig. 20b), increasing
by approximately 700 function evaluations for each additional gene added to the design space. The other
curves seem to follow this linear trend until a critical value of N is reached after which they increase
exponentially. The critical value of N becomes smaller as the R is increased. This indicates the
importance of setting the proper values for xmin

G

G

i and xmaxi in any GA optimization problem. As seen in
the previous section, this was important for single mode computations. It is much more important for
multi-mode computations.

102

103

104

105

106

107

108

0 5 10 15 20 25 30 35

R = 1.0
 = 2.0
 = 3.0
 = 4.0
 = 5.0
 = 10.0N

U
M

B
ER

 O
F

FU
N

C
TI

O
N

 E
VA

LU
A

TI
O

N
S

NUMBER OF GENES -- N
G

a) Log scale along vertical axis (full extent)

0

20000

40000

0 5 10 15 20 25 30 35

R = 1.0
 = 2.0
 = 3.0
 = 4.0
 = 5.0
 = 10.0

N
U

M
B

ER
 O

F
FU

N
C

TI
O

N
 E

VA
LU

A
TI

O
N

S

NUMBER OF GENES -- N
G

b) Linear scale along vertical axis (truncated)

Fig. 20 Average number of function evaluations required to achieve GA convergence for different values
of N and R , G E = 10−4, NSEED , N=100 M = 8, P = (0.1,0.2,0.2,0.5), β = 0.01, p and p1 = 0.2 2 = 1.0 .

The effect of design space modality on GA convergence efficiency—i.e., the number and relative sizes of
each of the modes—is studied next. Of course, there are literally an infinite number of design space
variations that can be studied in this area. Using the model problem of Eq. (9) alone and fixing N and

, the variations in the values of h and c create many possibilities that can affect the functioning of an
optimization scheme’s convergence.

G
R

To facilitate the necessary reduction of possibilities, it is assumed that the single global peak—h —
utilized in Eq. (9), will be fixed at100.0 and that the remaining values of , no matter what value of N
is utilized, will be equal to each other. With this assumption a new parameter—D —is defined as

max
hm,k M

D =
hmax − h

hmax
 (12)

where h is the constant height of all secondary peaks in the design space.

24

Figure 21 presents the effect of D and N on GA convergence performance. All computations were
averaged over 100 solutions (NSEED) each being continued until

M

=100 E = 10−4 was achieved. As can
be seen from Fig. 21, there is little variation in GA convergence efficiency with . At most a factor of 3
or 4 increase in the average number of function evaluations for GA convergence is seen as N
increases from 2 to 64—and this for only the smaller values of D . But the variation of GA convergence
efficiency with D —all other parameters held fixed—is more dramatic, being two orders of magnitude for
the values of D studied. The reason for this behavior—discussed at the beginning of this section—is due
to the inefficiencies associated with “peak-jumping” as opposed to “hill-climbing.” As D becomes small
the peak-jumping difficulties increase. The GA optimization never fails to converge, but the average
number of function evaluations required for convergence increases dramatically.

NM

M

In is interesting to note that the curves in Fig. 21 corresponding to D = 0.5 and 0.8 are nearly flat as N
increases. In fact the convergence history for any case with these values of and N is essentially
the same as a single mode case with N

M
D M > 2

M =1—assuming all other parameters are also the same. For
these values of D the design space is more representative of a single mode design space with
superimposed noise—the higher the value of N , the higher the noise frequency. With this interpretation
for the D and 0.8 curves presented in Fig. 21, it can be concluded that the present GA convergence
efficiency does not degrade in the presence of noise at least for low to moderate frequencies.

M
= 0.5

103

104

105

106

107

0 10 20 30 40 50 60 70

D = 0.1
 = 0.2
 = 0.3
 = 0.5
 = 0.8

N
U

M
B

ER
 O

F
FU

N
C

TI
O

N
 E

VA
LU

A
TI

O
N

S

NUMBER OF DESIGN SPACE MODES -- N
M

Fig. 21 Average number of function evaluations required to achieve GA convergence for different values
of and , NM D E = 10−4, , NSEED =100 R = 5.0 , NG = 8, P = (0.1,0.2,0.2,0.5), β = 0.01, p1 = 0.2 and

. p2 = 1.0

Effect of perturbation mutation on GA convergence for multi-modal applications—The effect of the
perturbation mutation parameters—β and p —on GA convergence efficiency for multi-modal applications
is studied in this section. Figure 22 presents results showing the effect of these parameters on GA
convergence for two levels of error,

1

E = 10−2 and 10−4. In each case all averages are performed with
. NSEED =100

25

104

105

106

0.001 0.01 0.1

p
1
 = 0.01

 = 0.02
 = 0.05
 = 0.1
 = 0.2
 = 0.5
 = 1.0

N
U

M
B

ER
 O

F
FU

N
C

TI
O

N
 E

VA
LU

A
TI

O
N

S

PERTURBATION MUTATION PARAMETER -- β

a) E = 10−2

104

105

106

0.001 0.01 0.1

p
1
 = 0.01

 = 0.02
 = 0.05
 = 0.1
 = 0.2
 = 0.5
 = 1.0

N
U

M
B

ER
 O

F
FU

N
C

TI
O

N
 E

VA
LU

A
TI

O
N

S

PERTURBATION MUTATION PARAMETER -- β

b) E = 10−4

Fig. 22 Average number of function evaluations required to achieve GA convergence for different values
of β and p , NSEED , R , N1 =100 = 5.0 C = 10 , NG = 8, NM = 8, P = (0.1,0.2,0.2,0.5) and p . 2 = 1.0

As can be seen from Fig. 22, the optimal value of β is 0.01, and the optimal value of p1 is 0.2. These
optimal values hold for both levels of convergence and are the same as the E = 10−4 results reported for
the single mode case (see Fig. 14). The general trends presented in Fig. 22 also agree reasonably well
with the results of Fig. 14, especially Fig. 14b. However, the results presented in Fig. 22 generally require
an order of magnitude more function evaluations for convergence than those in Fig. 14. Figure 14
represents a pure hill-climbing process, while Fig. 22 represents a combined hill-climbing and peak-
jumping process. As with Fig. 14, Fig. 22 suggests that small values of β in conjunction with small values
of p —for the ranges studied—produce particularly poor convergence efficiency and should be avoided. 1

Effect of mutation on GA convergence for multi-modal applications—The effect of the mutation operator—
the parameter—on GA convergence efficiency for multi-modal applications is studied in this section.
Figure 23 presents results showing the effect of this parameter on GA convergence across a range of N
values for a convergence error of

p2

C

E = 10−4. (The curves for all other levels—above a value of 0.2—
virtually over plot the corresponding curves displayed in Fig. 23). Due to increased levels of statistical
variation, especially for smaller values of p

E

2, NSEED = 200.

As can be seen from Fig. 23 the mutation operator has a profound effect on GA convergence efficiency
for the present multi-modal problem. As the value of is decreased, GA convergence efficiency drops
dramatically. As was seen from Fig. 19, the mutation operator does not often produce new chromosomes
that improve the fitness relative to the previous generation’s maximum fitness. But the small number of
times that it does, for multi-modal problems, is crucial in the “peak-jumping” process. When the value of

 is reduced, the mutation operator is not nearly as efficient in peak-jumping. The number of GA
function evaluations goes up as the GA process becomes “stuck” on local optima for larger numbers of
function evaluations. This is because, in general, all gene values must be changed to jump from a local
optimum to the global optimum and that is best achieved when p

p2

p2

2 = 1.0 .

The variation of GA convergence efficiency with N is small, especially relative to the variations caused
by . The noise in these results—especially for the smaller values of —make additional specific
observations in this area difficult.

C
p2 p2

26

104

105

106

107

0 50 100 150 200

p
2
 = 1.0

 = 0.8
 = 0.6
 = 0.4

N
U

M
B

ER
 O

F
FU

N
C

TI
O

N
 E

VA
LU

A
TI

O
N

S

NUMBER OF CHROMOSOMES -- N
C

Fig. 23 Average number of function evaluations required to achieve GA convergence for different values
of and , NC p2 E = 10−4, , NSEED = 200 R = 5.0 , NG = 8, NM = 8, P = (0.1,0.2,0.2,0.5), β = 0.01 and

. p1 = 0.2

Conclusions

A genetic algorithm (GA) procedure suitable for performing engineering optimizations has been
presented. It uses real-number encoding to represent all design space decision variables as genes and
populations of fixed size to go from generation to generation. Four gene modification operators are
utilized to advance from one generation to the next. They include passthrough, random average
crossover, perturbation mutation and mutation.

The GA optimization procedure converged to the global optimum for every case attempted,
demonstrating robustness and wide applicability. In some cases convergence was achieved quickly,
while in other cases convergence was much slower. A systematic study exploring the effects of design
space attributes and GA parameter selection on GA convergence performance was conducted with the
following specific conclusions:

Increasing the design space size, including the number of genes,N , and the distance between gene
maximum and minimum values, R , diminished GA convergence performance and made the search for
an optimum more difficult and more costly. In addition, for multi-modal applications a large number of
modes in conjunction with small values of D—the normalized difference between the global and local
optimal peak values—decreased GA performance. Cases involving moderately large values of D (~ 0.8 to
0.5) showed almost no degradation in performance, even as the number of modes increased to a large
value (N). These conditions are akin to noise (of low to moderate frequency) and suggest that the
present GA optimization procedure is reasonably unaffected by design space noise.

G

M ~ 64

The above conclusion, which states that GA convergence slows for increasing design space size, is
reasonably intuitive. A more difficult less intuitive aspect to assess is the effect of algorithm parameters
on GA convergence performance. The conclusions in this area are presented by looking at each GA
parameter separately.

The number of chromosomes used in each generation, N , had a surprisingly small effect on GA
convergence efficiency for most situations encountered, especially relative to other parameters studied.
The optimal value was almost always the smallest value studied—N

C

C = 10 . A small number of cases

27

generally utilizing non-optimal GA parameters or lower levels of GA convergence, yielded a mid-range
optimal value for the number of chromosomes—N . C ~ 50

The four-element P vector controls which operators are used to modify the selected chromosomes for
each new generation. P vector variations produced little change in GA convergence efficiency for single
mode cases, but large changes in efficiency for multi-mode cases. The first operator, passthrough, keeps
the maximum fitness from degrading by passing the chromosome with the highest fitness through to the
next generation without modification. The second and third P vector operators—random average
crossover and perturbation mutation—create generally small variations about the higher ranked
chromosomes and are the primary mechanism for “hill climbing” in the GA convergence process.
Mutation, the final P vector operator, is not important for single-mode applications, but is very important
for multi-mode applications, being the chief mechanism for changing from one design space hill to
another—i.e., “hill jumping.”

The perturbation mutation parameters—β and p —had optimal values of 0.01 and 0.2 (respectively) for
most cases tested, both single and multi-mode problems, providing nominal values of the GA
convergence error were used—

1

E ~10−4. However, optimal values for both of these parameters,
especially β , exhibited a considerable dependence on convergence error. For example, the optimal value
of β ranged from 0.1 for E = 10−1 to 0.001 for E = 10−8 (single mode cases). As the hill-climbing part of
the optimization process converges, smaller perturbations—smaller values of β —are required for optimal
convergence.

Of all GA parameters, mutation probability, p , had the most dramatic effect on GA convergence
efficiency. For single-mode cases the optimal value was 0.05—a value that did not vary significantly with
other GA parameters or the level of convergence error requested. For multi-mode cases the optimal
value of p was 1.0. Any value of p slightly smaller than 1.0, for multi-mode cases, produced significant
degradations in GA convergence performance.

2

2 2

The purpose of this report has been to study the convergence efficiency of Genetic Algorithms when used
for single-objective optimization. Part II of this report will look at the same topic in conjunction with multi-
objective problems.

References

1. Goldberg, D. E., “Genetic Algorithms in Search, Optimization and Machine Learning,” Addison-

Wesley, Reading, MA, 59-88, 1989.

2. Davis, L., “Handbook of Genetic Algorithms,” Van Nostrand Reinhold, New York, 1991.

3. Beasley, D., Bull, D. R. and Martin, R. R., “An Overview of Genetic Algorithms: Part 1,

Fundamentals,” University Computing, Vol. 15, No. 2., 1993, pp. 58-69.

4. Beasley, D., Bull, D. R. and Martin, R. R., “An Overview of Genetic Algorithms: Part 2, Research

Topics,” University Computing, Vol. 15, No. 4., 1993, pp. 170-181.

5. Deb, Kalyanmoy, “Multi-Objective Genetic Algorithms: Problem Difficulties and Construction of Test

Problems,” Evolutionary Computation, Vol. 7, No. 3, 1999, pp. 205-230.

6. Van Veldhuizen, David and Lamont, Gary, “Multiobjective Evolutionary Algorithms: Analyzing the

State-of-the-Art,” Evolutionary Computation, Vol. 8, No. 2, 1999, pp. 125-147.

28

7. Jiménez, José, Cuesta, Pedro and Abderramán, Jesús, “Mixed Strategy in Genetic Algorithms:

Domain’s Reduction and Multirecombination,” European Congress on Computational Methods in
Applied Sciences and Engineering, ECCOMAS 2000, Barcelona, Spain, Sept. 2000.

8. Obayashi, S. and Tsukahara, T., “Comparison of Optimization Algorithms for Aerodynamic Shape

Design,” AIAA J., Vol. 35, 1997, pp. 1413-1415.

9. Bock, K.-W., “Aerodynamic Design by Optimization,” Paper 20, AGARD CP-463, 1990.

10. Pulliam, Thomas H., Nemec, Marian, Holst, Terry L. and Zingg, David W., “Comparison of Genetic

and Adjoint Methods for Multi-Objective Viscous Airfoil Optimizations,” Accepted for presentation at
the AIAA 41st Aerospace Sciences Meeting, Reno, NV, Jan. 2003, AIAA Paper No. 2003-0298.

11. Sharatchandra, M., Sen, M. and Gad-el-Hak, M., “New Approach to Constrained Shape Optimization

Using Genetic Algorithms,” AIAA J., Vol. 36, No. 1, Jan. 1998, pp. 51-61.

12. Gage, P. and Kroo, I., “A Role for Genetic Algorithms in a Preliminary Design Environment,” AIAA

Paper No. 93-3933, Aug. 1993.

13. Fleming, P. and Purshouse, R., “Genetic Algorithms in Control Systems Engineering,” Dept. of

Automatic Control and Systems Engineering, University of Sheffield, Research Report No. 789, May
2001.

14. Holst, T. and Pulliam, T., “Aerodynamic Shape Optimization Using a Real-Number-Encoded Genetic

Algorithm,” AIAA Paper No. 2001-2473, June 2001.

15. Globus, A., Langhirt, E., Livny, M., Ramamurthy, R., Solomon, M. and Traugott, S., “JavaGenes and

Condor: Cycle—Scavenging Genetic Algorithms,” Java Grande 2000, ACM SIGPLAN, San
Francisco, Calif., June 2000.

16. Lohn, J. and Colombano, S., “Automated Analog Circuit Synthesis Using a Linear Representation,”

Second Inter. Conference of Evolvable Systems: From Biology to Hardware, Springer-Verlag, Sept.
1998, pp. 23-25.

17. Linden, D. and Altshuler, E., Automating Wire Antenna Design Using Genetic Algorithms,”

Microwave Journal, Vol. 39, No. 3, March 1996.

18. Peigin, Sergey, “Genetic Algorithms for Optimization Problems with Non-Linear Constraints,”

European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS
2000, Barcelona, Spain, Sept. 2000.

19. Tse, D. and Chan, L., “Transonic Airfoil Design Optimization Using Soft Computing Methods,”

Canadian Aeronautics and Space Journal, Vol. 46, No. 2, June 2000, pp. 65-73.

20. Sheng, L. and Kapania, R., “Genetic Algorithms for the Optimization of Piezoelectric Actuator

Locations,” AIAA Paper No. 2000-1581, 2000.

21. Cook, A. and Crossley, W., “Investigation of Genetic Algorithm Approaches for Smart Actuator

Placement for Aircraft Maneuvering,” AIAA Paper No. 2001-0924, Jan. 2001.

22. Chen, V., Crawfore, L. and Menon, P., “Air Traffic Control Using Genetic Search Techniques,”

Optimal Synthesis, Inc., Palo Alto, Calif., 1999.

23. Cravero, C. and Satta, A., “A Hierarchical Optimization Approach for Automatic Turbomachinery

Blade Design,” AIAA Paper No. 2001-3044, June 2001.

29

24. Marco, N, Désidéri, J.-A. and Lanteri, S., “Multi-Objective Optimization in CFD by Genetic

Algorithms,” Institut National de Recherche en Informatique et en Automatique, Research Report
No. 3686, April 1999.

25. Naujoks, B., Willmes, L., Haase, W., Bäck, T. and Schütz, M., “Multi-Point Airfoil Optimization Using

Evolution Strategies,” European Congress on Computational Methods in Applied Sciences and
Engineering, ECCOMAS 2000, Barcelona, Spain, Sept. 2000.

26. Quagliarella, D. and Della Cioppa, A., “Genetic Algorithms Applied to the Aerodynamic Design of

Transonic Airfoils,” AIAA Paper 94-1896-CP, 1994.

27. Vicini, A. and Quagliarella, D., “Inverse and Direct Airfoil Design Using a Multiobjective Genetic

Algorithm,” AIAA J., Vol. 35, 1997, pp. 1499-1505.

28. Hämäläinen, J., Mäkinen, A., Tarvainen, P. and Toivanen, J., “Evolutionary Shape Optimization in

CFD with Industrial Applications,” European Congress on Computational Methods in Applied
Sciences and Engineering, ECCOMAS 2000, Barcelona, Spain, Sept. 2000.

29. Anderson, M., Burkhalter, J. and Jenkins, R., “Missile Aerodynamic Shape Optimization Using

Genetic Algorithms,” J. of Spacecraft and Rockets, Vol. 37, No. 5, Sept.-Oct. 2000, pp. 663-669.

30. Anderson, M. and Gebert, G., “Using Pareto Genetic Algorithms for Preliminary Subsonic Wing

Design,” AIAA Paper No. 96-4023-CP, 1996.

31. Sasaki, D, Obayashi, S. and Nakahashi, K., “Navier-Stokes Optimization of Supersonic Wings with

Four Design Objectives Using Evolutionary Algorithm,” AIAA Paper No. 2001-2531, 2001.

32. Oyama, A., “Multidisciplinary Optimization of Transonic Wing Design Based on Evolutionary

Algorithms Coupled with CFD Solver,” European Congress on Computational Methods in Applied
Sciences and Engineering, ECCOMAS 2000, Barcelona, Spain, Sept. 2000.

33. Obayashi, S., Yamaguchi, Y. and Nakamura, T., “Multiobjective Genetic Algorithm for

Multidisciplinary Design of Transonic Wing Planform,” J. of Aircraft, Vol. 34, 1997, pp. 690-693.

34. Oyama, A. and Liou, M.-S., “Multiobjective Optimization of Rocket Engine Pumps Using Evolutionary

Algorithm,” AIAA Paper No. 2001-2581, June 2001.

35. Oyama, A., “Wing Design Using Evolutionary Algorithms,” PhD Thesis, Dept. of Aeronautics and

Space Engineering, Tohoku University, Senadi, Japan, March 2000.

36. Houck, G. R., Joines, J. A. and Kay, M. G., “A Genetic Algorithm for Function Optimization: A Matlab

Implementation,” North Carolina State University-IE, TR 95-09, 1995.

37. Michalewicz, Z., Genetic Algorithms + Data Structures = Evolution Programs, AI Series, Springer-

Verlag, New York, 1994.

30

REPORT DOCUMENTATION PAGE

8. PERFORMING ORGANIZATION
 REPORT NUMBER

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

Form Approved

OMB No. 0704-0188

12b. DISTRIBUTION CODE12a. DISTRIBUTION/AVAILABILITY STATEMENT

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

6. AUTHOR(S)

1. AGENCY USE ONLY (Leave blank)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

15. NUMBER OF PAGES

16. PRICE CODE

20. LIMITATION OF ABSTRACT19. SECURITY CLASSIFICATION
 OF ABSTRACT

18. SECURITY CLASSIFICATION
 OF THIS PAGE

17. SECURITY CLASSIFICATION
 OF REPORT

14. SUBJECT TERMS

13. ABSTRACT (Maximum 200 words)

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

NSN 7540-01-280-5500

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

11. SUPPLEMENTARY NOTES

Unclassified Unclassified

Unclassified — Unlimited
Subject Category - 59 Distribution: Nonstandard
Availability: NASA CASI (301) 621-0390

A-0311046

NASA/TM–2003-212812

December 2003

Ames Research Center
Moffett Field, CA 94035-1000

National Aeronautics and Space Administration
Washington, DC 20546-0001

302-15-31

34

Evaluation of Genetic Algorithm Concepts Using Model Problems
Part I: Single-Objective Optimization

Terry L. Holst and Thomas H. Pulliam

A genetic-algorithm-based optimization approach is described and evaluated using a simple hill-climbing
model problem. The model problem utilized herein allows for the broad specification of a large number of
search spaces including spaces with an arbitrary number of genes or decision variables and an arbitrary
number hills or modes. In the present study, only single objective problems are considered. Results indicate
that the genetic algorithm optimization approach is flexible in application and extremely reliable, providing
optimal results for all problems attempted. The most difficult problems—those with large hyper-volumes
and multi-mode search spaces containing a large number of genes—require a large number of function
evaluations for GA convergence, but they always converge.

Optimization, Genetic algorithms, Single objective

Technical Memorandum

Point of Contact: Terry Holst, Ames Research Center, MS T27B-1, Moffett Field, CA 94035-1000
 (650) 604-6032

Unclassified

