The hyperwall

Timothy A. Sandstrom
Exploratory Computing Environments Group
NASA Ames Research Center
sandstro@nas.nasa.gov

ChrisHenze
Exploratory Computing Environments Group
NASA Ames Research Center
chenze@nas.nasa.gov

Creon Levit
Exploratory Computing Environments Group
NASA Ames Research Center
creon@nas.nasa.gov

Abstract

This paper describes the hyperwall, a visualization clus-
ter that uses coordinated visualizations for interactive ex-
ploration of multidimensional data and simulations. The
system strongly leverages the human eye-brain system with
a generous 7x7 array of flat panel LCD screens powered by
a Beowulf cluster. With each screen backed by a worksta-
tion class PC, graphic and compute intensive applications
can be applied to a broad range of data in parallel. Navi-
gational tools are presented that allow for investigation of
high-dimensional data spaces.

1 Introduction

That data are growing in size and complexity is self
evident, no more so than when it comes to multidimen-
sional/multivariate (MDMV) data. The scientific visualiza-
tion and information visualization literatures are filled with
research delving into the issues associated with this data ex-
plosion. A common theme emerges: sooner or later, ma-
chines run out of some crucial resource, be it CPU, graph-
ics, screen real estate, memory, or disk bandwidth. Screen
space, for instance, has been a limiting factor in MDMV
visualization systems ever since the first brushed scatter-
plot matrix [1, 2]. One can display only so many windows,
can present only so many variables in a single view before
reaching a point of diminishing returns.

We seek to interactively explore large MDMYV datasets
and families of parameterized simulations. Towards this
end we have assembled a system using a combination of
commodity hardware and custom software known as the
hyperwall’. Combining a phalanx of pixels and proces-
sors, we seek to overcome some of the graphics and com-

putational limitations found in many MDMYV visualization
systems, and to work towards a true problem solving envi-
ronment where many tools can be brought to bear on a given
problem at once.

There are many approaches to MDMV visualization,
the goal typically being to visually summarize and interact
with the data searching for trends and relationships. Tools
such as XGobi [4] and XmdvTool [7], use techniques such
as scatterplots, glyphs, and parallel coordinates to display
MDMYV data in lower dimensional projections. Direct ma-
nipulation techniques such as interactive brushing are used
to find relationships between variables. These packages
draw on the works of authors such as Tukey and Cleve-
land, providing a rich set of the classic statistician’s tools.
Other research has focused on multiple, coordinated views
or visualizations of related data. North and Shneiderman
[3] have provided a useful taxonomy of these techniques
that is applicable across a broad spectrum of problems. Fi-
nally, a number of tools have taken a spreadsheet approach
to MDMV visualization [8, 9, 10], where the layout of the
views has inherent meaning, implying location and allow-
ing navigation in a given high-dimensional space. This ap-
proach also allows a high degree of coordination between
views, for instance when a given modification or operation
is applied to all visuals in a column or some other subset of
the matrix.

The hyperwall exists at the confluence of these streams,
combining spreadsheet metaphors, direct manipulation, and
multiple linked coordinated views.

2 System Architecture

Our system architecture is summarized in figure 2. The
displays in the hyperwall are 18” Samsung 181T flat panel
monitors. Each LCD is framed by a uniform black plas-

tic bezel approximately 3/4” in width. A custom designed
mounting rack (see figure 1) allows pitch and yaw adjust-
ment of each monitor, as well as translational adjustment
between rows and columns. In addition, each monitor can
be moved independently up to 14” in “z” - perpendicular to
the frame - to allow nonplanar arrangements of the viewing
surfaces - for example spherical or paraboloid sections. We
designed the rack to provide all these degrees of freedom in
order to compensate for the directionality in the monitors,
and to accomodate different viewing distances. In practice,
the Samsung monitors deliver well on their promised 170
degree omnidirectional field of view, so a wide range of ad-
justments is effective.

Each display is driven directly by an NVidia GeForce 4
Ti4600 graphics card, at 1280x1024 resolution. The ag-
gregate pixel count for the entire display matrix is thus
7 x 7 x 1280 x 1024 = 64,225,280 = 64 Mpixels, dis-
tributed over some 55 square feet of screen real estate.

Each graphics card is housed in a dual-CPU AMD
Athlon MP2000+ rackmounted slave node. The slave nodes
each have a 100GB IDE disk, thus providing aggregate stor-
age of 5TB. The slaves are driven by a similarly configured
master node, and all communication is via Fast (100 BaseT)
Ethernet, coordinated by a pair of Cisco Catalyst 2950 G-
48-El switches.

3 Coordinated Visualizations

In our system, nodes either work together to display one
scene (like a powerwall), or they each individually display
separate but related scenes. Coordination in the power-
wall sense requires that all nodes render the same scene at
the same time with an appropriately related set of view-
ing transformations. At the other end of the spectrum,
each node displays possibly a different dataset, or the same
dataset using a different rendering parameter, or even a
completely different visualization technique. Coordination
in these cases may mean that all the nodes need to have the
same viewing transformations, or that the same colormap is
used across the different datasets, or that items selected in
one view are highlighted in other views.

In cases where we want ganged control, a particularly
useful ploy is to simply replicate mouse and keyboard
events on the master node and broadcast them to the slaves.
This strategy allows us to run many standalone X Window
System event-driven applications virtually unchanged as
hyperwall SPMD applications. For controlling true MPMD
applications, which may feature distributed control inter-
faces and peer-to-peer communication patterns, we use a
distributed object framework with a robust signal/slot event
service, the details of which are outside the scope of this
report.

3.1 Using X to interact with the nodes

Using the X Test extension distributed with X11R6, we
can send simulated mouse and keyboard events to X servers
running on any of the nodes. Using custom software, called
hyperx, a user can sit at the master node and interact simul-
taneously with any number of nodes in the matrix. This al-
lows one to change such things as view perspective, color
mapping, visualization type, or any parameter of a visu-
alization accessible via keyboard input or a GUI. Imagine
interactively changing a cutting plane position through 49
different datasets at once, and you begin to see the possibil-
ties of such a system. Another nice feature is the ability to
move the mouse and keyboard focus from screen to screen
as if you are interacting with one very large virtual desktop.

3.2 Issue: Maintaining View Coherence

In powerwall mode, when a group of nodes is coop-
erating to show a single scene, all the nodes must agree
upon the current set of viewing transformations. Similarly,
when groups of nodes independently render related objects,
we typically want to have the same viewpoint across all of
them. Transformations or viewpoints are usually modified
via the mouse or keyboard. Thus, we can often achieve view
coherence by sending the exact same event stream to each
node though there are again some subtleties that may re-
quire modifications to software running on the nodes.

When its view is being adjusted with the mouse, an X-
based application will typically pass through the main event
loop many times as the mouse is dragged. Since we want
all ganged nodes to respond identically, any source of asyn-
chronicity in the event production or consumption must be
hunted down and removed. Thus for example, all event
compression must be turned off. Other sources of asyn-
chronicity are X workprocs, and callbacks from 1/0 events
on sockets registed via XtAppAddIinput. Self-generated X
events can be another source of disparity in the event stream
and hence lead to divergence of transformations and view-
points.

Once these and other sources of randomness in either
the event stream production or consumption have been re-
moved, the remaining issue is that of graphics throughput.
Suppose, as you are drawing your scene across four nodes
ganged in a 2x2 array, one node’s portion of the view frus-
tum happens to contain the bulk of the polygons in an iso-
surface being rendered. Its frame rate drops to say, 3 fps
while the other nodes gallop merrily along at 15 fps. The
views will in this case diverge until the user releases the
mouse, whereupon the views will again converge when all
nodes in the gang have digested all the events in their identi-
cal event streams. If needed, a finer-grained approach using
some sort of distributed synchronization mechanism such

A @ w, T Aqresy zesEIED) ugEsod
sreep 3 maa dag € 3 Z H99ySs 89S seoud L1exdR suasue w a ssowdg TqUeWSTXE AHEN
ugeTmXe ey TXZXT

WMEAINDFO SITPIIOF mﬁ\

SNQILOES 3 S MEA HAS o x
€30 T LHS ‘TIV MMEdAH ¥Od WYL worssss o ﬁ e o WI__F BV mxa e
—— i — /

I I |J< I _ _ m

[rm— E.K(A‘m?w

=
‘:T_W

3098 mrases
Texms Bwpeuwn G

(oo 2w 7
Tox 5 BUPRATEOT

L
==
[y

il 5
o

0sL9

—1
[DX

swepaed L ~TETH

sewosssooe =
pure sugsmmxe b
W T PSRCTS-. A

*d&0D 070830

sreq unured are

[

LEJ
—
11|

e
i

£300us 595 ‘se0xd ¥T
dns une

WWIXZET
o 8[a s 5 izt
sagdamen Ly
UGS ure JouFeH
g90T

WWIXZXZ
o wwgx
. .
o5 wre

stoq unu peURePU

=
—J

V—1 }— b—T —

[

E

T,
11 |
|

T o [

)
—T1
79

5.
T

SvrosZrz L B

SYR9STRZZ T g -

SYROSTRZ S v

[

J¥ /

owegzed L‘ HHS SSY¥E 500 AQY’wy X~ TTET

&L |
- |

Na®Eow /3 edky

m
|
|
q

b
E
—]
11|
:
[rT

LTV ¥LZL3O Buprso pspusdsng

Figure 1. Custom rack for holding the 7x7 array of monitors.

5

Athlon PC
2x 1.7 GHz

NVidia

Gforce 4

i
4 /////% ~
M Ty, el
=t 7 I -]
ethernet |F———= 9 p .\/'/,,
& — S8
switch =+ : o >
switch — P x 7 o "
[I
; ;
! s
-
f \
A) {1
Athlon PC NVidia { 1o
2x 17 GHz [— ., E==1250x1024)
wnaster” Gforce 4 | display |

| S
keyboard

Figure 2. Architecture.

as a barrier can remove this remaining issue, and provide
frame for frame view coherence. This is needed for things
such as synchronized animation.

3.3 Spreadsheet-Based Visualization

Since we lay our visualizations out in a matrix, our sys-
tem is related to spreadsheet-based visualization systems
[8, 9, 10] and gains many of the inherent benefits thereof.
The position of a visualization in our matrix of screens can
be directly related to a location in a high-dimensional space,
providing the user with a necessary context for understand-
ing and navigating MDMV spaces. For instance, figure 3
shows a parameter study of the Reusable Launch Vehicle.
Each row displays a different angle of attack, each columm
a different Mach number. The user knows, at a glance, the
parameters associated with the dataset in each view.

Like other spreadsheet-based systems, the simultaneous
display of related visualizations facilitates a broad range of
primarily visual activities such as comparing and contrast-
ing related images, tracking features between timesteps, and
finding patterns amidst the complexity of a family of bivari-
ate scatterplots. Furthermore, with aggregate visualizations
(using possibly several different applications), we can ex-
plore visualization space as well as data space, looking at
our data in a number of ways at once. Our system pro-
vides well for these visual tasks by providing high resolu-
tion views of all visualizations and allowing for a high de-
gree of interactivity with these views by the user.

3.4 Examples

Here are examples of some of the first few SPMD appli-
cations we have implemented on the hyperwall. They are
essentially all preexisting standalone applications, slightly
modified, replicated, and running independently on each
node. In these simple examples, each node runs the same
program using its own local data. The user interfaces are all
driven in parallel by mouse and keyboard events broadcast
from the master node (see section 3.1).

Molecular quantum mechanics: A set of related
molecules is arranged on the wall as a two-dimensional
“molecular periodic table”. Each display shows the same
quantum mechanical observable (e.g. electrostatic poten-
tial) for its molecule, using volume visualization in the case
of a three dimensional scalar field. The viewing transforma-
tions and transfer functions are the same for all nodes, and
can be changed in real time.

Computational aerodynamics: Each display shows sur-
face pressure and streamlines for the same vehicle simu-
lated at a different mach number and angle of attack. Mach
number increases from left to right, angle of attack increases
from bottom to top. That is, all vehicles in the same column
are simulated at the same mach number, and all vehicles in
the same row are simulated at the same angle of attack. All
displays share the same viewing transformations and share
the same mapping from surface pressure to colors. Again,
all visualization parameters can be interactively changed.
See figure 3.

Weather modeling: Each display shows a three dimen-
sional scalar field from a particular timestep of a weather

Figure 3. Examining an RLV parameter study.

simulation. All displays in the same row show the same
quantity (at successive timesteps), and all displays in the
same column show the same timestep (but different phys-
ical quantities, e.g. temperature, pressure, humidity, etc.).
All displays in a given row share the same visualization pa-
rameters (e.g. the same isoscalar surface values), and these
may be interactively manipulated for the row together. All
displays share the same viewing transform, which is also
dynamic.

Planetary geology: Each row displays a different quan-
tity associated with Mars. The first row shows visible im-
agery, the second shows laser altimetry, the third shows dif-
ference between daytime and nighttime temperatures, etc.
Spatial registration is maintained between rows, and all
rows are interactively zoomed and panned identically.

Remote sensing: Each display D;; shows a satellite im-
age of the same region of a planet. Displays D;—; along
the main diagonal show the image in band 4, displays D;s ;
show the ratio image of band ¢ to band j, and displays D;«
show another binary function of the bandwise images. All
displays are interactively panned and zoomed together. Im-
age processing operations can be applied to any subset of
the images.

3.5 Caveats

One way in which we differ from spreadsheet-based vi-
sualization systems is that, in general, we do not have a built
in programming language. This would allow one, for in-
stance, to calculate the difference between the scalar fields
on two nodes, and display the results on another. However,

this might require a high degree of integration between soft-
ware on the master node and software running on the nodes.
While we have written applications that are as tightly cou-
pled as this, node application software can often be run un-
modified. This loose coupling greatly extends the number
of applications we can use on the cluster especially those for
which we do not have source. Alas, some features may re-
quire code modification no matter what. For example, syn-
chronized animation across multiple nodes will typically in-
volve some external synchronization mechanism probably
not anticipated in a given application.

3.6 Powerwall mode

Sooner or later, everyone eventually asks if we can show
one image over all the screens (like a powerwall). The an-
swer is yes, with some reservations. Unless you are using
Chromium [12] to divide up of the graphics work, in gen-
eral, node application software will need to be modified.
We have used Chromium on our cluster but at the time there
were performance issues related to using only fast ethernet
between nodes, as well as issues with display lists and ap-
plications using multiple windows.

For 2D scenes, such as rendering an image, there is an
implied XY offset into the image based upon its location in
the wall. Image rendering software would need to calculate
the relevant subrectangle for its portion of the view, possi-
bly affecting 1/0, buffering, and display routines. Display-
ing 3D scenes across an array of screens can be achieved by
dividing up the view frustum appropriately and having each
node render the entire scene. While this seems wasteful, the

efforts required for culling the scene via octrees, or other
suitable schemes, usually does not become necessary until
the rendered scenes become completely unwieldy. Modern
graphics cards like the GeForce4 and its contemporaries are
quite capable of rendering millions of polygons per second.
Of course, one could come up with a giga-polygon isosur-
face to foil us here but in practice, this has not been an is-
sue. View coherence is an issue however as discussed in
section 3.2.

4 Navigating in Hyper space

The complexity of MDMV datasets inspires us and cries
out for novel tools to search around for new unseen relation-
ships. Inevitably, there is the tension between complexity of
task and simplicity of interface.

For example, navigation is one of the primary chal-
lenges in MDMV visualization. Useful interfaces for
high-dimensional navigation need to be intuitive, flexible,
and provide contextual information. A good example of
MDMYV navigation is the HyperSlice [6] interface. The user
is presented with an array of bivariate plots, each of which is
centered on an n-dimensional point C = (X4, Xa, ..., Xy)
This point can be moved around in n-space by direct ma-
nipulation. By grabbing in the X1, X2 subplot the user
changes those coordinates of C, leaving all the other di-
mensions X3...X,, constant. This interface gives immedi-
ate feedback to the user via direct manipulation, provides
contextual information for the user through the meaningful
layout of the subplots, and allows the user to navigate the
center point C, anywhere in the n-dimensional space.

We have implemented a high-dimensional browser that
shares some features of the HyperSlice paradigm, as well
as its recent extension called HyperCell[5]. Our browser
is currently more limited in application than those two
schemes, since it is specialized for six-dimensional scalar
fields, but for this class of data we feel it provides a more
powerful interface than either HyperSlice or HyperCell.

In our 6D Browser, we select 3 dimensions of the data,
say (X,Y,Z), for display on the master console. In this
scene, we embed a 7 x 7 array of sampling points, ar-
ranged in a regular planar array. The plane can be scaled,
translated, or rotated freely, in order to position the sam-
pling points. Each of the 49 points corresponds to a screen
on the hyperwall, where we display the remaining 3 di-
mensions of the data (call them (U, V, W)). Thus each
of the 49 hyperwall screens shows the entire (U, V, W))
field, for some fixed (X,Y,Z) determined by the lo-
cation of its corresponding point on the master display:
(X35, Yij, Zs5, U, V, W), where ¢ and j are the indices of
the 7 x 7 array of sampling points.

We use volume rendering to display the 3D slices on the
hyperwall screens. The orderly 2D array of 3D slices pro-

vides a rather direct view of 5 dimensions of a 6D dataset —
but since the sampling array is not necessarily axis-aligned
we are generally seeing variation across all 6 dimensions.

For our purposes, we have several datasets requiring nav-
igation in a 6D space. One example is the visualization
of correlation holes in the electron pair density function.
Given a molecule, we fix the position of an electron. Then,
for a given position of the reference electron, we consider
the spatial density of the remaining electrons. Since both
the position of the reference electron and the spatial density
field of the remaining electrons have three degrees of free-
dom, the correlation holes are structures in six dimensions.
See figures 4 and 5.

5 Interactive Parameterized Simulations

With the advent of workstation class PCs, significant
computational power is availible to throw at a problem.
When combined with an array of graphics displays, we
achieve an environment where we can exercise computa-
tional steering[11] of families of related simulations.

Our system allows us to run parameterized families of
simulations in parallel. However, computational steering
environments often require that one “instrument’ the simu-
lation code in order to give the user feedback (monitoring)
and allow interactive control (steering). For monitoring,
the simulation code is often modified to allow display of
the state of the simulation. Additional modifications allow
access to the simulation’s runtime parameters for steering.
Both of these modifications are delicate and obviously re-
quire in-depth analysis of any simulation code.

As an example, a molecular simulation code employ-
ing the reactive bond order Brenner potential has been in-
strumented by NASA researchers Chris Henze and Bryan
Green. Every time the molecular dynamics code completes
a timestep, it sends the updated atom positions to a viewer.
Within the viewer, the user can interact with the simula-
tion by selecting individual atoms and moving them around.
Furthermore, using an interface on the master node, forces
such as compression, extension, rotation, and shear can be
applied.

Within the hyperwall environment, dozens of these sim-
ulations can be run in parallel. Figure 6 displays thumbnail
snapshots from a set of carbon nanotube simulations each
of which has been subjected to an extensional force interac-
tively supplied by the user. Again, layout in the matrix im-
plies position in this parameter space of nanotubes. Along
the diagonal, from top to bottom, the nanotubes grow larger.
Greater distances above and below the diagonal correspond
to more twist in a clockwise or counterclockwise direction.
We can see that, in general, the smaller tubes tend to break
apart with the level of force applied by the user.

Figure 4. Six-D browser interface here shown with a schematic water molecule. This interface allows
the user to coordinate the simulations seen in figure 5.

Figure 5. The Six-D browser allows interactive exploration of the electron pair density function around
a water molecule.

Figure 6. Realtime interaction with a family of nanotube simulations.

6 Human Factors

We have sized the hyperwall as a 7 x 7 array for several
reasons. Some are pedestrian: the total system fit within
our budget and the display array fits within our lab. The
7 x 7 array of 18 inch LCD monitors is a comfortable size -
about the size of an office wall. From the middle of our lab
(a standard size office) a user can easily fixate on any hy-
perwall monitor with little or no head movement. When
viewed from this natural distance, the hyperwall display
subtends about 80 degrees, and each pixel subtends about
0.01 degree. This nicely matches both the field of view and
resolution of the human eye.

However, a somewhat more rigorous justification for
the hyperwall display’s dimensions (seven screens high by
seven screens wide) is found in Miller’s classic paper [13]
that first married experimental psychology with informa-
tion theory. In [13], Miller persuasively argues that seven
is about the number of classes available for absolute uni-
variate discrimination, or the number of objects in the span
of attention, or the size of a “chunk” in human short term
memory, or the depth of our stack.

Assume that each display D;; on the hyperwall shows its
own visualization V;; = V(ay, ;). o and g are each pa-
rameters that change discretely in seven steps as we go from
left to right, or top to bottom, respectively, across the wall-
sized display array. The “magic” size, according to Miller,
of a two dimensional (bivariate) chunk in human percep-

tion is 7x7. On the hyperwall we have two dimensions to
work with simultaneously, and thus our system is sized to
“impedance match” this natural perceptual chunking in an
obvious way.

Questions about possible arrays containing far more or
far fewer displays often come up during demonstrations.
Upon reflection (and after our experiences with earlier,
smaller, prototypes) it seems Miller’s guidance towards 7 +
2 is correct. If the array of images is much larger than seven
in either dimension, then we are unable to form a gestalt of
the entire information field — we forget what we were look-
ing at on the left as we scan across to the right. If the array is
much smaller than seven in either dimension, the system’s
display capability falls below our maximum perceptual and
short term memory capacities. Neither a 50 x 50 hyperwall
or a 3 x 3 hyperwall would be a good impedance match to
an individual or a small group.

There is also the obvious issue of the mullions, or frames,
around the LCD displays, and the gaps they introduce. We
have found that these are not a problem. Remember —
the hyperwall is primarily used to display arrays of related
images rather than to display a single large image. But
even when displaying a single large high-resolution im-
age, the hyperwall’s frames are no more distracting than the
“seams” which always rear their ugly heads in even the most
carefully calibrated and aligned “seamless” multi-projector
powerwall displays.

Viewing a single large high-resolution image with the

hyperwall is rather like viewing the outside world though a
large, multi-paned window. And certainly, viewing multiple
related images is most natural when the individual images
are framed. These issues are addressed thoughtfully in the
context of architecture by Alexander et al.[14], in a book
which interestingly has had profound impact on software
engineering:

When plate glass windows became possible, peo-
ple thought that they would put us more directly
in touch with nature. In fact, they do the oppo-
site. They alienate us from the view. The smaller
the windows are, and the smaller the panes are,
the more intensely windows help connect us with
what is on the other side.

This is an important paradox. The clear plate
window seems as though it ought to bring nature
closer to us, just because it seems to be more like
an opening, more like the air. But, in fact, our
contact with the view, our contact with the things
we see through windows is affected by the way
the window frames them. When we consider a
window as an eye through which to see a view,
we must recognize that it is the extent to which
the window frames the view, that increases the
view, increases its intensity, increases its variety,
even increases the number of views we seem to
see - and it is because of this that windows which
are broken into smaller windows, and windows
which are filled with tiny panes, put us so inti-
mately in touch with what is on the other side. It
is because they create far more frames: and it is
the multitude of frames which makes the view.

Therefore:

Divide each window into small panes. These
panes can be very small indeed, and should hardly
ever be more than a foot square. [14]

7 Conclusion

We have described the hyperwall, a system supporting
interactive exploration of MDMV data and simulations. Be-
cause we have a full blown Beowulf cluster, each node of
which is armed with its own graphics card, we can run com-
pute and graphics intensive applications, bringing a power-
ful array of tools to bear on many problems. This allows
us to compute whole arrays of visualizations or simulations
in parallel, displayed at high-resolution, in a highly interac-
tive fashion. The sheer visual nature of the display system
encourages people to scan the displays looking for trends,
relationships, and anomalies. We find that scientists want to
walk right up to the wall of screens, look closer, and point

out observational curiosities to co-investigators. The hy-
perwall is becoming a useful, high-bandwidth collaboration
environment for a variety of scientific teams.

Acknowledgements

This work was sponsored by NASA contract
TOA61812D. Thanks to David Ellsworth, for all the
encouragement and helpful insights.

References

[1] J. W. Tukey. “Exploratory Data Analysis,” Addison-
Wesley, 1977

[2] R. A. Becker and W. S. Cleveland. “Brushing Scatter-
plots,” Technometrics, 29(2), 127-142, 1987

[3] Chris North and Ben Shneiderman. “Snap-together vi-
sualization: Coordinating multiple views to explore
information.” Technical Report CS-TR-4020, Univer-
sity of Maryland Computer Science Department, 1999

[4] D. F. Swayne, D. Cook, A. Buja. “XGobi: Interactive
Dynamic Graphics in the X Window System with a
Link to S,” in ASA Proceedings of the Section on Sta-
tistical Graphics, p. 1-8, 1991

[5] C.Russo Dos Santos and Ken. W. Brodlie (2002). “Vi-
sualizing and Investigating Multidimensional Func-
tions.” In Proceedings of the Conference on Visual-
ization 2002.

[6] J. van Wijk, R. van Liere. “Hyperslice - visualization
of scalar functions of many variables,” In Proceedings
of IEEE Visualization, 1993

[7]1 M. Ward, “XmdvTool: integrating multiple methods
for visualizing multivariate data,” In Proceedings of
IEEE Visualization 1994, pp. 326-333

[8] M. Levoy. “Spreadsheet for images,” In Computer
Graphics (SIGGRAPH ’94 Proceedings), volume 28,
pages 139-146. SIGGRAPH, ACM Press, 1994

[9] A. Varshney and A. Kaufman. “FINESSE: A financial
information spreadsheet,” In IEEE Information Visu-
alization Symposium, pages 70-71, 125, 1996

[10] Ed H. Chi, J. Riedl, P. Barry, J. Konstan. “Principles
for Information Visualization Spreadsheets,” In IEEE
Computer Graphics and Applications (Special Issue
on Visualization) July/August, 1998. IEEE CS, pp.
30-38.

[11] J. Mulder, J. van Wijk, and R. van Liere. “A Survey
of Computational Steering Environments,” in Future
Generation Computer Systems, 13(6), 1998

[12] G. Humphreys, M. Houston, R. Ng, R. Frank, S. Ah-
ern, P. Kirchner, J. T. Klosowski. “Chromium: A
Stream-Processing Framework for Interactive Render-
ing on Clusters,” presented at SIGGRAPH, San Anto-
nio, Texas, 2002

[13] G. A. Miller. “The magical number seven, plus
or minus two: Some limits on our capac-
ity for processing information,” The Psychologi-
cal Review, 63, 81-97, 1956. Reprint avaiable at
http://psychclassics.yorku.ca/Miller/

[14] C. Alexander, S. Ishikawa, M. Silverstein
A Pattern Language. Section 239 “small
panes”. Oxford University Press. 1977. see also
http://www.patternlanguage.com/apl/apl239/apl239.htm

