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Abstract

Compact high-order upwind schemes using reconstruction from cell-averages
are derived for application with the compressible three-dimensional Navier-Stokes
equations. An adaptive-octree mesh, combined with the Adams-Bashforth-
Moulton family of predictor-corrector schemes, provides a conservative high-
order time-integration platform supporting localized h-refinement and timestep
sub-cycling. Numerical examples for smooth flows demonstrate the improvement
over explicit upwind schemes and formal accuracy of the schemes, as well as the
behavior in wall-bounded regions, and the resolution of a broad wavenumber
spectrum.

Key words: high-order, finite-volume, predictor-corrector, Navier-Stokes

1. Introduction

Time-dependent numerical simulations which involve disparate length scales,
with variations over several orders of magnitude, are a challenge for engineering
research and production computing. Examples from the authors research includes
foam debris shedding from the space shuttle launch vehicle (SSLV)[1, 2], where
trajectory predictions of dislodged foam, with a characteristic dimension of
roughly one inch, are required over a vehicle hundreds of feet in length. In a
jet impinging upon a ground plane in crossflow[3], the jet shear layer contains
high-frequency oscillations with Strouhal number roughly St = O

(
10−3), a von

Kármán street forms behind the cylindrical jet with St = O
(
10−1), and the

ground vortex “puffs” with a frequency of St = O
(
101). Similarly, predicting

the dynamics of atmospheric decelerator systems involves resolution of unsteady
wake oscillations over several body diameters, along with small-scale eddies
at fractions of a diameter[4]. These examples are further challenged by the
associated complex geometry and computational cost of dynamic simulations.
Thus, we seek computationally efficient methods of simulating time-dependent
motions involving large variations in length scale.

Rather than attempting a global solution, the complex problem is broken
into distinct parts: the volume flowfield characterized by temporally-evolving
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variations over multiple length scales, and a surface near-body region dominated
by the complex geometry and numerical stiffness associated with friction and
heating. Numerical methods are tailored for the characteristics of each region, and
then coupled across the surface-volume interface. Recent examples of these hybrid
(finite-volume and finite-difference) schemes include elements of structured,
unstructured, and Cartesian approaches[5, 6, 7]. The current work focuses
solely on the volume off-body region, where reduced numerical stiffness allows
the use of efficient and accurate explicit time-integration schemes. Numerical
efficiency here encompasses several components: cpu, memory, and bandwidth,
both cpu-memory and inter-process bandwidth.

The off-body region requires localized mesh adaptation to effectively resolve
the disparate scales, which evolves temporally in response to the (potentially
large) unsteady fluid and body motions. An adaptive-octree1 approach (cf. [8, 9]),
containing structured blocks of fixed size, is used. Adaptive structured blocks
facilitate algorithmic and numerical optimizations, with low memory overhead.
An octree supports hierarchical algorithms, and a priori limits the allowable
mesh topologies, again enabling tailored optimizations. The adaptive octree
is discretized using a finite-volume approach, which facilitates conservative
treatment across the octree boundaries, to solve the Navier-Stokes equations.
The inviscid operator is treated numerically as a Riemann problem, with the
left and right states provided by upwind-biased variable reconstruction schemes.

Higher-order schemes (better than third-order accuracy), coupled with the
h-refinement of the adaptive octree, potentially offer increases in both accuracy
and numerical efficiency. With a multi-block approach, the use of higher-order
methods must be balanced against the fixed block size, and the width of the
required computational stencil. To take full advantage of the flexibility of an
adaptive octree, blocks with a linear dimension of 10-20 degrees of freedom
(DoF) are desired. For higher-order schemes which require a seven-point (or
greater) stencil width, the overhead in redundant storage to provide boundary
communication, i.e. ghost cells, along with the increased communication costs
to update the ghost cells in a distributed parallel environment, limit the efficacy
of the schemes.

Compact (Padé) schemes[10], which use an implicit reconstruction over a
five-point stencil to provide both higher-order accuracy and resolve a broad
spectrum of computational wave numbers, provide an attractive alternative
to explicit reconstructions. While compact schemes are relatively common for
centered finite-difference operators, robust implementations for upwind finite-
volume schemes have been slower to develop. Cockburn and Shu[11] extended
the upwind flux-vector splitting method using compact schemes and flux limiters,
which was followed contemporaneously in [12, 13, 14]. Adams and Shariff
developed a hybrid compact finite-difference and ENO scheme for compressible
flow[15]. Deng and Maekawa[16], and later Ramboer et al. [17], examined
compact reconstruction schemes for the one-dimensional and two-dimensional

1Sometimes referred to as an unbalanced octree.
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Euler equations, respectively. Techniques based upon variable extrapolation
have also been demonstrated for aeroacoustics[18, 19] and electromagnetics[20].

The primary objective of the current work is the development of novel com-
pact upwind schemes using reconstruction from cell-averages, for application
on an adaptive-octree finite-volume mesh to compute the three-dimensional
compressible Navier-Stokes equations. The focus here is on “smooth” flows
that do not contain strong discontinuities, which is the majority of the compu-
tational domain for many applications. This is seen as a necessary first step
before developing complex nonlinear reconstruction limiters (as an example), or
committing to an h-p framework, to handle general flows. The derived implicit
high-order schemes substitute directly for explicit reconstructions in the upwind
finite-volume formulation, greatly reducing the numerical dissipation in shock-
free regimes, without loss of robustness, or requiring tailored treatments for the
boundary closure.

2. Compact Upwind Scheme

To introduce the compact upwind schemes we consider a one-dimensional
scalar hyperbolic equation in integral conservation form,

d

dt

∫ xR

xL

u(x, t) dx+ f(u(xR, t))− f(u(xL, t)) = 0 ∂f

∂u
∈ < (1)

For example, f(u) = 1
2u

2 provides the inviscid Burgers’ equation. Introducing
the one-dimensional cell size, h, and the cell-averaged quantities

ūh =
∫ xR

xL

udx =
∫ x+h/2

x−h/2
udx (2)

we have
d

dt
(ūh) + f(u(xR, t))− f(u(xL, t)) = 0 (3)

The current work uses a polynomial basis to represent the solution,

û(x) ' a0 + a1x+ · · ·+ apx
p =

p∑
k=0

akx
k (4)

so that û(x) = u(x) +O
(
hp+1). It follows then that

f̂(û) = f(u) +O
(
hp+1) ˆ̄u(x) = ū(x) +O

(
hp+1) (5)

Introducing a uniform mesh of N cells, indexed with j ∈ [0, N − 1], and
simplifying the notation with

u← û, f ← f̂ ,
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the semi-discrete approximation of Eqn. 3 in cell j is
d

dt
(ūjh) + fj+ 1

2

(
u
(
xj+ 1

2
, t
))
− fj− 1

2

(
u
(
xj− 1

2
, t
))

= 0 (6)

The flux, f(u), is treated as a Riemann problem

fj+ 1
2

(
uj+ 1

2

)
= fRPj+ 1

2

(
uLj+ 1

2
, uRj+ 1

2

)
(7)

The discrete representation for the left and right states of the Riemann problem
at the cell interface, uL

j+ 1
2
and uR

j+ 1
2
, are obtained using an upwind reconstruction

from the cell-averaged quantities. The formal (asymptotic as h → 0) spatial
accuracy of the flux balance (residual) is thus determined by the order of the
polynomial basis used to reconstruct the states at each cell interface.

In the schemes considered here, it is sufficient to analyze the reconstruction
for uL

j+ 1
2
, with uR

j+ 1
2
simply being a reflection. For reference, and to make

the notation concrete, explicit upwind reconstructions for basis p ∈ [0, 4] are
presented in Eqns. 8-12. The support for the second- and third-order accurate
schemes span five computational cells to solve the Riemann problem, with the
higher-order schemes using a seven-point stencil. The linear basis uses Fromm’s
scheme. The explicit schemes for p ≥ 3 are representative of the reconstructions
used as a functional basis in WENO schemes[21].

p = 0, uLj+ 1
2

= ūj (8)

p = 1, uLj+ 1
2

= ūj + 1
4 (ūj+1 − ūj−1) (9)

p = 2, uLj+ 1
2

= ūj + 1
3 (ūj+1 − ūj) + 1

6 (ūj − ūj−1) (10)

p = 3, uLj+ 1
2

= ūj + 1
12 (ūj−2 − 5ūj−1 + ūj + 3ūj+1) (11)

p = 4, uLj+ 1
2

= ūj + 1
60 (2ūj−2 − 13ūj−1 − 13ūj + 27ūj+1 − 3ūj+2) (12)

To formalize the derivation of the compact upwind schemes, we use a primitive
function from the definition of an anti-derivative,

U ′ = dU(x)
dx

≡ u(x),
∫ xR

xL

u(x) dx = U (xR)− U (xL) = ūh (13)

We thus seek discrete approximations for the derivatives U ′ at the cell interfaces
to reconstruct the states from cell-averaged quantities. Following Lele[10], these
are derived from a general Padé approximation to the derivative using a five-point
stencil width. Here we use an unbalanced linear combination of derivatives, rather
than the centered formulation commonly used in finite-difference approximations.
For the p = 3 basis we have

β3U
′
j− 1

2
+ U ′j+ 1

2
+ α3U

′
j+ 3

2

= a3

(
Uj− 1

2
− Uj− 3

2

h

)
+ b3

(
Uj+ 1

2
− Uj− 1

2

h

)
+ c3

(
Uj+ 3

2
− Uj+ 1

2

h

)
(14)
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and similarly for p = 4,

β4U
′
j− 1

2
+ U ′j+ 1

2
+ α4U

′
j+ 3

2

= a4

(
Uj− 1

2
− Uj− 3

2

h

)
+ b4

(
Uj+ 1

2
− Uj− 1

2

h

)
+ c4

(
Uj+ 3

2
− Uj+ 1

2

h

)
+ d4

(
Uj+ 5

2
− Uj+ 3

2

h

)
(15)

The coefficients βp, ap, bp, cp, and dp are determined by matching the Taylor-
series coefficients for an expansion about j + 1

2 of O
(
hp+1), and leaving αp as a

free parameter. This gives,

β3 = 1− 3α3, a3 = 1− 4α3

6 ,

b3 = 5− 11α3

3 , c3 = 1 + 14α3

6

(16)

and

β4 = 2
3 − α4, a4 = 1− 2α4

12 ,

b4 = 47− 54α4

36 , c4 = 11 + 54α4

36 , d4 = −1 + 6α4

36

(17)

At this point it is straightforward to perform a spectral analysis of Eqns. 14
and 15 to determine the damping and dispersion properties of the schemes,
and then use a heuristic to determine the free parameter αp. In practice
this approach provides only cursory value, as the applications considered here
require reconstructions on a finite, rather than periodic, domain. With a finite
domain, the treatment of the lower and upper boundaries greatly influences the
properties of the implicit reconstruction schemes. Common boundary treatments
for compact schemes (primarily finite-difference) include reducing the order of
the basis approaching the boundary (often via filtering), switching to downwind-
biased reconstructions, or combinations thereof (cf. [22, 23]).

The approach taken here is to treat the boundary and interior formulations
holistically, and determine the free parameter αp and the boundary formulation
concurrently to provide a reconstruction that is both accurate and stable for
nonlinear systems on a finite domain. The lower boundary (j = − 1

2 denoted by
subscript lb) uses an implicit downwind-biased stencil,

U ′− 1
2

+ αlbU
′
1
2

= alb

(
U− 1

2
− U− 3

2

h

)
+ blb

(
U 1

2
− U− 1

2

h

)
+ clb

(
U 3

2
− U 1

2

h

)
+ dlb

(
U 5

2
− U 3

2

h

)
+ elb

(
U 7

2
− U 5

2

h

)
(18)

The upper boundary (subscript ub) is a mirror image. The coefficients alb, blb,
clb, dlb, and elb are again determined by matching the Taylor-series coefficients
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for an expansion about j = − 1
2 based on p = 4, leaving αlb as a free parameter.

Both the p = 3 and p = 4 interior schemes use the same boundary formulation.
This gives

alb = 2αlb − 3
60 , blb = 27− 13αlb

60 , clb = 47αlb + 47
60

dlb = 27αlb − 13
60 , elb = 2− 3αlb

60

(19)

Further, we prescribe βub = 1
αlb

based upon symmetry considerations.
The linear stability of the coupled interior and boundary scheme is analyzed

for the scalar advection equation, f(u) = au, a > 0, using a modal approach.
Writing the compact reconstruction as a matrix operator1 gives

uLj+ 1
2

= L̂(ūj) = V −1W ūj (20)

and for p = 3

V =


1 αlb 0 . . .
β3 1 α3 . . .

0
. . . . . . . . .

. . . . . . . . . . . . . .

. . . 0 βub 1

 , W =


alb blb clb dlb elb 0 . . .
0 a3 b3 c3 0 0 . . .

0 0
. . . . . . . . . 0 . . .

. . . . . . . . . . . . . . . . . . . . . . . . .

. . . 0 eub dub cub bub aub


From L̂ we construct the flux difference, and write the semi-discrete equation
along the one-dimensional line as a linear mapping operator L,

dūj
dt

= L(ūj) (21)

For an explicit scheme L is a banded matrix, while for the implicit reconstruction
the matrix is full. The solution to Eqn. 21 is given by

ūj(t) =
∑
j

vje
λjt + ūp(t) (22)

where λj are the eigenvalues of L, and ūp is a particular solution which does not
effect the linear stability. Thus, the necessary condition for linear stability of the
coupled interior and boundary scheme is that the eigenvalues of L all inhabit
the left half of the complex plane, i.e. Re(λj) ≤ 0 ∀j.

The linear stability criteria provide necessary conditions for the compact
upwind schemes, however in practice linear stability alone is not sufficient
to ensure satisfactory performance for nonlinear problems on irregular mesh
topologies in multiple dimensions. Additional criteria pertinent to nonlinear

1The mixed notation treats the discrete representation along a one-dimensional line as a
vector.
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systems containing multiple waves of opposing sign are necessary. In the current
approach, the free interior and boundary parameters for the compact upwind
schemes are chosen to satisfy the linear stability criteria and also completely
annihilate the high-frequency (Nyquist) odd-even spectral modes between the
left and right states at the cell interface, as occurs naturally with the explicit
schemes Eqns. 8-12. This is formulated as a constrained optimization problem,

Given: uj(x) = u◦ sin
(πxj
h + φ

)
Find: αp and αlb such that

L̂(ūj) = uLj+ 1
2

= û◦ sin
(πxj
h

)
uRj+ 1

2
= û◦ sin

(πxj
h

+ π
)

where û◦ ≤ u◦ and Re(λj) ≤ 0 ∀j.

and solved using a genetic algorithm. A set of solutions for this problem provides
the parameters

α3 = 1
5, α4 = 1

4, αlb = 9 (23)

which completes the derivation of the compact upwind schemes for p ∈ [3, 4].
Eigenvalues from the modal analysis of the p = 3 compact scheme are

presented in Fig. 1 for a sampling of the interior and boundary parameters.
From the standpoint of linear stability there appears little to distinguish the
final coefficients from reasonable alternatives. The explicit and final forms of
the compact schemes are presented in the modal analysis context in Fig. 2.
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Figure 1: Eigenvalues of the compact linear mapping operator, Eqn. 21, with
N = 64.
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Figure 2: Eigenvalues of the upwind linear mapping operators with N = 64.

The compact high-order reconstructions are tridiagonal equations which
are solved along a one-dimensional line to determine the cell interface states.
Two inversions are required, one each for uL

j+ 1
2
and uR

j+ 1
2
, in order to solve the

Riemann problem. Compact representations of central-difference gradients for
the flux are obtained in a single tridiagonal inversion, however these schemes also
require implicit filtering or artificial dissipation in order to maintain stability,
hence the computational costs roughly balance in one dimension. The multi-
dimensional implementation of the finite-volume scheme is covered in more detail
in Sec. 3. Relative to Fromm’s scheme, the compact schemes require roughly
10-20% greater computational cost (depending upon hardware, compiler, etc.).

The formal accuracy of the compact schemes is demonstrated by reconstruct-
ing a sinusoidal function,

uex(x) =
10∑
n=1

An sin
(

2nπ x
L

+ φn

)
(24)

where the amplitude and phase shift for each harmonic are determined from a
random draw. While this function is periodic over x ∈ [0, L], the reconstruction
is performed on a finite domain with the appropriate number of ghost cells
transfered from the circular boundary. Figure 3 presents the sinusoidal function,
and the convergence obtained using isotropic refinement of the one-dimensional
mesh for each of the explicit and implicit reconstruction schemes presented above.
The slope of the convergence between the finest two resolutions tested, N = 28
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and N = 29, is noted near the terminus of each line. Each scheme achieves the
predicted formal accuracy, O

(
hp+1), as h→ 0. The compact schemes reach this

asymptotic state at coarser resolution than the explicit schemes, and have lower
error than the explicit schemes of similar basis, independent of the resolution.
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Figure 3: Convergence of the reconstruction for a sinusoidal function with
random amplitudes and phase shift over the first ten harmonics. The slope of the
convergence between the finest two resolutions tested is noted near the terminus
of each line. The explicit schemes are given by Eqns. 8-12. The implicit schemes
are summarized in Eqns. 14 and 15.

3. Adaptive-octree Sub-cycling

Extending the one-dimensional scalar hyperbolic equation of Sec. 2 to the
three-dimensional Euler equations we have

d

dt

∫
QdV +

∮
f · ndS, S = ∂V (25)
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Figure 4: Cutting plane through a sample adaptive-octree mesh with three levels
of refinement and node dimension N = 4. Each node in the tree is outlined with
thicker boundary lines.

where Q are the conserved quantities and f is the inviscid flux,

Q =

 ρ
ρu
ρe

 , f · n =

 ρun
ρunu+ pn
ρune+ pu · n

 , un = u · n

This system of equations is solved numerically using a finite-volume approach on
an adaptive-octree mesh (cf. Fig. 4). The adaptive octree uses isotropic Cartesian
blocks of fixed dimensions, also referred to as nodes, which are constrained
during adaptation so the maximum difference in both resolution and depth is one
between distance-1 neighbors in the tree. This provides a flexible and efficient
infrastructure for problems involving large variations in the characteristic length
scale, for example using localized h-refinement to resolve finer structures. With
the nodal approach, the numerical scheme in each block can be tailored to the
relevant flow physics, e.g. non-oscillatory schemes in regions containing strong
discontinuities. In this work we only consider regions of “smooth” flow, where
the upwind schemes outlined in the previous section are applied unaltered.

Each node maintains ghost cells to support the width of the stencil for the
spatial reconstruction, i.e. two layers of ghost cells at each nodal boundary for
the five-point compact schemes. This ghost cell data is either supplied by the
neighboring nodes, or domain boundary conditions. There are three types of
ghost cell data transfer between nodes: direct injection when the resolutions
across the nodal boundary are identical, averaging when the donor node is finer
than the receiver, and interpolation when the donor is coarser. The first two
cases are straightforward, while interpolation requires some explanation. When
discussing two discrete resolutions, H refers to the coarser resolution, and h the
finer.

Exchanging ghost cell data from a coarse donor to a finer receiver node uses
the polynomial basis of the donor node, along with conservation, to determine
appropriate interpolation coefficients. For example, using a linear basis we have
for the interpolation function, φ(x) = a0 + a1x, with the coefficients a0 and a1
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determined by requiring∫ H
2

−H2
φ(x) dx = Q̄H

0 H,
∫ 3H

2

H
2

φ(x) dx = Q̄H
1 H (26)

with Q̄H
j being the cell-averaged state on the coarse node. The ghost cell data

for the finer node then is given by

Q̄h
G0h =

∫ h
2

−h2
φ(x) dx =

∫ 0

−H2
φ(x) dx

Q̄h
G1h =

∫ 3h
2

h
2

φ(x) dx =
∫ H

2

0
φ(x) dx

(27)

Higher-order polynomials are handled similarly. In multiple dimensions the
interpolations are built using tensor products of the one-dimensional interpolants.

This interpolation procedure results in aliasing of the solution, whereby
spectral modes which cannot be represented on the coarser resolution are created
on the finer resolution through the interpolation. This effect is remedied by
filtering the interpolated ghost-cell data after it is generated on the finer resolution.
The ideal filter is an ideal low-band-pass filter (sinc filter) centered on κh = π

2 ,
where κh is the discrete spectral wavenumber of the fine mesh spatial resolution.
Frequencies higher than κh = π

2 cannot be supported on the coarser mesh, and
hence are spurious when transfered to the finer resolution. The current work
uses an explicit sixth-order filter,

ū′j = 44
64 ūj + 15

64 (ūj+1 + ūj−1)− 6
64 (ūj+2 + ūj−2)

+ 1
64 (ūj+3 + ūj−3) , ∀j ∈ [1, N − 2] (28)

This filtering procedure does not affect global conservation, as conservation is
ensured by performing a correction to the numerical flux between h-refinement
nodes, as described below.

To integrate Eqn. 25 forward in time we use the method of lines to solve the
semi-discrete equations as a system of ordinary differential equations (ODE).
Writing the semi-discrete version of Eqn. 25 as an ODE, and simplifying for an
isotropic cell, we have

dQ̄j

dt
= R

(
Q̄j

)
, R

(
Q̄j

)
= − 1

h

∑
∂V

 q2∑
m=1

wmf
RP
(
QL
m,Q

R
m

)
· n

 (29)

where each cell interface uses an q-point Gaussian quadrature of the flux, with
weight wm, which is exact for polynomials with basis p = 2q−1. The inviscid flux
is again treated as a Riemann problem, withQL

m andQR
m being the reconstructed

left and right states at the Gaussian quadrature points. Intermediate points are

11



first interpolated in the transverse directions, from which the cell-interface states
at the quadrature points are reconstructed using the one-dimensional formulas
of Sec. 2. As the flows here are shock-free, the transverse constructions use
straightforward polynomial interpolation of O

(
h2q−1).

A simplifying approximation uses a single-point Gaussian quadrature on the
isotropic mesh, with the quadrature point at the face centroid and unit weighting.
The residual in Eqn. 29 thus simplifies to

R
(
Q̄j

)
= − 1

h

∑
∂V

fRP
(
QL,QR

)
· n (30)

and the computational cost likewise is reduced as a single Riemann problem is
required at each interface, and the transverse reconstruction is avoided. The
numerical examples in this work produce nearly identical results with the higher-
order schemes using the single-point or multiple-point quadrature formulas.

Integrating Eqn. 29 on the adaptive-octree mesh, the scheme adapts to the
local length scale by adjusting the timestep in each node. A constant ratio of
discrete timestep to spatial resolution is maintained as the octree is traversed, so
that the time integration is “sub-cycled” on the finer resolution nodes, as with
the Adaptive Mesh Refinement (AMR) approach[24]. Thus, large variations in
time scale, either correlated with the length scale or independent, are efficiently
captured using local temporal refinement.

The adaptive-octree approach uses the Adams-Bashforth-Moulton (ABM)
predictor-corrector schemes of the same polynomial basis as the spatial recon-
struction. The ABM schemes are given by

Q̄′j = Q̄n
j + Cn

S

[
p∑
i=0

β′iR
n−i(Q̄j

)]
(31)

Q̄n+1
j = Q̄n

j + Cn

S

[
β0R

(
Q̄′j
)

+
p−1∑
i=0

βiR
n−i(Q̄j

)]
(32)

with the discrete time level given by n∆t, and using a constant Courant number,
Cn = S∆t

h in each octree node. The wave speed, S, is likewise constant across
the computational domain. The coefficients for the ABM schemes, and estimates
of the local truncation error, are easily derived (cf. [25]). The ABM schemes
use two residual evaluations independent of the order of accuracy. In many
applications the temporal truncation error is orders of magnitude lower than
the spatial truncation error. This is monitored using the predictor-corrector
schemes, and estimates of spatial truncation error available from evaluating the
residual with increasing order. When possible, ABM schemes of lower formal
accuracy than the spatial resolution are used to provide greater efficiency (due
to the greater stability bound) and improved damping properties. Higher-order
Runge-Kutta integration methods have an enhanced stability bound (per residual
evaluation) compared to the ABM schemes, however the use of high-order R-K
schemes causes difficulties when implementing sub-cycling (described below) on
the octree mesh.
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Figure 5: One-dimensional h-refinement nodal boundary interface. The ghost
cells for the fine grid are outlined with dashed lines.

A one-dimensional h-refinement nodal boundary is presented in the x − t
plane in Fig. 5. The predictor-corrector sub-cycling process is described. First,
the predictor step is computed on the coarse mesh to obtain an estimate of the
solution corresponding to time level tn+2 on the finer mesh. Using a polynomial
basis consistent with the temporal accuracy of the integration scheme, ghost
cell data for the finer mesh at time levels tn+1 and tn+2 is interpolated from
the coarse mesh. The finer mesh is then advanced for two predictor-corrector
cycles. This provides ghost-cell data for the final corrector step on the coarse
mesh, and the solution is advanced using this bootstrapping technique. To
accommodate multiple levels of mesh adaptation, the sub-cycling time advance
is generalized with a recursive algorithm. This approach requires two ghost cell
updates to advance one step on the coarse resolution, one each for the predictor
and corrector. Reducing the boundary communication using compact schemes
improves the efficiency of the time advance.

The flux on the boundary is accumulated during the cycle, and after the coarse
grid time integration, the coarse grid state is corrected by the flux difference
between the fine and coarse mesh over [tn, tn+2] to maintain global conservation,
as is done with the AMR approach. In addition, a conservation correction is
performed at each p-refinement boundary, and at the coterminous nodes for the
compact schemes, as the implicit reconstruction depends upon an entire line of
data.

The octree timestep sub-cycling requires storage of sufficient time levels to
interpolate the polynomial basis in time, as well as space. With the structured
adaptive-octree implementation this storage cost is not restrictive. These stored
time levels have been used to formulate general linear multistep methods (LMM)
with improved damping and stability properties over the ABM schemes. These
general LMM schemes integrate over multiple time levels however, which compli-
cates the accounting required for the conservation correction to balance the flux
between nodes.

Adaptation involves both refinement and coarsening of the octree mesh.
Refinement uses the same interpolation procedures described above for the
transfer of ghost-cell data. Refinement also proceeds in time, and the flow state
and residual are interpolated in time using standard stencils for the appropriate
polynomial basis representing the time advance. Coarsening also follows the
averaging procedures for the ghost-cell data, and any unavailable data required
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at previous time levels is obtained using extrapolation.

4. Isentropic Vortex Convection

Following Yee et al.[26], we demonstrate the properties of the numerical
scheme described in Secs. 2 and 3 for a planar convecting vortex. The velocity
field is a superposition of a uniform flow (u∞) and an isentropic perturbation
due to a rotational line vortex (δuψ), so that

u = u∞ + δuψ = u∞ + r ×ψ (33)

If u∞ and ψ are perpendicular and the flow is inviscid, then the vortex pertur-
bation behaves as a passive scalar and convects with the uniform flow velocity.
A radial distribution is constructed so that

ψ = ψmaxe
(1−r2)/2ez (34)

where
r2 = |r| = |(x− xo) /b| (35)

is the scaled distance from the center of the vortex xo. The maximum velocity
perturbation is thus located at |x| = b2.

Since Eqn. 33 is stationary in a reference frame moving with the uniform flow
velocity, the isentropic chain is used to determine the thermodynamic quantities
as a function of radial distance from the vortex center,

T

T∞
=
(
p

p∞

)(γ−1)/γ
=
(
ρ

ρ∞

)γ−1
= 1− γ − 1

2
ψ2
max

a2
∞

e(1−r2) (36)

Here we use a domain of unit width and length, and a vortex radius of
b = 0.05. The convective velocity is oriented 45◦ to the coordinate axes and
the magnitude is 0.5. The problem assumes an infinite array of identical planar
vortices convecting through the computational domain, hence periodic boundary
conditions are enforced, i.e. the computation uses algorithms for a finite domain
and the ghost cell data is transferred from the circular boundary. Note that
the equations for the vortex-induced variations are for a single isolated vortex,
hence do not account for the superposition between neighboring vortices, limiting
the computational resolution to cases where these effects are negligible relative
to the error in the simulation itself. The simulation is run for a total time
corresponding to the vortex convecting 100b units, which is roughly the length
of 3-1/2 domain diagonals. The ABM schemes are not self-starting, so the exact
solution is used to initialize the flow state and residual prior to the start of
the simulation. The simulations use Cn = 0.25, S = |u∞| + c∞ = 1.5, and
the AUSM+ flux-vector-splitting scheme[27] throughout. The two-dimensional
flow is simulated on a three-dimensional octree mesh by enforcing ∂

∂z ≡ 0 and
computing an array of identical solutions in x−y.

Simulations with increasing refinement uniformly in space and time are
performed by isotropically sub-dividing the octree mesh to increasing depth
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using a fixed node dimension, N = 16. For the explicit spatial reconstruction
schemes this is equivalent to increasing the resolution within a mesh containing
a single node, however for the implicit schemes this is not the case, as the
reconstruction differs striding a block interface. The spatial reconstruction
schemes in Sec. 2 are used in conjunction with the ABM time-integration scheme
of the same polynomial basis. The computed solution error in Fig. 6 follows the
same trends as the one-dimensional reconstruction, Fig. 3. The explicit schemes
of increasing polynomial basis show a reduction in solution error for the same
resolution, and are approaching the asymptotic formal accuracy. The implicit
schemes show a lower error than the comparable explicit schemes, and approach
the asymptotic formal accuracy at coarser resolution. The convergence of the
residual with increasing refinement (not shown), follows similar trends as the
cell-averaged quantities.
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Figure 6: Convergence of the isentropic vortex convection using isotropic refine-
ment. The slope of the convergence between the finest two resolutions tested
is noted near the terminus of each line. The explicit schemes are given by
Eqns. 9-12. The implicit schemes are summarized in Eqns. 14 and 15.

The adaptive-octree mesh outlined in Sec. 3 allows local refinement and
coarsening to improve the efficiency of the simulation beyond isotropic refinement.
This adaptation then evolves as the simulation advances in time. There are a
variety of methods for specifying adaptation criteria, e.g. feature-based, output-

15



based (adjoint), local truncation error, etc. The focus here is not on the specifics
of solution adaptation for time-varying flows, a subject which requires a thorough
treatment on its own. The intent is to demonstrate the flexibility and efficiency
of the adaptive-octree infrastructure; one which facilitates the use of many
adaptation criteria. Hence, adaptation is prescribed to follow the theoretical
position and extent of the convecting vortex. The explicit p = 3 and 4 schemes
with seven-point stencil width are omitted from this test for brevity.

Figure 7 repeats the isotropic refinement data, and contains the solution
error on a series of simulations increasing the maximum allowable resolution
during the adaptive refinement. The error in the L2-norm is then plotted
against the average resolution over the simulation for the adaptive results. Each
scheme shows an improvement in efficiency (comparable error levels using fewer
degrees of freedom) for the adaptive simulations. There is little to distinguish
the computed results between the compact upwind schemes on the adaptive
meshes. Snapshots of the octree mesh and computed density contours for the
finest resolution adaptive mesh computed with the p = 3 compact scheme are
presented in Fig. 8. Within each octree node the solution state is averaged
at the cell vertices to support the contouring, and remains disjoint between
octree nodes. The low diffusion and dispersion of the vortex is apparent, and
the contours do not exhibit high-frequency oscillations.

5. Laminar Flat Plate

The non-dimensional equations for compressible viscous flow in integral
conservation form are written as

d

dt

∫
QdV +

∮
(f − g) · ndS, S = ∂V (37)

where g is the viscous flux

g = Re−1
ref

 0
τ

u · τ + Pr−1
refEc

−1
refκ∇T

 , τ = µ
(
∇u+ ∇uT

)
+λ∇·uI (38)

The non-dimensional groups are the reference flow Reynolds number, Prandtl
number for the fluid, and the Eckert number, respectively

Reref = ρrefurefLref

µref
, Prref =

µrefcpref
κref

, Ecref = u2
ref

cprefTref

The invsicid flux in Eqn. 37 is treated as a Riemann problem as discussed
in Sec. 2- 4. The diffusive terms are discretized using (non-compact) centered
five-point differences (p = 3) for the gradients parallel to the face normal, and
centered three-point differences (p = 1) for the transverse gradients.

In addition to the time-dependent formulation outlined in Sec. 3, an efficient
smoother is required to remove start-up transients and when computing time-
invariant problems. The time-invariant semi-discrete ODE for Eqn. 37 is given
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and 10. The implicit schemes are summarized in Eqns. 14 and 15.

by,
dQ̄j

dtj
= R

(
Q̄j

)
(39)

with tj a local timescale in each cell, and R the summation of the inviscid and
viscous balance. This is iterated using an explicit multistage scheme

Q̄0
j = Q̄n

j

Q̄k
j = Q̄n

j + γk∆tjR
(
Q̄k−1
j

)
, k ∈ [0,m]

Q̄n+1
j = Qm

j

(40)

with m = 5, and γk = 2k−m. To efficiently remove long wavelengths from
the residual error, especially for the compact high-order schemes, the explicit
multistage scheme is used as the smoother in a p-multigrid framework (cf. [28]). A
V-cycle is used with a full-approximation-storage scheme. The coarser polynomial
basis to each level in the multigrid hierarchy is specified as

pC = pc mod 2, ∀pc > 0 (41)
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(a) |u∞| t = 77.2b (b) |u∞| t = 86.1b (c) |u∞| t = 95.6b

Figure 8: Normalized density contours (ρ ∈ [0.9ρ∞, ρ∞]) for the finest adaptive
mesh computed using the p = 3 compact upwind scheme. Within each octree
node the solution state is averaged at the cell vertices to support the contouring
and remains disjoint between octree nodes. The nodal boundaries are outlined
for clarity.

where pC and pc are the coarser and finer polynomial bases respectively.
Simulations of the laminar flow over a flat plate exercise the viscous flux for-

mulation and the iterative scheme. The streamwise pressure gradient is zero, and
comparisons against the theoretical Blasius velocity profile are presented. The
solid wall is impermeable, adiabatic, and uses the boundary-layer approximation
∂p
∂y = 0. An inviscid wall section is utilized upstream of the plate leading edge. A
parabolic velocity profile is specified at the inflow plane to reduce the (numerical)
leading-edge effects, along with a Riemann-based boundary condition. The
freestream Mach number is M∞ = 0.2, and the Reynolds number based upon
the length of the plate is ReL = 104. Roe’s approximate Riemann solver[29] is
used throughout.

Figure 9 presents the residual convergence of the p-multigrid iterative scheme
for the p = 3 compact spatial operator on a series of meshes with increasing
resolution. The polynomial bases are not hierarchical, and hence the asymp-
totic convergence rate decays slightly as the computational degrees of freedom
increases. Computed velocity magnitude contours on the finest resolution mesh
are presented for the p = 3 compact scheme in Fig. 10. The mesh is uniformly
adapted to the wall using blocks with linear dimension N = 16. As with the
vortex convection example (Fig. 8), the computed contours do not contain
high-frequency oscillations, though the steep gradients at the leading-edge are
under-resolved. This does not affect the asymptotic (as x→ L) behavior of the
boundary-layer.

Computed velocity profiles with increasing mesh resolution at the outflow
edge of the computational domain are presented in Fig. 11 for the compact
upwind schemes. Both schemes converge to the theoretical velocity profile
without overshoots or requiring additional dissipation.

18



-20

-18

-16

-14

-12

-10

-8

0 1000 2000 3000 4000

lo
g

1
0
‖R
‖ 2

p−multigrid V Cycle

1546 DoF
2838 DoF
5422 DoF

Figure 9: Convergence of the p-multigrid
scheme with increasing resolution for the
compact upwind scheme, p = 3, on a
laminar flat plate simulation.

Figure 10: Velocity magnitude profiles
for the laminar flat plate boundary layer,
|u| ∈ [0, |u∞|]. The octree mesh is
uniformly adapted to the wall located
at the lower boundary. (M∞ = 0.2,
ReL = 104).

6. Isotropic Turbulence

The final computational example simulates three-dimensional homogeneous
isotropic turbulence. A cube with edge length 2π and periodic boundaries forms
the computational domain. Spectral forcing based on the approach of Eswaran
and Pope[30], with compressible modifications by Paoli and Shariff[31], acts
as the energy-producing eddies generating isotropic turbulent fluctuations. In
this method low-frequency spectral modes are accelerated using a stochastic
forcing until a statistically stationary flow is achieved (cf. Fig. 12). Here, the
modes between the spherical shells 6 ≤ |κ| ≤ 10 are forced, where κ is the vector
wavenumber, for a total of 92 forcing modes. The computational domain is
isotropically subdivided through 4 levels with a node dimension N=16, for a
domain with 1283 degrees of freedom in 512 structured blocks. The mesh remains
isotropic to facilitate the spectral post-processing. A constant freestream Mach
number of M∞ = 0.2 is prescribed, hence we take a statistical “snapshot” of
grid-generated turbulence at a single location downstream from the grid. The
unit Reynolds number is Re = 102, and Roe’s approximate Riemann solver is
again used throughout.

The computed energy spectrum, scaled by the Kolmogorov length scale, for
increasing order of the polynomial basis is presented in Fig. 13. The computed
results are compared against experimental measurements by Comte-Bellot and
Corrsin[32]. The effect of the non-physical spectral forcing is evident in the low
wavenumber modes, however the accelerated forcing does provide a convenient
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Figure 11: Velocity profiles for the laminar flat plate boundary layer. The
disjoint cell interface values are presented. The similarity scaling is determined
using a theoretical leading-edge for each simulation based upon the computed
skin friction.
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method to produce a viscous cascade of energy through the higher wavenumber
spectrum. The explicit low-order reconstructions do not accurately represent
the higher-frequencies of the turbulent energy spectrum for these computed
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conditions, as the physical viscosity is augmented by (spurious) numerical dissi-
pation. The implicit higher-order schemes exhibit the beneficial broad spectrum
resolution typical of compact schemes, and reconstruct the energy cascade to
higher wavenumbers than the traditional explicit methods. As with the previous
numerical examples, there is little to distinguish the results of the compact p = 3
and p = 4 schemes.

7. Summary

Novel compact fourth- and fifth-order upwind schemes based on a variable
reconstruction finite-volume formulation were derived. Numerical examples using
an adaptive-octree mesh demonstrate the formal accuracy of the schemes, the
behavior in wall-bounded regions, and the resolution of a broad wavenumber
spectrum for the two- and three-dimensional Euler and Navier-Stokes equations.
The adaptive octree uses h-refinement and timestep sub-cycling to resolve multi-
ple length scales. The combination of practical higher-order upwind methods and
localized adaption using structured blocks, provides a building-block towards
automated and efficient schemes for applications involving disparate length
scales.
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